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L ⊆ NL=coNL ⊆ P ⊆ NP ⊆ (N)PSpace ⊆ Exp ⊆ NExp

⊊

P/poly

̸=

̸=
̸=

Thm: NP ⊂ P/poly ⇒ PH↓ = Σp
2 . [Karp-Lipton ’82]

Thm: Exp ⊂ P/poly ⇒ Exp = PH = Σp
2 = MA. [Meyer; BFL’91]

Thm: NExp ⊂ P/poly ⇔ NExp = PH = Σp
2 = MA. via Easy Witness Thm

[IKW ’02]

Thm: NExp ̸⊂ ACC0. [Williams ’14]

This talk:
“NExp ̸⊂ P/poly” is consistent with the bounded arithmetic theory V0

2.

“L”=“logspace” “N”=“nondeterministic”
“P”=“polynomial (time)” “Exp”=“exponential time”

“PH”= “polynomial time hierarchy”
“P/poly”= “p-time+polynomial advice; i.e., polynomial size circuits”

polynomial size circuits”
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Part I. Prior Independence Results

� Oracle Separations �

First: an oracle separation:

Theorem: There is also an oracle Ω such that PΩ ̸= NPΩ.
[Baker-Gill-Solovay’75]

Can be recast as:

Theorem: There is an oracle Ω so that NPΩ ̸⊂ PΩ/poly.

Further: there is an Ω so that NExpΩ[poly] ̸⊂ PΩ/poly.

There is an oracle such that NExpΩ[poly] = PΩ.

Moral: Separation proofs have to use non-relativizing techniques.

Disadvantage: Relativization.
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� Natural Proofs �

[Razborov-Rudich’97]

A proof of C ̸⊂ P/poly is “natural” if it is

Useful (Effective)

Constructive

Large (applies to many Boolean functions)

Theorem: There are no natural proofs that NP ̸⊂ P/poly if a
(generally believed) strong pseudorandom number generator
(SPRNG) conjecture holds. [RR’07]

Natural proofs operate on truth tables to identify Boolean functions that

require large circuits.

Disadvantage: The result is conditional on SPRNG.
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� Algebrization �

[Fortnow’94; Aaronson-Wigderson’08; Impagliazzo-Kabanets-Kolokolova’09]

Work with “algebrizing oracles — Boolean oracles Ω and their
extensions Ω̃ to low-degree polynomials.

Theorem: [AW’08]

IP = PSpace (e.g.) has an algebrizing proof.

NP ⊂ P/poly and NExp ⊂ P/poly cannot be proved with
algebrizing techniques.

E.g. for some Ω, NExpΩ̃[poly size] ̸⊂ PΩ/poly.

Moral: Separation proofs have to use non-algebrizing techniques.

Disadvantage: Relativization.

Sam Buss Consistency for NEXP ⊈ P/poly



Part II: Quick review of witness circuits

Witnessing for NP
Let Q(x) ⇔ (∃y≤t(x))P(x , y) be an NP predicate.
Here, P(·, ·) is p-time and t(x) is poly-growth rate.
A witness circuit for Q(x) is a multi-output Boolean circuit D(x)
such that ∀x ,

Q(x) ⇔ P(x ,D(x)).

I.e. (∀x≤b)(∀y≤t(b))[P(x , y) → P(x ,D(x))].

Theorem

If NP has polynomial-size circuits (NP ⊂ P/poly), then NP has
polynomial-size witness circuits.

Proof idea: D(x) uses poly-size subcircuits to query the bits of a
minimal y one at a time.

— — —
The property of being a witness circuit is Πb

1 . With Q := SAT , this can be
exploited to prove the Karp-Lipton theorem.

Sam Buss Consistency for NEXP ⊈ P/poly



Witnessing for NExp

Let Q(x) ⇔ (∃2X≤2p(|x |))P(x ,X ) be an NExp predicate.
Here,

X ∈ {0, 1}2p(|x|) - an exponentially long bit string (or, oracle)
and

P(x ,X ) ∈ Exp := Time(2q(|x |))

p, q are polynomials.

Easy Witness Theorem: [Impagliazzo-Kabanets-Wigderson’02]

Suppose NExp ⊂ P/poly. Then there are polynomial size circuits
D(·) so that, for all x ,

(∃2X≤t(x))P(x ,X ) ⇔ P(x ,D(x)).

That is, D(x) := D(x , i) outputs the value of X (i).
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III. Theories of Arithmetic

Results reported in this talk:

Describe second-order fragments of bounded arithmetic,
including Vi

2, i ≥ 0.

Formulate “NExp ̸⊂ P/poly” as second-order formula.
Two forms are formulated.

Prove that NExp ⊂ P/poly is not provable in V0
2.

Equivalently: NExp ̸⊂ P/poly is consistent with V0
2.

Equivalently: NExp ̸⊂ P/poly is true in some model of V0
2.

Sketch of the proof.

and

A “hardness magnification” lifting hardness for S12(α) to
hardness for V1

2(α)
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Part III. Theories of Bounded Arithmetic (subtheories of
PRA)

PV Equational

⊂

S12 ⊆ T1
2 ⊆ S22 ⊆ T2

2 ⊆ · · · ⊆ T2 :=
⋃

i T
i
2 First-order

⊊

V 0
2 ⊆ V1

2 ⊆ V2
2 ⊆ · · · Second-order

All theories include second-order objects X (essentially oracles).

PV & S1
2 - Theories for polynomial time. [Cook’75; B’86]

Ti
2 - Theories for the levels of the polynomial time hierarchy (PH). [B’86]

V1
2 - Theory for exponential time. [B’86]
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Language for bounded arithmetic:

Basic functions: 0, S , +, ·, #, ⌊12x⌋, <.

Polynomial time functions. Every p-time function (and relation).

First-order variables and quantifiers. ∀x , ∃x - range over integers.

Second-order variables and quantifiers. ∃2X , ∀2X - range over
(finite) sets of integers, i.e., over “oracles” or
exponentially long binary strings.

Axioms for bounded arithmetic:

Defining axioms for basic functions and p-time symbols.

Boundedness and Extensionality for second-order objects.

Induction/Minimization for second-order objects.
Length-induction (PIND/LIND) or usual induction
(IND).

Comprehension for some class Φ of formulas.

V0
2 has Σ1,B

0 -comprehension. Essentially PH-comprehension.
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Complexity results provable in bounded arithmetic

The theory T2 can formulate many complexity results:

Cook-Levin Theorem. [Cook’75; B’86]

Karp-Lipton Theorem. [B’86]

Hastad Switching Lemma. [Razborov’95]

Parity /∈ AC0. [Kraj́ıček’95]

Rabin test for primality. [Jěrábek’04]

BPP∈ P/poly [Jěrábek’04]

BPP∈ Σp
2 ∩ Πp

2 [Jěrábek’07]

MA=MAM (Merlin-Arthur). [Jěrábek’07]

PCP Theorem [Pich’15]

and more ...
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Prior Consistency Results (selected)

Razborov’95: If the SPRNG conjecture holds, S22 cannot prove
(slightly) superpolynomial lower bounds on circuit size.

Theorem: [Cook-Kraj́ıček’07]

If PH ̸⊂ PNP[log], then NP ̸⊂ P/poly is consistent with S12.

If PH ̸⊂ PNP, then NP ̸⊂ P/poly is consistent with S22.

Theorem: [Kraj́ıček-Oliviera’17],[Carmosino-Kabanets-Kolkolova-Olviera’21]

For fixed c ,

NP ̸⊂ Size(nc) is consistent with S12.

PNP ̸⊂ Size(nc) is consistent with S22.

ZPPNP ̸⊂ Size(nc) is consistent with APC2.

[Bydǒvský-Müller’20], [Bydǒvský-Kraj́ıček-Müller’20], [Pich’15],

[Pich-Santhanan’21], [Li-Oliviera’23] have other unconditional independence

results.
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For example,

Theorem: [Pich-Santhanan’21] For δ < 1

It is consistent with PV and T 0
APC1

that NP-predicates
cannot be approximated by co-nondeterministic circuits of size
2δn.

These proofs nearly all use the KPT version of the Herbrand witnessing

theorem. Some of them use the randomization technique of the

Nisen-Wigderson theorem [Nisan-Wigderson’94], extending [Kraj́ıček’12].
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Part IV: Formalizations of NExp ̸⊂ P/poly

Let M(x) be a canonical NExp-complete predicate.

Formalization #1: For each c ∈ N, let αc be the formula

∀2n ∃ circuitC<2n
c ∀x < 2n [

C (x) = 1 → ∃2Y (Y codes an accepting computation of M(x)) ∧
C (x) = 0 → ¬∃2Y (Y codes an accepting computation of M(x)) ]

n is a size parameter.

Inputs x are strings of length n.

C ranges over Boolean circuits of size ≈ nc .

C(x) = 1 ⇔ M accepts x .

Formalization #2: For each c ∈ N, let βc be the formula

∀2n ∃ circuitsC ,D<2n
c ∀x < 2n [

C (x) = 1 → (D(x , ·) codes an accepting computation of M(x)) ∧
C (x) = 0 → ¬∃2Y (Y codes an accepting computation of M(x)) ]∨

c α
c : Exactly states “NExp ⊂ P/poly”.∨

c β
c : Equivalent to “NExp ⊂ P/poly” by Easy Witness Lemma.
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{¬αc}c∈N: Exactly states “NExp ̸⊂ P/poly”.
{¬βc}c∈N: Equivalent to “NExp ̸⊂ P/poly”

via Easy Witness Lemma.
The implications βc → αc are trivial

(via comprehension on {y : D(x , y)}).

Theorem (Atserias-B.-Müller’23)

V0
2 + {¬αc}c∈N is consistent.

V0
2 + {¬βc}c∈N is consistent.

I.e., V0
2 + “NExp ̸⊂ P/poly” is consistent.
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Proof sketch

Proof is by contradiction.

Suppose V0
2 ⊨ αc for some c ∈ N.

(For sake of a contradiction.)

We’ll show that V0
2 proves PHPn+1

n in this case.

PHPx+1
x := Pigeonhole principle on x many pigeons.

But this is impossible, because the Paris-Wilkie translation
would then imply that there are quasipolynomial size,
constant-depth Frege proofs of PHPn+1

n . These are known
not to exist, [Beame-Impagliazzo-Kraj́ıček-Pitassi-Pudlák-Woods’92]

In second-order arithmetic, the statement ¬PHPx+1
x can be

expressed as

∃2Z [ ∀u ≤ x (Z (u) < x) ∧
(∀u < v ≤ x)(Z (u) ̸= Z (v)) ]
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Note that ¬PHPx+1
x is a NExp-predicate.

Since we suppose V0
2 ⊨ αc , there is a family of polynomial size

Boolean circuits Cn(x) such that C|x |(i) outputs True iff there

is a Z violating the pigeonhole principle PHPi+1
i (for i ≤ x).

Then, similar to the Cook-Rechhow [’79] proof of PHP, this
allows V0

2 to prove the pigeon hole principle holds for all x .
Namely, from a Z violating PHPi+1

i , it is easy to construct
(in V0

2) a Z ′ violating PHPi
i−1.

From this, induction — on the values of C|x |(i) — allows V0
2

to prove ∀x ¬PHPx+1
x

This gives the desired contradiction.

A similar proof gives a stronger result:

Theorem (Atserias-B.-Müller’23)

V0
2 + “NExp ̸⊂ PH/poly” is consistent.
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Part V: Magnification of Provability for {¬βc}c

Theorem (Atserias-B.-Müller’23)

For the {¬βc} formalization:

If S12 ⊬ NExp ̸⊂ P/poly, then V1
2 ⊬ NExp ̸⊂ P/poly.

If V1
2 ⊢ NExp ̸⊂ P/poly, then S12 ⊢ NExp ̸⊂ P/poly.

This is an intriguing result since the theory V1
2 is so strong.

Indeed, Razborov[’95] identifies V1
2 as a strong theory for which

independence results will be highly indicative.

Proof sketch:
A model M of S12 + βc can be enlarged to be a model N of
S12 + βc plus ∃2Πb

1-comprehension for formulas without free
second-order parameters. Namely, by taking the second-order
objects of N to be those definable by 2n

c
-size circuits in M.

This is also a model of V1
2 + βc .
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Open Questions

Is V0
2 + ¬αlog log x consistent? (Or, slower growing value

for c?)

Is V0
2 + “Exp ̸⊂ P/poly” consistent?

Is V0
2 + “PSpace ̸⊂ P/poly” consistent?

Is V0
2 + “NP ⊂ P/poly” consistent?

Do V0
2 or V1

2 prove the Easy Witness Lemma?

Independence results for V1
2?
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Thank you!
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