Bounded Arithmetic and a Consistency Result for NEXP vs P/poly

Sam Buss

Logic Seminar
Mathematics Institute
Czech Academy of Sciences
April 8, 2024

$\mathrm{L} \subseteq \mathrm{NL}=\mathrm{coNL} \subseteq \mathrm{P} \subseteq \mathrm{NP} \subseteq(\mathrm{N}) \mathrm{PSPACE} \subseteq \operatorname{Exp} \subseteq \mathrm{NExP}$

$$
\begin{array}{lr}
\text { "L" }=\text { "logspace" } & \text { " } \mathrm{N} "=\text { "nondeterministic"" } \\
\text { "P" }=\text { "polynomial (time)" } & \text { "ExP" }=\text { "exponential time" }
\end{array}
$$

" $\mathrm{PH}^{\prime}=$ "polynomial time hierarchy"
" $\mathrm{P} /$ poly" $=$ " p -time + polynomial advice; i.e., polynomial size circuits"

$$
\stackrel{\downarrow}{\downarrow} \neq \stackrel{\downarrow}{\mathrm{NL}=\mathrm{coNL} \subseteq \mathrm{P} \subseteq \mathrm{NP} \subseteq(\mathrm{~N}) \mathrm{PSPACE} \subseteq \operatorname{EXP} \subseteq \mathrm{NEXP}}
$$

$$
\begin{array}{lr}
" \mathrm{~L} "=\text { "logspace" } & \text { "N" }=\text { "nondeterministic"" } \\
\text { "P" }=\text { "polynomial (time)" } & \text { "Exp" }=\text { "exponential time" }
\end{array}
$$

"PH" = "polynomial time hierarchy"
" $\mathrm{P} /$ poly" $=$ "p-time + polynomial advice; i.e., polynomial size circuits"

$$
\begin{array}{lr}
" \mathrm{~L} "=\text { "logspace" } & " \mathrm{~N} "=\text { "nondeterministic" } \\
" \mathrm{P} "=\text { "polynomial (time)" } & " E x P "=\text { "exponential time" }
\end{array}
$$

"PH" = "polynomial time hierarchy"
" $\mathrm{P} /$ poly" $=$ "p-time + polynomial advice; i.e., polynomial size circuits"

$$
\begin{aligned}
& \underset{\mathrm{L} \subseteq \mathrm{NL}=\mathrm{coNL} \subseteq}{\sqrt{\downarrow} \subseteq \stackrel{\downarrow}{\mathrm{P} \subseteq \mathrm{NP} \subseteq(\mathrm{~N}) \mathrm{PSPACE} \subseteq} \underset{\operatorname{ExP} \subseteq \text { NEXP }}{\downarrow} \neq \square} \\
& \text { P/poly }
\end{aligned}
$$

$$
\begin{array}{lr}
" \mathrm{~L} "=\text { "logspace" } & " \mathrm{~N} "=\text { "nondeterministic" } \\
" \mathrm{P} "=\text { "polynomial (time)" } & " E x P "=\text { "exponential time" }
\end{array}
$$

"PH" = "polynomial time hierarchy"
$" \mathrm{P} /$ poly" $=$ "p-time + polynomial advice; i.e., polynomial size circuits"

$$
\begin{aligned}
& \begin{array}{c}
\stackrel{\downarrow}{\downarrow} \neq \frac{\downarrow}{\downarrow} \neq \square \\
\mathrm{L} \subseteq \mathrm{NL}=\mathrm{coNL} \subseteq \mathrm{P} \subseteq \mathrm{NP} \subseteq(\mathrm{~N}) \mathrm{PSPACE} \subseteq \operatorname{EXP} \subseteq \mathrm{NEXP}
\end{array} \\
& \text { P/poly }
\end{aligned}
$$

Thm: NP $\subset \mathrm{P} /$ poly $\Rightarrow \mathrm{PH} \downarrow=\sum_{2}^{p}$.
[Karp-Lipton '82]
Thm: Exp $\subset \mathrm{P} /$ poly $\Rightarrow \mathrm{ExP}=\mathrm{PH}=\Sigma_{2}^{p}=\mathrm{MA}$. [Meyer; BFL'91]
Thm: NExp $\subset \mathrm{P} /$ poly $\Leftrightarrow \mathrm{NExP}=\mathrm{PH}=\Sigma_{2}^{p}=\mathrm{MA}$. via Easy Witness Thm
[IKW '02]
Thm: NExp $\not \subset \mathrm{ACC}^{0}$.
[Williams '14]

$$
\begin{aligned}
& " \mathrm{~L} "=\text { "logspace" } \\
& " \mathrm{P} "=\text { "polynomial }(\text { time }) " \\
& " \mathrm{PH} "=\text { "nondeterministic" } \\
& \text { " } \mathrm{PxP} "=\text { "exponential time" } \\
& \text { "P } / \text { poly" }=\text { "p-timemial time hierarchy" }+ \text { polynomial advice; i.e., polynomial size circuits" }
\end{aligned}
$$

Thm: NP $\subset \mathrm{P} /$ poly $\Rightarrow \mathrm{PH} \downarrow=\Sigma_{2}^{p}$.
[Karp-Lipton '82]
Thm: Exp $\subset \mathrm{P} /$ poly $\Rightarrow \mathrm{ExP}=\mathrm{PH}=\Sigma_{2}^{p}=\mathrm{MA}$. [Meyer; BFL'91]
Thm: NExP $\subset \mathrm{P} /$ poly $\Leftrightarrow \mathrm{NExP}=\mathrm{PH}=\Sigma_{2}^{p}=\mathrm{MA}$. via Easy Witness Thm
[IKW '02]
Thm: NExp $\not \subset \mathrm{ACC}^{0}$.
[Williams '14]

This talk:

"NExp $\not \subset \mathrm{P} /$ poly" is consistent with the bounded arithmetic theory V_{2}^{0}.

$$
\begin{array}{lrl}
& " \mathrm{~L} " & \text { "logspace" } \\
" \mathrm{P} " & =\text { "polynomial } \text { (time)" } & \text { "nondeterministic" } \\
& " E x P "= & \text { "exponential time" }
\end{array}
$$

"PH" = "polynomial time hierarchy"
" $\mathrm{P} /$ poly" $=$ "p-time + polynomial advice; i.e., polynomial size circuits"

Part I. Prior Independence Results

- Oracle Separations

First: an oracle separation:
Theorem: There is also an oracle Ω such that $\mathrm{P}^{\Omega} \neq \mathrm{NP}^{\Omega}$. [Baker-Gill-Solovay'75]

Can be recast as:
Theorem: There is an oracle Ω so that $\mathrm{NP}^{\Omega} \not \subset \mathrm{P}^{\Omega} /$ poly. Further: there is an Ω so that $\operatorname{NExp}^{\Omega[\text { poly }]} \not \subset \mathrm{P}^{\Omega} /$ poly.

There is an oracle such that $\operatorname{NExp}^{\Omega[\text { poly }]}=\mathrm{P}^{\Omega}$.
Moral: Separation proofs have to use non-relativizing techniques.
Disadvantage: Relativization.

- Natural Proofs •
[Razborov-Rudich'97]
A proof of $\mathcal{C} \not \subset \mathrm{P} /$ poly is "natural" if it is
- Useful (Effective)
- Constructive
- Large (applies to many Boolean functions)

Theorem: There are no natural proofs that NP $\not \subset \mathrm{P} /$ poly if a (generally believed) strong pseudorandom number generator (SPRNG) conjecture holds. [RR'07]

Natural proofs operate on truth tables to identify Boolean functions that require large circuits.
Disadvantage: The result is conditional on SPRNG.

- Algebrization •
[Fortnow'94; Aaronson-Wigderson'08; Impagliazzo-Kabanets-Kolokolova'09] Work with "algebrizing oracles - Boolean oracles Ω and their extensions $\tilde{\Omega}$ to low-degree polynomials.

Theorem: [AW'08]

- IP $=$ PSpace (e.g.) has an algebrizing proof.
- $\mathrm{NP} \subset \mathrm{P} /$ poly and $\mathrm{NExP} \subset \mathrm{P} /$ poly cannot be proved with algebrizing techniques.
E.g. for some Ω, $\mathrm{NEXP}^{\tilde{\Omega}[\text { poly size }]} \not \subset \mathrm{P}^{\Omega} /$ poly.

Moral: Separation proofs have to use non-algebrizing techniques.
Disadvantage: Relativization.

Part II: Quick review of witness circuits

Witnessing for NP
Let $Q(x) \Leftrightarrow(\exists y \leq t(x)) P(x, y)$ be an NP predicate.
Here, $P(\cdot, \cdot)$ is p-time and $t(x)$ is poly-growth rate.
A witness circuit for $Q(x)$ is a multi-output Boolean circuit $D(x)$ such that $\forall x$,

$$
Q(x) \Leftrightarrow P(x, D(x))
$$

I.e. $(\forall x \leq b)(\forall y \leq t(b))[P(x, y) \rightarrow P(x, D(x))]$.

Theorem

If NP has polynomial-size circuits ($\mathrm{NP} \subset \mathrm{P} /$ poly), then NP has polynomial-size witness circuits.

Proof idea: $D(x)$ uses poly-size subcircuits to query the bits of a minimal y one at a time.

The property of being a witness circuit is Π_{1}^{b}. With $Q:=S A T$, this can be exploited to prove the Karp-Lipton theorem.

Witnessing for NEXP

Let $Q(x) \Leftrightarrow\left(\exists^{2} X \leq 2^{p(|x|)}\right) P(x, X)$ be an NEXP predicate. Here,

$$
X \in\{0,1\}^{2^{p(|x|)}} \text { - an exponentially long bit string (or, oracle) }
$$

and

$$
P(x, X) \in \operatorname{Exp}:=\operatorname{TimE}\left(2^{q(|x|)}\right)
$$

p, q are polynomials.
Easy Witness Theorem: [Impagliazzo-Kabanets-Wigderson'02] Suppose NExP $\subset \mathrm{P} /$ poly. Then there are polynomial size circuits $D(\cdot)$ so that, for all x,

$$
\left(\exists^{2} X \leq t(x)\right) P(x, X) \quad \Leftrightarrow \quad P(x, D(x))
$$

That is, $D(x):=D(x, i)$ outputs the value of $X(i)$.

III. Theories of Arithmetic

$\underline{\text { Results reported in this talk: }}$

- Describe second-order fragments of bounded arithmetic, including $\mathrm{V}_{2}^{i}, i \geq 0$.
- Formulate "NExP $\not \subset \mathrm{P} /$ poly" as second-order formula. Two forms are formulated.
- Prove that $\mathrm{NExp} \subset \mathrm{P} /$ poly is not provable in V_{2}^{0}. Equivalently: NExP $\not \subset \mathrm{P} /$ poly is consistent with V_{2}^{0}. Equivalently: NExP $\not \subset \mathrm{P}$ / poly is true in some model of V_{2}^{0}.
- Sketch of the proof.
and
- A "hardness magnification" lifting hardness for $S_{2}^{1}(\alpha)$ to hardness for $\mathrm{V}_{2}^{1}(\alpha)$

Part III. Theories of Bounded Arithmetic (subtheories of PRA)

$$
\begin{aligned}
& \text { PV } \\
& \begin{aligned}
& \cap \\
& \mathrm{S}_{2}^{1} \subseteq \mathrm{~T}_{2}^{1} \subseteq \mathrm{~S}_{2}^{2} \subseteq \mathrm{~T}_{2}^{2} \subseteq \cdots \subseteq \mathrm{~T}_{2} \quad:=\bigcup_{i} \mathrm{~T}_{2}^{i} \\
& \text { First-order } \\
& V_{2}^{0} \subseteq \mathrm{~V}_{2}^{1} \subseteq \mathrm{~V}_{2}^{2} \subseteq \cdots
\end{aligned} \\
&
\end{aligned}
$$

All theories include second-order objects X (essentially oracles).
PV \& S_{2}^{1} - Theories for polynomial time. [Cook'75; B'86]
T_{2}^{i} - Theories for the levels of the polynomial time hierarchy (PH). [$\left.\mathrm{B}^{\prime} 86\right]$
V_{2}^{1} - Theory for exponential time. [B'86]

Language for bounded arithmetic:
Basic functions: $0, S,+, \cdot, \#,\left\lfloor\frac{1}{2} x\right\rfloor,<$.
Polynomial time functions. Every p-time function (and relation).
First-order variables and quantifiers. $\forall x, \exists x$ - range over integers.
Second-order variables and quantifiers. $\exists^{2} X, \forall^{2} X$ - range over (finite) sets of integers, i.e., over "oracles" or exponentially long binary strings.

Axioms for bounded arithmetic:
Defining axioms for basic functions and p-time symbols.
Boundedness and Extensionality for second-order objects.
Induction/Minimization for second-order objects.
Length-induction (PIND/LIND) or usual induction (IND).
Comprehension for some class Φ of formulas.
V_{2}^{0} has $\Sigma_{0}^{1, B}$-comprehension. Essentially PH -comprehension.

Complexity results provable in bounded arithmetic

The theory T_{2} can formulate many complexity results:

- Cook-Levin Theorem. [Cook'75; B'86]
- Karp-Lipton Theorem. [B'86]
- Hastad Switching Lemma. [Razborov'95]
- Parity $\notin \mathrm{AC}^{0}$. [Krajíček'95]
- Rabin test for primality. [Jeřábek'04]
- BPP $\in \mathrm{P} /$ poly [Jě̌ábek'04]
- $B P P \in \Sigma_{2}^{p} \cap \Pi_{2}^{p}$ [Jeǎábek'07]
- MA = MAM (Merlin-Arthur). [Jeřábek'07]
- PCP Theorem [Pich'15]
- and more ...

Prior Consistency Results (selected)

Razborov'95: If the SPRNG conjecture holds, S_{2}^{2} cannot prove (slightly) superpolynomial lower bounds on circuit size.

Theorem: [Cook-Krajíček'07]

- If $\mathrm{PH} \not \subset \mathrm{P}^{\mathrm{NP}[\log]}$, then $\mathrm{NP} \not \subset \mathrm{P} /$ poly is consistent with S_{2}^{1}.
- If $\mathrm{PH} \not \subset \mathrm{P}^{\mathrm{NP}}$, then $\mathrm{NP} \not \subset \mathrm{P} /$ poly is consistent with S_{2}^{2}.

Theorem: [Krajíček-Oliviera'17],[Carmosino-Kabanets-Kolkolova-Olviera'21] For fixed c,

- NP $\not \subset \operatorname{Size}\left(n^{c}\right)$ is consistent with S_{2}^{1}.
- $\mathrm{P}^{\mathrm{NP}} \not \subset \operatorname{SizE}\left(n^{c}\right)$ is consistent with S_{2}^{2}.
- $Z P P^{N P} \not \subset \operatorname{SizE}\left(n^{c}\right)$ is consistent with APC_{2}.
[Bydǒvský-Müller'20], [Bydǒvský-Krajíček-Müller'20], [Pich'15], [Pich-Santhanan'21], [Li-Oliviera'23] have other unconditional independence results.

For example,

Theorem: [Pich-Santhanan'21] For $\delta<1$

- It is consistent with $P V$ and $T_{\mathrm{APC}_{1}}^{0}$ that NP-predicates cannot be approximated by co-nondeterministic circuits of size $2^{\delta n}$.

These proofs nearly all use the KPT version of the Herbrand witnessing theorem. Some of them use the randomization technique of the Nisen-Wigderson theorem [Nisan-Wigderson'94], extending [Krajíček'12].

Part IV: Formalizations of NExP $\not \subset \mathrm{P} /$ poly

Let $M(x)$ be a canonical NExp-complete predicate.
Formalization $\# 1$: For each $c \in \mathbb{N}$, let α^{c} be the formula
$\forall 2^{n} \exists$ circuit $C<2^{n^{c}} \forall x<2^{n}$ [

$$
\begin{aligned}
& C(x)=1 \rightarrow \exists^{2} Y(Y \text { codes an accepting computation of } M(x)) \wedge \\
& \left.C(x)=0 \rightarrow \neg \exists^{2} Y(Y \text { codes an accepting computation of } M(x))\right]
\end{aligned}
$$

- n is a size parameter.
- Inputs x are strings of length n.
- C ranges over Boolean circuits of size $\approx n^{c}$.
- $C(x)=1 \Leftrightarrow M$ accepts x.

Part IV: Formalizations of NExP $\not \subset \mathrm{P} /$ poly

Let $M(x)$ be a canonical NExp-complete predicate.
Formalization $\# 1$: For each $c \in \mathbb{N}$, let α^{c} be the formula
$\forall 2^{n} \exists$ circuit $C<2^{n^{c}} \forall x<2^{n}$ [
$C(x)=1 \rightarrow \exists^{2} Y(Y$ codes an accepting computation of $M(x)) \wedge$
$C(x)=0 \rightarrow \neg \exists^{2} Y(Y$ codes an accepting computation of $\left.M(x))\right]$

Formalization $\# 2$: For each $c \in \mathbb{N}$, let β^{c} be the formula
$\forall 2^{n} \exists$ circuits $C, D<2^{n^{c}} \forall x<2^{n}$ [
$C(x)=1 \rightarrow(D(x, \cdot)$ codes an accepting computation of $M(x)) \wedge$
$C(x)=0 \rightarrow \neg \exists^{2} Y(Y$ codes an accepting computation of $\left.M(x))\right]$
$V_{c} \alpha^{c}$: Exactly states "NExP $\subset \mathrm{P} /$ poly".
$\bigvee_{c} \beta^{c}$: Equivalent to "NExp $\subset \mathrm{P} /$ poly" by Easy Witness Lemma.
$\left\{\neg \alpha^{c}\right\}_{c \in \mathbb{N}}$: Exactly states "NExp $\not \subset \mathrm{P} /$ poly".
$\left\{\neg \beta^{c}\right\}_{c \in \mathbb{N}}$: Equivalent to "NExp $\not \subset \mathrm{P} /$ poly"
via Easy Witness Lemma.
The implications $\beta_{c} \rightarrow \alpha_{c}$ are trivial
(via comprehension on $\{y: D(x, y)\}$).

Theorem (Atserias-B.-Müller'23)

- $\mathrm{V}_{2}^{0}+\left\{\neg \alpha^{c}\right\}_{c \in \mathbb{N}}$ is consistent.
- $\mathrm{V}_{2}^{0}+\left\{\neg \beta_{c}\right\}_{c \in \mathbb{N}}$ is consistent.
I.e., $\mathrm{V}_{2}^{0}+$ "NExP $\not \subset \mathrm{P} /$ poly" is consistent.

Proof is by contradiction.

- Suppose $\mathrm{V}_{2}^{0} \vDash \alpha^{c}$ for some $c \in \mathbb{N}$.
(For sake of a contradiction.)
- We'll show that V_{2}^{0} proves PHP_{n}^{n+1} in this case.

$$
\operatorname{PHP}_{x}^{x+1}:=\text { Pigeonhole principle on } x \text { many pigeons. }
$$

- But this is impossible, because the Paris-Wilkie translation would then imply that there are quasipolynomial size, constant-depth Frege proofs of PHP_{n}^{n+1}. These are known not to exist, [Beame-Impagliazzo-Krajiček-Pitassi-Pudlák-Woods'92]
- In second-order arithmetic, the statement $\neg \mathrm{PHP}_{x}^{x+1}$ can be expressed as

$$
\begin{aligned}
\exists^{2} Z[& \forall u \leq x(Z(u)<x) \wedge \\
& (\forall u<v \leq x)(Z(u) \neq Z(v))]
\end{aligned}
$$

- Note that $\neg \mathrm{PHP}_{x}^{x+1}$ is a NEXP-predicate.
- Since we suppose $V_{2}^{0} \vDash \alpha^{c}$, there is a family of polynomial size Boolean circuits $C_{n}(x)$ such that $C_{|x|}(i)$ outputs True iff there is a Z violating the pigeonhole principle $\mathrm{PHP}_{i}^{i+1}($ for $i \leq x)$.
- Then, similar to the Cook-Rechhow ['79] proof of PHP, this allows V_{2}^{0} to prove the pigeon hole principle holds for all x. Namely, from a Z violating PHP $_{i}^{i+1}$, it is easy to construct (in V_{2}^{0}) a Z^{\prime} violating PHP_{i-1}^{i}.
- From this, induction - on the values of $C_{|x|}(i)$ - allows V_{2}^{0} to prove $\forall x \neg \mathrm{PHP}_{x}^{x+1}$
- This gives the desired contradiction.

A similar proof gives a stronger result:

Theorem (Atserias-B.-Müller'23)

$\mathrm{V}_{2}^{0}+$ "NExp $\not \subset \mathrm{PH} /$ poly" is consistent.

Part V: Magnification of Provability for $\left\{\neg \beta^{c}\right\}_{c}$

Theorem (Atserias-B.-Müller'23)

For the $\left\{\neg \beta^{c}\right\}$ formalization:

- If $\mathrm{S}_{2}^{1} \nvdash \mathrm{NExp} \not \subset \mathrm{P} /$ poly, then $\mathrm{V}_{2}^{1} \nvdash \mathrm{NExP} \not \subset \mathrm{P} /$ poly.
- If $\mathrm{V}_{2}^{1} \vdash \mathrm{NExP} \not \subset \mathrm{P} /$ poly, then $\mathrm{S}_{2}^{1} \vdash \mathrm{NExP} \not \subset \mathrm{P} /$ poly.

This is an intriguing result since the theory V_{2}^{1} is so strong. Indeed, Razborov['95] identifies V_{2}^{1} as a strong theory for which independence results will be highly indicative.

Proof sketch:
A model \mathcal{M} of $S_{2}^{1}+\beta^{c}$ can be enlarged to be a model \mathcal{N} of $S_{2}^{1}+\beta^{c}$ plus $\exists^{2} \Pi_{1}^{b}$-comprehension for formulas without free second-order parameters. Namely, by taking the second-order objects of \mathcal{N} to be those definable by $2^{n^{c}}$-size circuits in \mathcal{M}. This is also a model of $V_{2}^{1}+\beta^{c}$.

Open Questions

- Is $\mathrm{V}_{2}^{0}+\neg \alpha^{\log \log x}$ consistent? (Or, slower growing value for c ?)
- Is $\mathrm{V}_{2}^{0}+$ "Exp $\not \subset \mathrm{P} /$ poly" consistent?

Is $\mathrm{V}_{2}^{0}+$ "PSPace $\not \subset \mathrm{P} /$ poly" consistent?

- Is $\mathrm{V}_{2}^{0}+$ " $\mathrm{NP} \subset \mathrm{P} /$ poly" consistent?
- Do V_{2}^{0} or V_{2}^{1} prove the Easy Witness Lemma?
- Independence results for V_{2}^{1} ?

Thank you!

