
Expressibility and Derivability, and the Complexity of Proofs

Expressibility and Derivability,
and the Complexity of Proofs

Sam Buss
Univ. of California, San Diego

PhilMath Intersem, June 29, 2011.

Expressibility and Derivability, and the Complexity of Proofs

Profound ignorance

Computational complexity

State of Profound Ignorance

The P versus NP problem is just one example of a range of similar
open problems.

Open problem: Show that some natural (combinatorial, say)
problem requires superlinear runtime Ω(n).

Open problem Show that that some such problem requires
Boolean circuit size > 9 · n.

In essence, the known lower bounds for computational complexity
(of natural, constructive problems) are obtainable from the fact
that it is necessary to read the entire input.

Expressibility and Derivability, and the Complexity of Proofs

Profound ignorance

Proof complexity

Similarly, we have profound ignorance on the complexity of
propositional proofs.

Definition: A Frege proof is a proof in a “textbook” propositional
proof system based on modus ponens.

The following is our best lower bound on the length of Frege
proofs.

Let φ be (T ∧ (T ∧ (· · · (T ∧ (T ∧ T)) · · ·))).

Then, any Frege proof of φ requires c · n steps and c · n2 symbols
for some constant c > 0. (n is the size of φ.)

Proof idea: It is necessary to include some constant fraction of
the subformulas of φ as lines in the Frege proof.

Expressibility and Derivability, and the Complexity of Proofs

Profound ignorance

Frege and Extended Frege

In general, the complexity of a proof is the number of symbols in
the proof.

Extended Frege proofs are defined as Frege proofs in which
abbreviations may be introduced (to avoid repeating long
formulas). Equivalently, an extended Frege proof is a Frege proof
but with proof length equal to the number of proof steps (lines).
Open problem: Give superpolynomial lower bounds on the
lengths of Frege and extended Frege proofs.

Remarks: 1. This would be a large step towards proving P 6= NP.
Indeed NP = coNP is equivalent to the existence of a proof system
in which all tautologies have short (=poly size) proofs.
2. It is conjectured ([Tseitin ’68] and [Cook-Reckhow ’79]) that
Frege proofs cannot polynomially simulate extended Frege proofs.
3. However, we currently have no reasonable conjectures for
natural tautologies for which extended Frege proofs are more
efficient than Frege proofs. [BBP ’95].

Expressibility and Derivability, and the Complexity of Proofs

The pigeonhole principle

Definition The pigeonhole principle tautologies (PHP) state the
following formulas are inconsistent (n > 0):
∨n

k=1 xi ,k for each i = 1, . . . , n + 1
x i ,k ∨ x j ,k i < j ≤ n and k ≤ n+ 1.

Intuitively, there is no bijection from [n + 1] to [n].

Side remark: [Kreisel-Mints-Simpson ’75] dismisses the
propositional pigeonhole principle as something that one should
never try to prove in propositional logic.

However, to the contrary, PHP has proved to be an important test
case for understanding the strength of propositional proof systems.

Thm. [CR ’79]. PHP has poly size extended Frege proofs.

Thm. [B ’87]. PHP has poly size Frege proofs.

[CR ’79] used an inductive reduction. [B ’87] used a direct
argument based on expressing “counting” with poly size formulas.

Expressibility and Derivability, and the Complexity of Proofs

The pigeonhole principle

Expressibility

Explanation(?) in terms of Expressibility

The lines in a polynomial size Frege proof are polynomial-size
(Boolean) formulas. In an extended Frege proof, they are
polynomial-size circuits.

Conjecture. Boolean formulas cannot polynomially simulate
Boolean circuits.

That is, the expressive power of Frege proof formulas is
(conjectured to be) strictly less than that of lines in an extended
Frege proof.

This is the basis of the [CR ’79] conjecture.

The poly size PHP proofs, [B ’87], were based on expressing
counting with poly size formulas. This supports the intuition that
expressibility helps provability.

Expressibility and Derivability, and the Complexity of Proofs

The pigeonhole principle

Resolution

Resolution is a refutation proof system that acts on clauses.
A clause is a disjunction of literals, namely of variables and
negated variables.

The resolution inference rule is:

C ∨ x D ∨ x

C ∨ D

Theorem [Haken ’85] Resolution refutations of PHP require size
2n

ǫ

.

Clauses cannot express counting, but the proof did not use this. It
used instead a detailed analysis of the presence of large clauses in a
resolution refutation.

Expressibility and Derivability, and the Complexity of Proofs

The pigeonhole principle

Resolution

A significant generalization of the fact that clauses cannot express
counting is:

Switching Lemma. [Yao ’85, Hastad ’86] Expressing counting
(even mod 2) with constant depth Boolean circuits requires size
2n

ǫ

. Here ǫ = Ω(1/depth).

In conformance with the intuition that counting is needed to prove
PHP:

Theorem. [PBeI, KPW, ’93/’95]. Constant depth Frege proofs of
PHP require size 2n

ǫ

.

But here ǫ = (1/6)1/depth, so there is a mismatch between
expressibility and provability.

Expressibility and Derivability, and the Complexity of Proofs

Counting principles

Definition The Countq , counting mod q, principle states that a
set of size n 6≡ 0 mod q cannot be partitioned into sets of size q. It
uses variables xU for U ⊆ [n], |U| = q.

Definition Let p > 1. An ⊕p-Frege proof is a Frege proof in the
language augmented with (unbounded fanin) mod p gates, along
with suitable axioms.

Theorem [Razborov-Smolensky ’87] Let p and q be distinct
primes. Bounded depth ⊕p,∧,∨,¬ circuits that count mod q
require size 2n

ǫ

. Here ǫ is 1/(2 · depth).

Open Problem Are there polynomial size, constant depth
⊕p-Frege proofs of the Countq principles?

Expressibility and Derivability, and the Complexity of Proofs

st-connectivity

A grid graph is a graph on a k × n grid. The st-connectivity
principle states that in a grid graph where the edges form
non-intersecting paths (in-/out-degree ≤ 2), and are colored either
red or green, it is not possible to have the vertices (1, 1) and (k , n)
the only nodes with red degree 1, and the vertices (1, n) and (k , 1)
the only ones with green degree 1.

Intuition: the red and green paths would have to cross.

Theorem [BaLMS ’98] The “st-connectivity property” for width k
graphs is not expressible by poly-size depth k − 1 circuits. (In fact,
is complete for Πk -circuits).

However, in spite of this inexpressibility:

Theorem. [B’06] For fixed k , the k × n st-connectivity principle
has poly size resolution proofs.

Expressibility and Derivability, and the Complexity of Proofs

Monotone sequent calculus

The grid graphs gave an example of where the seemingly needed
concepts are not expressible, but still there are short proofs. For a
converse example, monotone propositional logic gives an example
where the needed concepts are expressible, but for which we do not
know any short proofs.

Definition The propositional monotone sequent calculus allows
sequents of the form ~A → ~B using conectives ∧ and ∨ only (no
negation, no negated literals).

Theorem The (non-monotone) sequent calculus is conservative
over the monotone sequent calculus.

Theorem [Atserias-Galesi-Pudlák ’02] In fact, the monotone
calculus can simulate the sequent calculus with quasipolynomial
(= 2(log n)

c

) size proofs.

Expressibility and Derivability, and the Complexity of Proofs

Monotone sequent calculus

Theorem [Valiant ’84, Ajtai-Komlós-Szemerédi ’83] There are
polynomial size monotone formulas for threshold (monotone
counting) and majority functions.

However, these formulas use randomized constructions or expander
graphs for which it is difficult to prove correctness.

Theorem [AGP ’02] If there are polynomial size Frege (or,
non-monotone sequent calculus) proofs of the correctness of
monotone threshold formulas, then the monotone sequent calculus
can polynomially simulate the sequent calculus.

Expressibility and Derivability, and the Complexity of Proofs

First-order logic and equality

Definition Let LK be a usual sequent calculus formalization
(equivalently, Hilbert-style) of first-order logic. Let LK− be LK

without equality.

Fact. LK is conservative over LK−.

Proof. Use cut-elimination. This gives a superexponential
simulation of LK-proofs by LK−.

Theorem For languages without function symbols, the simulation
can be improved to polynomial.

Proof idea: Although equality cannot be directly expressed, one
can replace “a=b” with ∀~x(R(a, ~x) ↔ R(b, ~x)) conjoining for all
R ’s.

Open question. What is the speedup of LK over LK− for
languages that contain function symbols?

Expressibility and Derivability, and the Complexity of Proofs

Proof search

Hardness results

Proof search is arguably more important than proof complexity, at
least for practical applications. Of course, lower bounds on proof
complexity imply lower bounds on proof search, but it seems that
the proof search problem is hard even when short proofs exist.

Theorem [Buss ’91] For the Gentzen sequent calculus LK the
following problem is undecidable: Given a formula φ and an integer
k , does φ have a proof of ≤ k steps?

Theorem [Alekhnovitch-Buss-Moran-Pitassi ’00] For almost all
natural proof systems (resolution, Frege, cutting planes,
nullstellensatz, cut-free, etc.), it is impossible to approximate
shortest proof length in polynomial time to with a factor of
2(log n)

1−ǫ

unless P = NP. (Where n is the length of a shortest
proof.)

Expressibility and Derivability, and the Complexity of Proofs

Proof search

Hardness results

Definition A proof system P is automatizable if there is a
procedure which, given a formula A with a P-proof of length n,
finds some P-proof in time polynomial in n.

Theorem [Alekhnovitch-Razborov ’01] If resolution is
automatizable, then the weak parameterized hierarchy W [P]
collapses.

The most striking result along these lines is:

Theorem [Bonet-Pitassi-Raz ’97] If Frege proofs are
automatizable, then factorization of Blum integers is in polynomial
time.

Expressibility and Derivability, and the Complexity of Proofs

Proof search

Hardness results

The Bonet-Pitassi-Raz proof uses a kind of Craig interpolation. In
fact, they show it is enough to decide the following in polynomial
time:

Given a Frege proof of A ∨ B where the propositional
formulas have no common variables, correctly identify
one of A or B as being a tautology.

The connection with Craig interpolation is that A ∨ B is equivalent
to (¬A) → B .

Craig interpolation has also been useful for lower bounds in
resolution, and in cutting planes (linear integer inequalities over
Boolean variables).

Surprisingly, Craig interpolation has become important for the
construction of automated theorem provers (SMT solvers) for
fragments of first-order logic using for hardware and software
verification.

Expressibility and Derivability, and the Complexity of Proofs

Proof search

Hardness results

Thank you!

Survey paper: S. Buss, “Towards NP-P via Proof Complexity and Search” available on

my web page has many of the citations, plus a lot more about current work in this

direction motivated by the P vs NP question.

	Profound ignorance
	Computational complexity
	Proof complexity
	Frege and Extended Frege

	The pigeonhole principle
	Expressibility
	Resolution

	Counting principles
	st-connectivity
	Monotone sequent calculus
	First-order logic and equality
	Proof search
	Hardness results

