
NP Functions

I. Introduction to NP Functions and Local Search

Sam Buss (UCSD)
sbuss@math.ucsd.edu

Prague, September 2009

Sam Buss TFNP and Local Search

NP Functions

NP Functions — TFNP

[JPY’88, Papadimitriou’94].

Definition

TFNP, the class of Total NP Functions is the set of polynomial
time relations R(x , y) such that R(x , y) implies |y | = |x |O(1) and
such that R is total, i.e., for all x , there exists y s.t. R(x , y).

Thm. If TFNP problems are in P, then NP ∩ coNP = P .

Pf. If (∃y ≤ s)A(x , y) ↔ (∀y ≤ t)B(x , y) is in NP ∩ coNP, then
A(x , y) ∨ ¬B(x , y) defines a TFNP predicate. �

Thus, any NP ∩ coNP predicate gives a TFNP problem.

Sam Buss TFNP and Local Search

NP Functions

Examples of TFNP problems

Prime factorization: Using Pratt’s polynomial size certificates for
primes, the predicate

R(x , y) := “y is a prime factorization of x”

is in TFNP.

Local Optimization: Any local optimization problem with
polytime checkable condition

R(x , y) := “y is a local optimum for instance x”

is in TFNP. Examples include Dantzig’s algorithm for linear
programming, Lin-Kernighan for Traveling Salesman,
Kernighan-Lin for graph partition, etc.

Sam Buss TFNP and Local Search

NP Functions

Def’n: [n] = {0, 1, . . . , n − 1}.
Pigeonhole principle. PHPn+1

n . If f is a mapping from [N]
to [N − 1], then there is some y = 〈i , j〉, i < j such that
f (i) = f (j).

Graph properties. If G is a graph, all vertices of degree ≤ 2, and
node 0 has degree 1, then there is another node y with degree 1.
Input: Function f specifying G ; for each vertex s, f (s) gives the
edges incident to s. Solution: y
= 0 of degree 1.

Leaf: Undirected graph, vertex 0 degree 1, all other nodes degree
≤ 2. Solution: Another node of degree 1.

Sink.or.Source: Directed graph, node 0 indegree 0,
outdegree 1. All indegrees and outdegrees ≤ 1. Solution: another
node with indegree or outdegree zero.

Sink: Same as Sink.or.Source, but solution is a node with
outdegree 0.

Sam Buss TFNP and Local Search

NP Functions

Polynomial Local Search (PLS)

Inspired by Dantzig’s algorithm and other local search algorithms:

Definition (JPY’88.)

A PLS problem consists of polynomial time functions: N(x , s),
i(x), and c(x , s), polynomial time predicate F (x , s), and
polynomial bound b(x) such that

0. ∀x(F (x , s) → s ≤ b(x)).

1. ∀x(F (x , i(x))).

2. ∀x(N(x , s) = s ∨ c(x ,N(x , s)) < c(x , s)).

3. ∀x(F (x , s) → F (x ,N(x , s))).

A solution is a point s such that F (x , s) and N(x , s) = s.

Thus, a solution is a local minimum. Clearly, a PLS problem is in
TFNP.

Sam Buss TFNP and Local Search

NP Functions

Reductions among TFNP problems

Definition: Let R(x , y) and Q(x , y) be TFNP problems. A
polynomial time many-one reduction from R to Q (denoted
R � Q) is a pair of polynomial time functions f (x) and g(x , y) so
that, for all x , if y is a solution to Q(f (x), y), then g(x , y) is a
solution to R , namely R(x , g(x , y)).

A polynomial time, Turing reduction, R �T Q is a polynomial time
Turing machine that solves R making (multiple) invocations of Q.
It must succeed no matter which solutions y are returned in
response to its queries Q(−,−).

Sam Buss TFNP and Local Search

NP Functions

A PLS-complete circuit problem.

Definition

A instance of FLIP is a Boolean circuit, m inputs and n outputs
interpreted as n-bit integer. The feasible points s are m-bit inputs.
Cost c(s) is the integer output. Neighbors of s are the m points at
Hamming distance one. N(s) = any neighbor of lower cost.

Thm: [JPY’88] FLIP is many-one complete for PLS.

Thm: [JPY’88] The Kernighan-Lin problem for minimum weight
graph partitioning (LOKL) is many-one complete for PLS.

Sam Buss TFNP and Local Search

NP Functions

Relativized (type 2) TFNP problems

Definition

A relativized or Type 2 TFNP problem R(1n, f , y) is a (oracle)
polynomial time predicate that takes as input a size bound 1n and
one or more functions f : [2n] → [2n]. A solution is any value such
that R(1n, f , y).

Definition: A many-one reduction from R to Q is a triple of
oracle polynomial time functions:
- a mapping 1n �→ 1m, that is computing m = m(n).
- a function βf : [2m] → [2m],
- a function γf such that if y is a solution to Q(1m, βf , y), then γf

computes a solution to R(1n, f , γf (1n, y)).

In many cases, the first function does not need to make oracle
calls, and we henceforth assume this is the case.

Sam Buss TFNP and Local Search

NP Functions

Some subclasses of TFNP [P’94, BCEIP’98]

Class �T -Complete problem

PPA Leaf
PPAD Sink.or.Source
PPADS Sink
PPP PHPn+1

n

Theorem (BCEIP’98)

In the relativized (oracle) setting, we have:
PPAD ⊂ PPADS ⊂ PPP and
PPAD ⊂ PPA
Furthermore, no other inclusions hold.

Sam Buss TFNP and Local Search

NP Functions

Theorem (Morioka)

In relativized setting, PPAD
�T PLS.
The same holds for PPADS, PPP, PPA in place of PPAD.

Proof: (By contradiction.) Let M be an oracle Turing machine
that reduces instances 〈α, n〉 of Sink.or.Source to a PLS
problem. α is to specify an undirected graph G on [n]. W.l.o.g., α
is a function α(i) = 〈j , k〉 meaning that the only edge into i is
from j , and the only edge out from i is to k. The goal is find that
node 0 has degree
= 1, or to find another node with degree 1, or
to find an inconsistency in α’s specification of the undirected
graph G .
M can query α and can invoke PLS problems P with inputs β, x
where β is a code for a polynomial-time (fixed time bound) Turing
machine M∗ that can query the oracle α and that computes values
of the F , i , N, and c for the queried instance P of PLS.
Any such query by M returns a solution to P .

Sam Buss TFNP and Local Search

NP Functions

Proof continued: As M runs, it fixes a finite portion of the graph G
so that 0 has degree 1 and all other nodes have in- and
out-degrees ≤ 1. We call such partial graphs “good”.

In the end, only polynomially many edges will have been specified.
This suffices to obtain a contradiction, since M will have no way of
outputting a node that must have in- or out-degree 0.

Each time M queries α, set its value arbitrarily so as to maintain
goodness. When a PLS problem P is invoked: find a least cost
value c0 such that some feasible point x0 has cost c0 when
computed using some good (polynomial size) extension of α. Set
α accordingly. Then arbitrarily extend α further to a good partial
graph that sets enough values of α to allow the values of F , c and
N at x0 to be computed.
Q.E.D.

Sam Buss TFNP and Local Search

NP Functions

On the other hand, we have:

Theorem (Buresh-Oppenheim, Morioka ’04)

PLS
� PPA.
Hence PLS
� PPAD.

Open question: Does PLS � PPADS hold?

This is known not to hold with a ”nice” (=parsimonious)
reduction.

Sam Buss TFNP and Local Search

NP Functions

More classes

1. α-PLS, for α an ordinal ε0 or Γ0. PLS is modified so that costs
are notations for ordinals < α. [Beckmann-Buss-Pollett’02].

2. Colored PLS [Kraj́ıček-Skelley-Thapen’07]

3. RAMSEY. Input: an undirected graph G on N nodes. Output: a
homogeneous set of size 1

2 log N.

4. Weak PHP, PHP2n
n , etc.

Thm: α-PLS is many-one equivalent to PLS for α = ε0 and
α = Γ0. [BBP’02]

Thm: Colored PLS is strictly stronger than PLS. [KST’07]

Question: What is the strength of RAMSEY? Of PHP2n
n ?

Question: What is the strength of FACTORING? [P’94]

Sam Buss TFNP and Local Search

NP Functions

First-order representations for search problems.

Definition

A first-order, existential formula φ, interpreted in finite structures
[N], defines a TFNP-problem, provided φ is valid in all finite
structures.

Examples:

PHP: (∃x)(∃y)(f (x) = 0 ∨ (x
= y ∧ f (x) = f (y)))

ontoPHP:
(∃x)(∃y)(f (g(x))
= x ∨ f (x) = 0 ∨ (x
= y ∧ f (x) = f (y)))

Sam Buss TFNP and Local Search

NP Functions

Translations to propositional logic [Wilkie-Paris]

To translate ∃�xφ to a family of propositional formulas. First write
φ as a DNF in which no functions are nested, w.l.o.g. For each
N > 0, translate as the following family of formulas using variables
pi ,j for f (i) = j , qi ,j for gi ,j , etc.

(a) Function totality.
∨

j∈[N]

pi ,j (for each i ∈ [N], each f).

Functionality. pi ,j ∨ pi ,k , for each i , each j
= k.

(b) For assignment of values to �x from [N], each disjunct of φ
becomes a conjunction of atoms.

Propositional translation is sequent: (a)→(b).

More commonly, we wish to a refutation system. ¬∃�xφ becomes
an (unsatisfiable) set Γφ of clauses: namely, clauses (a), and the
clauses which are the negations of conjunctions (b).

Sam Buss TFNP and Local Search

NP Functions

Example: The Paris-Wilkie translation of PHPN
N−1 is ΓPHP

containing the clauses

∨
j pi ,j , for all i = 0, . . . ,N − 1.

¬pi ,j ∨ ¬pi ,k , for all j
= k, all i .

¬pi ,0, for all i = 0, . . . ,N − 1.

¬pi ,j ∨ ¬pi ′,j , for all i
= i ′, all j .

Since ΓPHP is unsatisfiable, it has a refutation. Let the depth of a
formula be the maximum nesting of (blocks of) ∧’s and ∨’s in the
formula. The depth of a proof is the max depth of any formula in
the proof. It is a now-classic theorem that ΓPHP requires
exponential size to refute with bounded depth propositional proofs
[BIKPPW].

Sam Buss TFNP and Local Search

NP Functions

Definition

ΓR ≤bdLK ΓQ provided there are quasipolynomial size, bounded
depth propositional proofs, from ΓR , of each ‘clause’ of some
substitution instance of ΓQ .

Theorem (B-O,M)

If R � Q, then ΓR ≤bdLK ΓQ .

They also prove a similar result about reducibility with respect to
Nullstellensatz proofs, ≤HN(d), via constant degree d reductions.

As corollaries, one gets nearly all known independence results for
�-reductions among TFNP.

Sam Buss TFNP and Local Search

NP Functions

Theorem (B-O&M)

If R � Q, then ΓR ≤bdLK ΓQ .

Proof. (Sketch.) Let R = R(f , 1n) and Q = (g , 1m). The �
reduction gives m = m(n) and gives a polynomial time oracle
machine M∗ computing g(i), i ∈ [2m]. An execution of M∗ on
input i can be viewed as a polynomial depth decision tree Ti . Each
node in Ti queries some value j ∈ dom(f) and branches 2n ways to
give the value of f (j) = � — this branch is labeled with pj ,�. Each
leaf of Ti has a label k, indicating g(i) = k.

Identify paths in Ti with the conjunction of literals pi ,� on the
path. Define the condition g(i) = k as the disjunction over the
paths in Ti that end with label k.

The DNF formulas for g(i) = k give the substitution instance
of ΓQ .

Sam Buss TFNP and Local Search

NP Functions

Proof cont’d.

The instances of the functionality and totality clauses of ΓQ follow
readily from those of ΓR .

Consider some other clause C in ΓQ . If (the instance of) C
falsified by some values of g , then the � reduction runs a further
oracle polynomial time procedure to find a clause of ΓR that is
falsified. Form a decision by cascading, (a) decision trees for the
values of g needed for falsifying C , and (b) for the paths that
falsify C , append the decision tree of queries made by the
subsequent oracle polynomial time procedure, γ.

Each path in this big decision tree that falsifies C also contains an
explicit falsification of some clause in ΓR . �

Sam Buss TFNP and Local Search

NP Functions

The first-order framework does not apply directly to all natural
TFNP problems. For example, RAMSEY would be formulated as

∃〈x0, . . . , x 1
2
|N|〉∀i , j , k ∈ [1

2
|N|].i /∈ {j , k} → (e(xi , xj) ↔ e(xi , xk))

The second quantifier is a kind of “sharply bounded” quantifier of
the type used in bounded arithmetic, with |N| ≈ log N.

It is also possible to consider higher-level reductions between
TFNP problems than �- and �T -reductions. Consider, for
example, the reduction shown on the next page from PHPN

N−1 to
the Sink principle.

For PHPN
N−1 it is a bounded depth reduction (in terms of

definability in bounded arithmetic). Only for ontoPHPN
N−1 is it a

�-reduction.

Sam Buss TFNP and Local Search

NP Functions

0

R3

R2

R1

R0

D4

D3

D2

D1

D0

?

How to build an instance of Sink from an instance of PHP5
4. The

dotted path from D4 would connect back up to a Ri point if we
had a contradiction to the pigeonhole principle.

Sam Buss TFNP and Local Search

NP Functions

Some selected references

- D. Johnson, C. Papadimitriou, M. Yanakakis, “How easy is local search?”,
JCSS 37 (1988) 79-100.

- C. Papadimitriou, “On the complexity of the parity argument and other
inefficient proofs of existence”, JCSS 48 (1994) 498-523.

- D. Gale, “The game of Hex and the Brouwer fixed-point theorem”, Amer.
Math. Monthly 86 (1979) 818-827.

- P. Beame, S. Cook, J. Edmonds, R. Impagliazzo,, T. Pitassi, “The relative
complexity of NP search problems,” JCSS 52 (1998) 3-19.

- J. Buresh-Oppenheim, T. Morioka, “Relativized NP search problems and
propositional proof systems, 19th CCC, 2004, pp. 54-67.

- “A compendium of PPAD-complete problems”,
http://www.cc.gatech.edu/̃ kintali/ppad.html

- A. Beckmann, S. Buss, C. Pollett, “Ordinal Notations and Well-Orderings in
Bounded Arithmetic”, APAL, 120 (2003) 197-223.

- J. Kraj́ıček, A. Skelley, N. Thapen, “NP search problems in low fragments of
bounded arithmetic”, JSL 72 (2007) 649-672.

- S. Buss, “Polynomial-size Frege and resolution proofs of st-connectivity and
Hex tautologies”, TCS 52 (2006) 35-52.

- P. Nguyen, S. Cook, “The complexity of proving the discrete Jordan curve
theorem”, LICS, 2007, pp. 245-256.

Sam Buss TFNP and Local Search

	NP Functions

