
DRAT Proofs and Extensions

Sam Buss
U.C. San Diego

(joint work with Neil Thapen)
April 12, 2021

5th St. Petersburg Days of Logic and Computability (Online)
Dedicated to the 80th Birthday of V. P. Orevkov

Sam Buss DRAT Proofs and Extensions



Outline. Setting: Propositional proof complexity

CDCL solvers: DPLL with clause learning. These widely
developed solvers decide instances of satisfiability. CDCL
solvers seek to either produce a refutation of a set of clauses,
or find a satisfying assignment.

The resolution rule is the primary basis for CDCL refutations.

Recently, non-implicational inferences rules are used
more-and-more. These include (D)RAT, an inference rule
which admits inferring non-implied clauses, and many other
inference rules including (D)SPR, (D)PR, and (D)SR.

We focus on proofs that do not use new variables.

New results reported in this talk include a simulation of DPR
by DRAT, short proofs of PHP and other tautologies without
new extension variables, and an exponential separation of SPR
and RAT via the Bit-PHP (Bit Pigeonhole Principle) when no
new variables are permitted.

Sam Buss DRAT Proofs and Extensions



SAT and SAT Solvers

Setting: Propositional logic.

Satisfiability (SAT)
Input: A set Γ of clauses
- A clause is a disjunction of literals.
- Γ is a CNF formula.
Output one of:
- Satisfiable, with a satisfying assignment.
- Unsatisfiable.
- Or, Unknown.

SAT is NP complete; nonetheless SAT Solvers have been
remarkably (!) successful in recent decades, routinely solving
instances with 100,000’s or 1,000,000’s of variables.
Many practitioners even view SAT as being tractable (feasible).

Sam Buss DRAT Proofs and Extensions



CDCL – Conflict Driven Clause Learning

CDCL = DPLL with Clause Learning. [Marques-Silva,Sakallah’96]
Central ingredients of CDCL:

Depth-first search plus unit propagationm

Clause learning (inference) upon conflict

Restarts

Input: A set Γ of clauses
Output one of:
- Satisfiable, with a satisfying assignment.
- Unsatisfiable.
- Unknown.

For Unsatisfiable, the run of the SAT solver can serve as a
refutation.
But this presupposes the solver is sound. (Often not true!)
The DRAT systems were developed to provide succinct, quickly
checkable refutations in a form that can be readily generated by
most SAT solvers.

Sam Buss DRAT Proofs and Extensions



CDCL solvers use sophisticated decision branching, unit
propagation (UP), backtracking, restarts, UIP’s, clause learning,
etc. But the main inference rule (for learning) is “asymmetric
tautology” (AT), based on contradictions from unit propagation:

Notation: C ,D, . . . are clauses. Γ is a set of clauses.

Definition

Γ � C holds iff every truth assignment satisfying Γ also satisfies C .

Definition (�1)

Γ �1⊥ holds iff unit propagation derives a conflict from Γ.
For C = {p1, . . . , pk} a clause, Γ �1 C holds iff Γ, p1, . . . pk �1⊥.

Note that Γ �1 C implies Γ � C .
The condition Γ �1 C is polynomial time checkable.

Sam Buss DRAT Proofs and Extensions



Unit propagation and Input resolution

Unit Propagation: Do repeatedly: If all but one of the literals in
a clause C have been set false, set the remaining literal true.

Input Resolution/Trivial Resolution Derivation from Γ:

Every resolution inference has at least one hypothesis from Γ

No literal is resolved on more than once. (“Trivial”
resolution.)

Theorem (Chang’70, BKS’04)

Γ �1 C holds iff there is an input/trivial resolution derivation of C
from Γ.

Thus, CDCL proofs of unsatisfiability lead to resolution refutations.

Sam Buss DRAT Proofs and Extensions



Inference with �1 (Asymmetric Tautology):

Definition (AT - Asymmetric Tautology [Järvisalo-Heule-Biere’12])

A clause C is an AT w.r.t. Γ iff Γ �1 C .

The AT rule is sound since Γ � C .

A resolution inference

C ∨ p D ∨ p

C ∨ D

can be simulated by an AT inference.

Clause Learning

Most CDCL solvers can infer C from Γ with clause learning exactly
if Γ �1 C .

Sam Buss DRAT Proofs and Extensions



Non-implicational inferences

CDCL solvers also frequently infer clauses C that are not implied
by Γ. For example:

Pure literal: If p appears in Γ but p does not, then infer p.

Extension rule: For a new variable x infer three new clauses
expressing x ↔ q ∧ r :

q ∨ r ∨ x , q ∨ x , r ∨ x .

A useful way to think about these are as “wlog” inferences.
Namely, “wlog p is true”
or “wlog it is the case that x ↔ q ∧ r holds”.

Equisatisfiability: These inferences do not change the
(un)satisfiability of the set of clauses.

Sam Buss DRAT Proofs and Extensions



Resolution Blocked Clauses – the inference rule

Definition (Resolution Blocked Clause (RBC))

Let C := C ′ ∨ p. Then C is RBC wrt p and Γ if, for each clause
p ∨ D ′ in Γ, the resolvent C ′ ∨D ′ is a tautology.

Definition (BC inference [Kullmann’99])

If C is RBC w.r.t. Γ, then C may be inferred by a BC inference.

Theorem (Equisatisfiability under BC)

In this case, Γ is satisfiable iff Γ ∪ {C} is satisfiable.

Proof idea: Consider the first step of the Davis-Putnam procedure
(applied to p).

Sam Buss DRAT Proofs and Extensions



RAT - Resolution Asymmetric Tautology

Definition (Resolution Asymmetric Tautology (RAT))

Let C := C ′ ∨ p. Then C is RAT wrt p and Γ if, for each clause
p ∨ D ′ in Γ, the resolvent C ′ ∨D ′ is an asymmetric tautology;
i.e., Γ �1 C

′ ∨D ′.

Definition (RAT inference [Heule-Hunt-Wetzler’13])

If C is RAT w.r.t. Γ, then C may be inferred by a RAT inference.

Theorem (Equisatisfiability under RAT)

In this case, Γ is satisfiable iff Γ ∪ {C} is satisfiable.

Proof idea: Consider the first step of the Davis-Putnam procedure
(applied to p).

Sam Buss DRAT Proofs and Extensions



BC ≡ RAT ≡ Extended Resolution [Tseitin’68]

Theorem (BC simulates ER [Kullmann’99])

An extension rule can be polynomially simulated by BC inferences.
Hence also by RAT inferences.

Proof: For x new, the extension clauses are blocked:

q ∨ r ∨ x , q ∨ x , r ∨ x . �

Theorem ([Kiesl-Rebola-Pardo-Heule’18])

Extended resolution polynomially simulates RAT proofs.

Proofs:
(1) [KRPH’18] give a direct simulation. Or
(2) [Using Bounded Arithmetic]. S1

2 proves that RAT inferences
preserve satisfiability. Thus, follows by Cook’s PV theorem.

Sam Buss DRAT Proofs and Extensions



Proof Traces

As CDCL solvers become more complicated, soundness is a serious
problem. Even without “bugs”, solvers use many techniques and
many optimizations; they interact in subtle ways that can be
unsound.

Hence: desirable for SAT solvers to output refutations.

A RAT proof trace lists the inferred clauses, each one a RAT
consequence of earlier clauses. It ends with the empty clause (∅)
demonstrating unsatisfiability.
[Heule-Hunt-Wetzer’13]

Earlier approaches used AT (aka RUP, Reverse Unit Propagation).
I.e., using just �1 for inferences.
[Van Gelder’03; Goldberg-Novikov’08]

Sam Buss DRAT Proofs and Extensions



Proof Traces [HHW’13, WHH’14]

DRAT Proof Trace system: [Heule-Hunt-Wetzler’13; Wetzler-Heule-Hunt’14]

DRAT (= ’D’ + ’RAT’) Proof Trace (Refutation) consists of a
sequence of clauses updating the current set of clauses with two
rules:

RAT inferences: Introduce C by RAT.

Deletion (D): Remove any clause C .

Inferences preserve satisfiability, so the system is sound.

Often takes longer to verify refutations than generate them. (!)
Deletions help prune the unit propagation search space.

And: Deletions make the RAT system stronger!

Sam Buss DRAT Proofs and Extensions



World’s Longest Maths Proof

A parallel (cube-and-conquer) SAT solver resolved the Boolean
Pythagorean Triples Problem (unsatisfiable for n = 7825)
DRAT proof size 200TB; compressed to 14TB (clause compression
plus bzip2), then to 68GB by special encoding.
Run time: 2 days wall clock time, 37100 CPU hours.
Verification time: About 16000 CPU hours.
[Heule-Kullmann-Marek’16]

Sam Buss DRAT Proofs and Extensions



LPR - Literal Propagation Redundancy ≡ RAT

RAT can be reformulated as LPR — easier to generalize:
For next definitions: Γ is a set of clauses and

C := p ∨ C ′ is a clause.

α is C : the minimal partial truth assignment falsifying C .

Definition (LPR - Literal Propagation Redundant [HKB’17])

C is Literal Propagation Redundant (LPR) wrt p and Γ if

Γ↾α �1 ({C} ∪ Γ)↾τ,

where τ is the same as α, except setting p true. I.e. τ(p) = True.

Notation: Γ �1 ∆ means that, for each D ∈ ∆, Γ �1 D.

Theorem (LPR ≡ RAT [HKB’17])

A clause C is LPR wrt p and Γ iff it is RAT wrt p and Γ.

Sam Buss DRAT Proofs and Extensions



Proof of soundness of LPR:

Need show that if Γ is satisfiable, then so is Γ ∪ C .

Suppose σ � Γ, but σ 2 C .
Since σ 2 C , we have σ ⊇ α.
Let σ′ be σ except setting p to True.
Then σ

′ ⊇ τ .
By Γ↾α � ({C} ∪ Γ)↾τ , and since σ satisfies Γ, we have that

σ
′ satisfies Γ ∪ C .

q.e.d.

Note the proof only needs “Γ↾α � ({C} ∪ Γ)↾τ”, not
“Γ↾α �1 ({C} ∪ Γ)↾τ”. But “�1” makes the LPR condition
polynomial time checkable.

Sam Buss DRAT Proofs and Extensions



PR, SPR - (Subset) Propagation Redundancy

Recall C := p ∨ C ′ is a clause, and α is C .

Definition (PR - Propagation Redundant [Heule-Kiesl-Biere’17])

C is Propagation Redundant (PR) wrt Γ if, for some partial
assignment τ ,

Γ↾α �1 ({C} ∪ Γ)↾τ.

Notation: Γ �1 ∆ means that, for each D ∈ ∆, Γ �1 D.

Definition (SPR - Subset Propagation Redundant [HKB’17])

C is Subset Propagation Redundant (SPR) wrt Γ if, it is PR with
dom(τ) = dom(α).

Sam Buss DRAT Proofs and Extensions



SR - Substitution Redundancy [B.-Thapen’20]

Recall C := p ∨ C ′ is a clause, and α is C .

Definition (SR - Substitution Redundant [B.-Thapen’20])

C is Substitution Redundant (SR) wrt Γ if, for some partial
substitution τ ,

Γ↾α �1 ({C} ∪ Γ)↾τ.

A substitution maps a variable to 0 or 1 or to a literal x .

Theorem

BC, LPR/RAT, SPR, PR, SR are increasing in applicability.
They all preserve (un)satisfiability.

Sam Buss DRAT Proofs and Extensions



Proof systems

Using the inference rules BC, RAT, SPR, PR, SR, define proof
systems

Without deletion:

BC, RAT, SPR, PR, SR

With deletion (D):

DBC, DRAT, DSPR, DPR, DSR.

Theorem

All of these systems are polynomially equivalent to extended
resolution.

Proof: BC is the weakest, and polynomially simulates extended
resolution. Conversely, S1

2 proves the soundness of DSR. �

Sam Buss DRAT Proofs and Extensions



Not using new variables

The strength of extended resolution depends strongly on the ability
to introduce new variables.

Likewise the simulations of extended resolution by systems BC
through DSR depend on the ability to introduce new variables.

However, for practical SAT solvers, we do not yet have any good
hueristics for how to introduce new variables with extension.

This raises the question: What are the power of systems such
as BC, RAT, PR, SR etc. when restricted to not allow new
variables to be introduced?

Sam Buss DRAT Proofs and Extensions



Prior results

Theorem ([Kiesl-Rebola-Pardo-Heule’18])

Without new variables, DBC polynomially simulates DRAT.

Proof requires introducing and deleting clauses to make the
“blocked” condition hold, then undoing the extra introductions
and deletions. �

Theorem ([Heule-Biere’18])

With only one additional new variable, DRAT polynomially
simulates DPR.

Proof involves first introducing a new variable equivalent to the
clause to be inferred. �

Sam Buss DRAT Proofs and Extensions



Prior results

Autarky

DBCDRAT

DSPRDPRDSRER

All systems except ER (extended resolution) are not allowed to
introduce new variables. Arrows indicate polynomial simulation.

Sam Buss DRAT Proofs and Extensions



New simulations

Autarky

DBCDRAT

DSPRDPRDSRER

Theorem ([B.-Thapen’19])

Without new variables, DRAT polynomially simulates DPR.

Proof idea: Use one step of the Davis-Putnam procedure to
eliminate the use of one variable from a PR refutation. Then use
the simulation of [Heule-Biere’18]. Result is complex, but still
polynomial size. �

Sam Buss DRAT Proofs and Extensions



Short proofs without new variables

Theorem ([Heule-Kiesl-Biere’17, Heule-Biere’18])

The PHP
n+1
n and Tseitin clauses have polynomial size refutations

in SPR (resp., PR) without introducing new variables.

Theorem ([B.-Thapen’19])

The following have short proofs in SPR (hence DBC) without
introducing new variables:

Parity principles

Clique-Coloring principles

Tseitin tautologies on degree d expander graphs

Bit pigeonhole principles (Bit-PHP)

Or-ification and Xor-ification and Index Gadget-ification.

Sam Buss DRAT Proofs and Extensions



Bit Pigeonhole Principle (Bit-PHPn)

Informally: No 1-1 function from [n] to [n−1] with function
values encoded in binary.

Let n = 2k .

Variables:

px1 , . . . p
x
k , for all x ∈ [n].

These variables encode, in binary, integers ix .

Clauses express:

ix 6= a ∨ iy 6= a, for each x , y ∈ [n], each a ∈ [n] \ {0}.

ix 6= 0, for each x ∈ [n].

These clauses are unsatisfiable.

Sam Buss DRAT Proofs and Extensions



Some lower bounds without Deletion

Theorem ([Kullmann’99])

BC without new variables requires exponential size refutations for
PHP

n+1
n .

Theorem ([B.-Thapen’19])

RAT without new variables requires exponential size refutations
for Bit-PHPn+1

n .

This gives an exponential separation between PR and RAT when it
is not allowed to introduce new variables.

Proof idea: A random restriction applied to a short RAT refutation
gives a narrow width refutation. In a narrow refutation, RAT
inferences can be replaced by narrow width resolution derivations.
�

Sam Buss DRAT Proofs and Extensions



Corollary ([B.-Thapen’19])

Without new variables:

RAT does not polynomially simulate DRAT.

RAT does not polynomially simulate SPR.

(Separations are exponential.)

Sam Buss DRAT Proofs and Extensions



Open Questions

Exponential lower bounds on proof length for DSPR or DPR
or DSR when not allowed to introduce new variables?
Candidates:

Graph PHP [Beame,pc], or
Random 3-SAT, or
Even Coloring Principle [Nordström,pc]

Can DSR without new variables polynomially simulate
extended resolution?

[Heule-Kiesl-Seidel-Biere’17] have been able to automatically
generate short refutations of the PHP using SDSL
(Satisfaction-Driven Clause Learning). Can this method be
made more broadly applicable?

Sam Buss DRAT Proofs and Extensions



Thank you!

Sam Buss DRAT Proofs and Extensions


