
NP Functions

I. Introduction to NP Functions and Local Search

Sam Buss (UCSD)
sbuss@math.ucsd.edu

Prague, September 2009

Sam Buss TFNP and Local Search



NP Functions

NP Functions — TFNP

[JPY’88, Papadimitriou’94].

Definition

TFNP, the class of Total NP Functions is the set of polynomial
time relations R(x , y) such that R(x , y) implies |y | = |x |O(1) and
such that R is total, i.e., for all x , there exists y s.t. R(x , y).

Thm. If TFNP problems are in P, then NP ∩ coNP = P .

Pf. If (∃y ≤ s)A(x , y) ↔ (∀y ≤ t)B(x , y) is in NP ∩ coNP, then
A(x , y) ∨ ¬B(x , y) defines a TFNP predicate. �

Thus, any NP ∩ coNP predicate gives a TFNP problem.
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Examples of TFNP problems

Prime factorization: Using Pratt’s polynomial size certificates for
primes, the predicate

R(x , y) := “y is a prime factorization of x”

is in TFNP.

Local Optimization: Any local optimization problem with
polytime checkable condition

R(x , y) := “y is a local optimum for instance x”

is in TFNP. Examples include Dantzig’s algorithm for linear
programming, Lin-Kernighan for Traveling Salesman,
Kernighan-Lin for graph partition, etc.
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Def’n: [n] = {0, 1, . . . , n − 1}.
Pigeonhole principle. PHPn+1

n . If f is a mapping from [N]
to [N − 1], then there is some y = 〈i , j〉, i < j such that
f (i) = f (j).

Graph properties. If G is a graph, all vertices of degree ≤ 2, and
node 0 has degree 1, then there is another node y with degree 1.
Input: Function f specifying G ; for each vertex s, f (s) gives the
edges incident to s. Solution: y 
= 0 of degree 1.

Leaf: Undirected graph, vertex 0 degree 1, all other nodes degree
≤ 2. Solution: Another node of degree 1.

Sink.or.Source: Directed graph, node 0 indegree 0,
outdegree 1. All indegrees and outdegrees ≤ 1. Solution: another
node with indegree or outdegree zero.

Sink: Same as Sink.or.Source, but solution is a node with
outdegree 0.
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Polynomial Local Search (PLS)

Inspired by Dantzig’s algorithm and other local search algorithms:

Definition (JPY’88.)

A PLS problem consists of polynomial time functions: N(x , s),
i(x), and c(x , s), polynomial time predicate F (x , s), and
polynomial bound b(x) such that

0. ∀x(F (x , s) → s ≤ b(x)).

1. ∀x(F (x , i(x))).

2. ∀x(N(x , s) = s ∨ c(x ,N(x , s)) < c(x , s)).

3. ∀x(F (x , s) → F (x ,N(x , s))).

A solution is a point s such that F (x , s) and N(x , s) = s.

Thus, a solution is a local minimum. Clearly, a PLS problem is in
TFNP.
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Reductions among TFNP problems

Definition: Let R(x , y) and Q(x , y) be TFNP problems. A
polynomial time many-one reduction from R to Q (denoted
R � Q) is a pair of polynomial time functions f (x) and g(x , y) so
that, for all x , if y is a solution to Q(f (x), y), then g(x , y) is a
solution to R , namely R(x , g(x , y)).

A polynomial time, Turing reduction, R �T Q is a polynomial time
Turing machine that solves R making (multiple) invocations of Q.
It must succeed no matter which solutions y are returned in
response to its queries Q(−,−).
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A PLS-complete circuit problem.

Definition

A instance of FLIP is a Boolean circuit, m inputs and n outputs
interpreted as n-bit integer. The feasible points s are m-bit inputs.
Cost c(s) is the integer output. Neighbors of s are the m points at
Hamming distance one. N(s) = any neighbor of lower cost.

Thm: [JPY’88] FLIP is many-one complete for PLS.

Thm: [JPY’88] The Kernighan-Lin problem for minimum weight
graph partitioning (LOKL) is many-one complete for PLS.
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Relativized (type 2) TFNP problems

Definition

A relativized or Type 2 TFNP problem R(1n, f , y) is a (oracle)
polynomial time predicate that takes as input a size bound 1n and
one or more functions f : [2n] → [2n]. A solution is any value such
that R(1n, f , y).

Definition: A many-one reduction from R to Q is a triple of
oracle polynomial time functions:
- a mapping 1n �→ 1m, that is computing m = m(n).
- a function βf : [2m] → [2m],
- a function γf such that if y is a solution to Q(1m, βf , y), then γf

computes a solution to R(1n, f , γf (1n, y)).

In many cases, the first function does not need to make oracle
calls, and we henceforth assume this is the case.
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Some subclasses of TFNP [P’94, BCEIP’98]

Class �T -Complete problem

PPA Leaf
PPAD Sink.or.Source
PPADS Sink
PPP PHPn+1

n

Theorem (BCEIP’98)

In the relativized (oracle) setting, we have:
PPAD ⊂ PPADS ⊂ PPP and
PPAD ⊂ PPA
Furthermore, no other inclusions hold.
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Theorem (Morioka)

In relativized setting, PPAD 
�T PLS.
The same holds for PPADS, PPP, PPA in place of PPAD.

Proof: (By contradiction.) Let M be an oracle Turing machine
that reduces instances 〈α, n〉 of Sink.or.Source to a PLS
problem. α is to specify an undirected graph G on [n]. W.l.o.g., α
is a function α(i) = 〈j , k〉 meaning that the only edge into i is
from j , and the only edge out from i is to k. The goal is find that
node 0 has degree 
= 1, or to find another node with degree 1, or
to find an inconsistency in α’s specification of the undirected
graph G .
M can query α and can invoke PLS problems P with inputs β, x
where β is a code for a polynomial-time (fixed time bound) Turing
machine M∗ that can query the oracle α and that computes values
of the F , i , N, and c for the queried instance P of PLS.
Any such query by M returns a solution to P .
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Proof continued: As M runs, it fixes a finite portion of the graph G
so that 0 has degree 1 and all other nodes have in- and
out-degrees ≤ 1. We call such partial graphs “good”.

In the end, only polynomially many edges will have been specified.
This suffices to obtain a contradiction, since M will have no way of
outputting a node that must have in- or out-degree 0.

Each time M queries α, set its value arbitrarily so as to maintain
goodness. When a PLS problem P is invoked: find a least cost
value c0 such that some feasible point x0 has cost c0 when
computed using some good (polynomial size) extension of α. Set
α accordingly. Then arbitrarily extend α further to a good partial
graph that sets enough values of α to allow the values of F , c and
N at x0 to be computed.
Q.E.D.
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On the other hand, we have:

Theorem (Buresh-Oppenheim, Morioka ’04)

PLS 
� PPA.
Hence PLS 
� PPAD.

Open question: Does PLS � PPADS hold?

This is known not to hold with a ”nice” (=parsimonious)
reduction.
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More classes

1. α-PLS, for α an ordinal ε0 or Γ0. PLS is modified so that costs
are notations for ordinals < α. [Beckmann-Buss-Pollett’02].

2. Colored PLS [Kraj́ıček-Skelley-Thapen’07]

3. RAMSEY. Input: an undirected graph G on N nodes. Output: a
homogeneous set of size 1

2 log N.

4. Weak PHP, PHP2n
n , etc.

Thm: α-PLS is many-one equivalent to PLS for α = ε0 and
α = Γ0. [BBP’02]

Thm: Colored PLS is strictly stronger than PLS. [KST’07]

Question: What is the strength of RAMSEY? Of PHP2n
n ?

Question: What is the strength of FACTORING? [P’94]
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First-order representations for search problems.

Definition

A first-order, existential formula φ, interpreted in finite structures
[N], defines a TFNP-problem, provided φ is valid in all finite
structures.

Examples:

PHP: (∃x)(∃y)(f (x) = 0 ∨ (x 
= y ∧ f (x) = f (y)))

ontoPHP:
(∃x)(∃y)(f (g(x)) 
= x ∨ f (x) = 0 ∨ (x 
= y ∧ f (x) = f (y)))
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Translations to propositional logic [Wilkie-Paris]

To translate ∃�xφ to a family of propositional formulas. First write
φ as a DNF in which no functions are nested, w.l.o.g. For each
N > 0, translate as the following family of formulas using variables
pi ,j for f (i) = j , qi ,j for gi ,j , etc.

(a) Function totality.
∨

j∈[N]

pi ,j (for each i ∈ [N], each f ).

Functionality. pi ,j ∨ pi ,k , for each i , each j 
= k.

(b) For assignment of values to �x from [N], each disjunct of φ
becomes a conjunction of atoms.

Propositional translation is sequent: (a)→(b).

More commonly, we wish to a refutation system. ¬∃�xφ becomes
an (unsatisfiable) set Γφ of clauses: namely, clauses (a), and the
clauses which are the negations of conjunctions (b).
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Example: The Paris-Wilkie translation of PHPN
N−1 is ΓPHP

containing the clauses

∨
j pi ,j , for all i = 0, . . . ,N − 1.

¬pi ,j ∨ ¬pi ,k , for all j 
= k, all i .

¬pi ,0, for all i = 0, . . . ,N − 1.

¬pi ,j ∨ ¬pi ′,j , for all i 
= i ′, all j .

Since ΓPHP is unsatisfiable, it has a refutation. Let the depth of a
formula be the maximum nesting of (blocks of) ∧’s and ∨’s in the
formula. The depth of a proof is the max depth of any formula in
the proof. It is a now-classic theorem that ΓPHP requires
exponential size to refute with bounded depth propositional proofs
[BIKPPW].
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Definition

ΓR ≤bdLK ΓQ provided there are quasipolynomial size, bounded
depth propositional proofs, from ΓR , of each ‘clause’ of some
substitution instance of ΓQ .

Theorem (B-O,M)

If R � Q, then ΓR ≤bdLK ΓQ .

They also prove a similar result about reducibility with respect to
Nullstellensatz proofs, ≤HN(d), via constant degree d reductions.

As corollaries, one gets nearly all known independence results for
�-reductions among TFNP.

Sam Buss TFNP and Local Search



NP Functions

Theorem (B-O&M)

If R � Q, then ΓR ≤bdLK ΓQ .

Proof. (Sketch.) Let R = R(f , 1n) and Q = (g , 1m). The �
reduction gives m = m(n) and gives a polynomial time oracle
machine M∗ computing g(i), i ∈ [2m]. An execution of M∗ on
input i can be viewed as a polynomial depth decision tree Ti . Each
node in Ti queries some value j ∈ dom(f ) and branches 2n ways to
give the value of f (j) = � — this branch is labeled with pj ,�. Each
leaf of Ti has a label k, indicating g(i) = k.

Identify paths in Ti with the conjunction of literals pi ,� on the
path. Define the condition g(i) = k as the disjunction over the
paths in Ti that end with label k.

The DNF formulas for g(i) = k give the substitution instance
of ΓQ .
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Proof cont’d.

The instances of the functionality and totality clauses of ΓQ follow
readily from those of ΓR .

Consider some other clause C in ΓQ . If (the instance of) C
falsified by some values of g , then the � reduction runs a further
oracle polynomial time procedure to find a clause of ΓR that is
falsified. Form a decision by cascading, (a) decision trees for the
values of g needed for falsifying C , and (b) for the paths that
falsify C , append the decision tree of queries made by the
subsequent oracle polynomial time procedure, γ.

Each path in this big decision tree that falsifies C also contains an
explicit falsification of some clause in ΓR . �
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The first-order framework does not apply directly to all natural
TFNP problems. For example, RAMSEY would be formulated as

∃〈x0, . . . , x 1
2
|N|〉∀i , j , k ∈ [ 1

2
|N|].i /∈ {j , k} → (e(xi , xj) ↔ e(xi , xk))

The second quantifier is a kind of “sharply bounded” quantifier of
the type used in bounded arithmetic, with |N| ≈ log N.

It is also possible to consider higher-level reductions between
TFNP problems than �- and �T -reductions. Consider, for
example, the reduction shown on the next page from PHPN

N−1 to
the Sink principle.

For PHPN
N−1 it is a bounded depth reduction (in terms of

definability in bounded arithmetic). Only for ontoPHPN
N−1 is it a

�-reduction.
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R2

R1

R0

D4

D3

D2

D1

D0

?

How to build an instance of Sink from an instance of PHP5
4. The

dotted path from D4 would connect back up to a Ri point if we
had a contradiction to the pigeonhole principle.
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