I. Introduction to NP Functions and Local Search

Sam Buss (UCSD) sbuss@math.ucsd.edu

Prague, September 2009

NP Functions — TFNP

[JPY'88, Papadimitriou'94].

Definition

TFNP, the class of Total NP Functions is the set of polynomial time relations R(x, y) such that R(x, y) implies $|y| = |x|^{O(1)}$ and such that R is *total*, i.e., for all x, there exists y s.t. R(x, y).

Thm. If TFNP problems are in P, then $NP \cap coNP = P$.

Pf. If
$$(\exists y \leq s)A(x,y) \leftrightarrow (\forall y \leq t)B(x,y)$$
 is in NP \cap coNP, then $A(x,y) \vee \neg B(x,y)$ defines a TFNP predicate. \square

Thus, any $NP \cap coNP$ predicate gives a TFNP problem.

Examples of TFNP problems

Prime factorization: Using Pratt's polynomial size certificates for primes, the predicate

$$R(x,y) := "y \text{ is a prime factorization of } x"$$

is in TFNP.

Local Optimization: Any local optimization problem with polytime checkable condition

$$R(x,y) := "y \text{ is a local optimum for instance } x"$$

is in TFNP. Examples include Dantzig's algorithm for linear programming, Lin-Kernighan for Traveling Salesman, Kernighan-Lin for graph partition, etc.

Def'n: $[n] = \{0, 1, \dots, n-1\}.$

Pigeonhole principle. PHP_nⁿ⁺¹. If f is a mapping from [N] to [N-1], then there is some $y = \langle i, j \rangle$, i < j such that f(i) = f(j).

Graph properties. If G is a graph, all vertices of degree ≤ 2 , and node 0 has degree 1, then there is another node y with degree 1. Input: Function f specifying G; for each vertex s, f(s) gives the edges incident to s. Solution: $y \neq 0$ of degree 1.

LEAF: Undirected graph, vertex 0 degree 1, all other nodes degree \leq 2. Solution: Another node of degree 1.

SINK.OR.SOURCE: Directed graph, node 0 indegree 0, outdegree 1. All indegrees and outdegrees \leq 1. Solution: another node with indegree or outdegree zero.

SINK: Same as SINK.OR.SOURCE, but solution is a node with outdegree 0.

Polynomial Local Search (PLS)

Inspired by Dantzig's algorithm and other local search algorithms:

Definition (JPY'88.)

A PLS problem consists of polynomial time functions: N(x,s), i(x), and c(x,s), polynomial time predicate F(x,s), and polynomial bound b(x) such that

- 0. $\forall x (F(x,s) \rightarrow s \leq b(x))$.
- 1. $\forall x (F(x, i(x)))$.
- 2. $\forall x(N(x,s) = s \lor c(x,N(x,s)) < c(x,s)).$
- 3. $\forall x (F(x,s) \rightarrow F(x,N(x,s)))$.

A solution is a point s such that F(x, s) and N(x, s) = s.

Thus, a solution is a local minimum. Clearly, a PLS problem is in $\operatorname{TFNP}.$

Reductions among TFNP problems

Definition: Let R(x,y) and Q(x,y) be TFNP problems. A polynomial time many-one reduction from R to Q (denoted $R \leq Q$) is a pair of polynomial time functions f(x) and g(x,y) so that, for all x, if y is a solution to Q(f(x),y), then g(x,y) is a solution to R, namely R(x,g(x,y)).

A polynomial time, Turing reduction, $R \preccurlyeq_{\mathcal{T}} Q$ is a polynomial time Turing machine that solves R making (multiple) invocations of Q. It must succeed no matter which solutions y are returned in response to its queries Q(-,-).

A PLS-complete circuit problem.

Definition

A instance of FLIP is a Boolean circuit, m inputs and n outputs interpreted as n-bit integer. The feasible points s are m-bit inputs. Cost c(s) is the integer output. Neighbors of s are the m points at Hamming distance one. N(s) = any neighbor of lower cost.

Thm: [JPY'88] FLIP is many-one complete for PLS.

Thm: [JPY'88] The Kernighan-Lin problem for minimum weight graph partitioning (LOKL) is many-one complete for PLS.

Relativized (type 2) TFNP problems

Definition

A relativized or Type 2 TFNP problem $R(1^n, f, y)$ is a (oracle) polynomial time predicate that takes as input a size bound 1^n and one or more functions $f: [2^n] \to [2^n]$. A solution is any value such that $R(1^n, f, y)$.

Definition: A many-one reduction from R to Q is a triple of oracle polynomial time functions:

- a mapping $1^n \mapsto 1^m$, that is computing m = m(n).
- a function $\beta^f:[2^m]\to[2^m]$,
- a function γ^f such that if y is a solution to $Q(1^m, \beta^f, y)$, then γ^f computes a solution to $R(1^n, f, \gamma^f(1^n, y))$.

In many cases, the first function does not need to make oracle calls, and we henceforth assume this is the case.

Some subclasses of TFNP [P'94, BCEIP'98]

Class	$\preccurlyeq_{\mathcal{T}}$ -Complete problem
PPA	Leaf
PPAD	SINK.OR.SOURCE
PPADS	Sink
PPP	PHP_n^{n+1}

Theorem (BCEIP'98)

In the relativized (oracle) setting, we have:

 $PPAD \subset PPADS \subset PPP$ and

 $PPAD \subset PPA$

Furthermore, no other inclusions hold.

Theorem (Morioka)

In relativized setting, PPAD $\not \leq_T$ PLS. The same holds for PPADS, PPP, PPA in place of PPAD.

Proof: (By contradiction.) Let M be an oracle Turing machine that reduces instances $\langle \alpha, n \rangle$ of Sink.or.Source to a PLS problem. α is to specify an undirected graph G on [n]. W.l.o.g., α is a function $\alpha(i) = \langle j, k \rangle$ meaning that the only edge into i is from j, and the only edge out from i is to k. The goal is find that node 0 has degree $\neq 1$, or to find another node with degree 1, or to find an inconsistency in α 's specification of the undirected graph G.

M can query α and can invoke PLS problems P with inputs β, x where β is a code for a polynomial-time (fixed time bound) Turing machine M^* that can query the oracle α and that computes values of the F, i, N, and c for the queried instance P of PLS. Any such query by M returns a solution to P.

. (ロ > 4回 > 4至 > 4至 > 至 り Qで <u>Proof continued:</u> As M runs, it fixes a finite portion of the graph G so that 0 has degree 1 and all other nodes have in- and out-degrees ≤ 1 . We call such partial graphs "good".

In the end, only polynomially many edges will have been specified. This suffices to obtain a contradiction, since M will have no way of outputting a node that must have in- or out-degree 0.

Each time M queries α , set its value arbitrarily so as to maintain goodness. When a PLS problem P is invoked: find a least cost value c_0 such that some feasible point x_0 has cost c_0 when computed using some good (polynomial size) extension of α . Set α accordingly. Then arbitrarily extend α further to a good partial graph that sets enough values of α to allow the values of α , α and α at α to be computed. Q.E.D.

On the other hand, we have:

Theorem (Buresh-Oppenheim, Morioka '04)

 $PLS \not\preccurlyeq PPA$.

Hence $PLS \not\preccurlyeq PPAD$.

Open question: Does $PLS \leq PPADS$ hold?

This is known not to hold with a "nice" (=parsimonious) reduction.

More classes

- 1. α -PLS, for α an ordinal ϵ_0 or Γ_0 . PLS is modified so that costs are notations for ordinals $< \alpha$. [Beckmann-Buss-Pollett'02].
- 2. Colored PLS [Krajíček-Skelley-Thapen'07]
- 3. RAMSEY. Input: an undirected graph G on N nodes. Output: a homogeneous set of size $\frac{1}{2} \log N$.
- 4. Weak PHP, PHP_n^{2n} , etc.

Thm: α -PLS is many-one equivalent to PLS for $\alpha = \epsilon_0$ and $\alpha = \Gamma_0$. [BBP'02]

Thm: Colored PLS is strictly stronger than PLS. [KST'07]

Question: What is the strength of RAMSEY? Of PHP_n^{2n} ?

Question: What is the strength of FACTORING? [P'94]

First-order representations for search problems.

Definition

A first-order, existential formula ϕ , interpreted in finite structures [N], defines a TFNP-problem, provided ϕ is valid in all finite structures.

Examples:

PHP:
$$(\exists x)(\exists y)(f(x) = 0 \lor (x \neq y \land f(x) = f(y)))$$

ontoPHP:

$$(\exists x)(\exists y)(f(g(x)) \neq x \lor f(x) = 0 \lor (x \neq y \land f(x) = f(y)))$$

Translations to propositional logic [Wilkie-Paris]

To translate $\exists \vec{x} \phi$ to a family of propositional formulas. First write ϕ as a DNF in which no functions are nested, w.l.o.g. For each N>0, translate as the following family of formulas using variables $p_{i,j}$ for f(i)=j, $q_{i,j}$ for $g_{i,j}$, etc.

- (a) Function totality. $\bigvee_{j \in [N]} p_{i,j}$ (for each $i \in [N]$, each f).
 - Functionality. $\overline{p_{i,j}} \vee \overline{p_{i,k}}$, for each i, each $j \neq k$.
- (b) For assignment of values to \vec{x} from [N], each disjunct of ϕ becomes a conjunction of atoms.
- Propositional translation is sequent: $(a) \rightarrow (b)$.

More commonly, we wish to a refutation system. $\neg \exists \vec{x} \phi$ becomes an (unsatisfiable) set Γ_{ϕ} of clauses: namely, clauses (a), and the clauses which are the negations of conjunctions (b).

Example: The Paris-Wilkie translation of PHP_{N-1}^N is Γ_{PHP} containing the clauses

$$\bigvee_{j} p_{i,j},$$
 for all $i = 0, ..., N - 1$.
 $\neg p_{i,j} \lor \neg p_{i,k},$ for all $j \ne k$, all i .
 $\neg p_{i,0},$ for all $i = 0, ..., N - 1$.
 $\neg p_{i,j} \lor \neg p_{i',j},$ for all $i \ne i'$, all j .

Since Γ_{PHP} is unsatisfiable, it has a refutation. Let the depth of a formula be the maximum nesting of (blocks of) \land 's and \lor 's in the formula. The *depth* of a proof is the max depth of any formula in the proof. It is a now-classic theorem that Γ_{PHP} requires exponential size to refute with bounded depth propositional proofs [BIKPPW].

Definition

 $\Gamma_R \leq_{bdLK} \Gamma_Q$ provided there are quasipolynomial size, bounded depth propositional proofs, from Γ_R , of each 'clause' of some substitution instance of Γ_Q .

Theorem (B-O,M)

If $R \leq Q$, then $\Gamma_R \leq_{bdLK} \Gamma_Q$.

They also prove a similar result about reducibility with respect to Nullstellensatz proofs, $\leq_{HN(d)}$, via constant degree d reductions.

As corollaries, one gets nearly all known independence results for \preccurlyeq -reductions among TFNP.

Theorem (B-O&M)

If $R \leq Q$, then $\Gamma_R \leq_{bdLK} \Gamma_Q$.

Proof. (Sketch.) Let $R = R(f, 1^n)$ and $Q = (g, 1^m)$. The \leq reduction gives m = m(n) and gives a polynomial time oracle machine M^* computing g(i), $i \in [2^m]$. An execution of M^* on input i can be viewed as a polynomial depth decision tree T_i . Each node in T_i queries some value $j \in dom(f)$ and branches 2^n ways to give the value of $f(j) = \ell$ — this branch is labeled with $p_{j,\ell}$. Each leaf of T_i has a label k, indicating g(i) = k.

Identify paths in T_i with the conjunction of literals $p_{i,\ell}$ on the path. Define the condition g(i) = k as the disjunction over the paths in T_i that end with label k.

The DNF formulas for g(i) = k give the substitution instance of Γ_Q .

Proof cont'd.

The instances of the functionality and totality clauses of Γ_Q follow readily from those of Γ_R .

Consider some other clause C in Γ_Q . If (the instance of) C falsified by some values of g, then the \preccurlyeq reduction runs a further oracle polynomial time procedure to find a clause of Γ_R that is falsified. Form a decision by cascading, (a) decision trees for the values of g needed for falsifying C, and (b) for the paths that falsify C, append the decision tree of queries made by the subsequent oracle polynomial time procedure, γ .

Each path in this big decision tree that falsifies C also contains an explicit falsification of some clause in Γ_R .

The first-order framework does not apply directly to all natural TFNP problems. For example, RAMSEY would be formulated as

$$\exists \langle x_0, \ldots, x_{\frac{1}{2}|N|} \rangle \forall i, j, k \in [\frac{1}{2}|N|].i \notin \{j, k\} \to (e(x_i, x_j) \leftrightarrow e(x_i, x_k))$$

The second quantifier is a kind of "sharply bounded" quantifier of the type used in bounded arithmetic, with $|N| \approx \log N$.

It is also possible to consider higher-level reductions between TFNP problems than \preccurlyeq - and \preccurlyeq -reductions. Consider, for example, the reduction shown on the next page from PHP_{N-1}^N to the SINK principle.

For PHP_{N-1}^N it is a bounded depth reduction (in terms of definability in bounded arithmetic). Only for $\mathrm{ontoPHP}_{N-1}^N$ is it a \preccurlyeq -reduction.

How to build an instance of SINK from an instance of PHP_4^5 . The dotted path from D_4 would connect back up to a R_i point if we had a contradiction to the pigeonhole principle.

Some selected references

- D. Johnson, C. Papadimitriou, M. Yanakakis, "How easy is local search?", JCSS 37 (1988) 79-100.
- C. Papadimitriou, "On the complexity of the parity argument and other inefficient proofs of existence", JCSS 48 (1994) 498-523.
- D. Gale, "The game of Hex and the Brouwer fixed-point theorem", Amer. Math. Monthly 86 (1979) 818-827.
- P. Beame, S. Cook, J. Edmonds, R. Impagliazzo,, T. Pitassi, "The relative complexity of NP search problems," JCSS 52 (1998) 3-19.
- J. Buresh-Oppenheim, T. Morioka, "Relativized NP search problems and propositional proof systems, 19th CCC, 2004, pp. 54-67.
- "A compendium of PPAD-complete problems", http://www.cc.gatech.edu/~kintali/ppad.html
- A. Beckmann, S. Buss, C. Pollett, "Ordinal Notations and Well-Orderings in Bounded Arithmetic", APAL, 120 (2003) 197-223.
- J. Krajíček, A. Skelley, N. Thapen, "NP search problems in low fragments of bounded arithmetic", JSL 72 (2007) 649-672.
- S. Buss, "Polynomial-size Frege and resolution proofs of st-connectivity and Hex tautologies", TCS 52 (2006) 35-52.
- P. Nguyen, S. Cook, "The complexity of proving the discrete Jordan curve theorem", LICS, 2007, pp. 245-256.

