Bounded Arithmetic and a Consistency Result for NEXP vs P/poly

Sam Buss

Logic Seminar

Mathematics Institute Czech Academy of Sciences April 8, 2024

Sam Buss Consistency for $NEXP \not\subseteq P/poly$

$L \subseteq NL = \mathsf{co}NL \subseteq P \subseteq NP \subseteq (\mathsf{N})PSPACE \subseteq EXP \subseteq NEXP$

3

æ

This talk:

"NExp $\not\subset$ P/poly" is consistent with the bounded arithmetic theory V₂⁰.

• Oracle Separations •

First: an oracle separation:

Theorem: There is also an oracle Ω such that $P^{\Omega} \neq NP^{\Omega}$. [Baker-Gill-Solovay'75]

Can be recast as:

Theorem: There is an oracle Ω so that $NP^{\Omega} \not\subset P^{\Omega}/poly$. Further: there is an Ω so that $NExP^{\Omega[poly]} \not\subset P^{\Omega}/poly$.

There is an oracle such that $NExP^{\Omega[poly]} = P^{\Omega}$. Moral: Separation proofs have to use non-relativizing techniques. Disadvantage: Relativization.

• NATURAL PROOFS •

[Razborov-Rudich'97]

A proof of $\mathcal{C} \not\subset \mathrm{P/poly}$ is "natural" if it is

- Useful (Effective)
- Constructive
- Large (applies to many Boolean functions)

Theorem: There are no natural proofs that $NP \not\subset P/poly$ if a (generally believed) strong pseudorandom number generator (SPRNG) conjecture holds. [RR'07]

Natural proofs operate on truth tables to identify Boolean functions that require large circuits.

Disadvantage: The result is conditional on SPRNG.

\bullet Algebrization \bullet

[Fortnow'94; Aaronson-Wigderson'08; Impagliazzo-Kabanets-Kolokolova'09] Work with "algebrizing oracles — Boolean oracles Ω and their extensions $\tilde{\Omega}$ to low-degree polynomials.

Theorem: [AW'08]

- IP = PSPACE (e.g.) has an algebrizing proof.
- $NP \subset P/poly$ and $NExP \subset P/poly$ cannot be proved with algebrizing techniques.

E.g. for some Ω , $\operatorname{NExp}^{\tilde{\Omega}[\operatorname{poly size}]} \not\subset \operatorname{P}^{\Omega}/\operatorname{poly}$.

Moral: Separation proofs have to use non-algebrizing techniques. Disadvantage: Relativization.

Part II: Quick review of witness circuits

 $\begin{array}{l} \underset{l}{\text{Witnessing for NP}}{\underset{l}{\text{Let }Q(x) \Leftrightarrow (\exists y \leq t(x))P(x,y) \text{ be an NP predicate.}} \\ \underset{l}{\text{Here, }P(\cdot, \cdot) \text{ is p-time and }t(x) \text{ is poly-growth rate.}} \\ \text{A witness circuit for }Q(x) \text{ is a multi-output Boolean circuit }D(x) \\ \underset{l}{\text{such that }}\forall x, \end{array}$

$$Q(x) \Leftrightarrow P(x, D(x)).$$

I.e. $(\forall x \leq b)(\forall y \leq t(b))[P(x, y) \rightarrow P(x, D(x))].$

Theorem

If NP has polynomial-size circuits (NP \subset P/poly), then NP has polynomial-size witness circuits.

Proof idea: D(x) uses poly-size subcircuits to query the bits of a minimal y one at a time.

The property of being a witness circuit is Π_1^b . With Q := SAT, this can be exploited to prove the Karp-Lipton theorem.

Witnessing for NEXP

Let $Q(x) \Leftrightarrow (\exists^2 X \leq 2^{p(|x|)}) P(x, X)$ be an NEXP predicate. Here,

 $X \in \{0,1\}^{2^{p(| imes|)}}$ - an exponentially long bit string (or, oracle) and

 $P(x,X) \in \text{Exp} := \text{TIME}(2^{q(|x|)})$

p, q are polynomials.

Easy Witness Theorem: [Impagliazzo-Kabanets-Wigderson'02] Suppose $NExP \subset P/poly$. Then there are polynomial size circuits $D(\cdot)$ so that, for all x,

$$(\exists^2 X \leq t(x)) P(x, X) \quad \Leftrightarrow \quad P(x, D(x)).$$

That is, D(x) := D(x, i) outputs the value of X(i).

III. Theories of Arithmetic

Results reported in this talk:

- Describe second-order fragments of bounded arithmetic, including Vⁱ₂, i ≥ 0.
- Formulate "NExp $\not\subset$ P/poly" as second-order formula. Two forms are formulated.
- Prove that NEXP ⊂ P/poly is not provable in V₂⁰.
 Equivalently: NEXP ⊄ P/poly is consistent with V₂⁰.
 Equivalently: NEXP ⊄ P/poly is true in some model of V₂⁰.
- Sketch of the proof.

and

• A "hardness magnification" lifting hardness for $S_2^1(\alpha)$ to hardness for $V_2^1(\alpha)$

直 ト イヨ ト イヨト

Part III. Theories of Bounded Arithmetic (subtheories of PRA)

$$\begin{array}{lll} \mathsf{PV} & & \mathsf{Equational} \\ \cap & & \\ \mathrm{S}_2^1 \subseteq \mathrm{T}_2^1 \subseteq \mathrm{S}_2^2 \subseteq \mathrm{T}_2^2 \subseteq \cdots \subseteq \ \mathrm{T}_2 & := \bigcup_i \mathrm{T}_2^i & & \mathsf{First-order} \\ & & & \mathsf{i} \cap & \\ & & V_2^0 \subseteq \mathrm{V}_2^1 \subseteq \mathrm{V}_2^2 \subseteq \cdots & \mathsf{Second-order} \end{array}$$

All theories include second-order objects X (essentially oracles). PV & S_2^1 - Theories for polynomial time. [Cook'75; B'86] T_2^i - Theories for the levels of the polynomial time hierarchy (PH). [B'86] V_2^1 - Theory for exponential time. [B'86] Language for bounded arithmetic:

Basic functions: 0, S, +, \cdot , #, $\lfloor \frac{1}{2}x \rfloor$, <. Polynomial time functions. Every p-time function (and relation). First-order variables and quantifiers. $\forall x$, $\exists x$ - range over integers. Second-order variables and quantifiers. $\exists^2 X$, $\forall^2 X$ - range over (finite) sets of integers, i.e., over "oracles" or exponentially long binary strings.

Axioms for bounded arithmetic:

Defining axioms for basic functions and p-time symbols.

Boundedness and Extensionality for second-order objects.

Induction/Minimization for second-order objects.

Length-induction (PIND/LIND) or usual induction (IND).

Comprehension for some class Φ of formulas.

 V_2^0 has $\Sigma_0^{1, \mathcal{B}}\text{-comprehension}.$ Essentially PH-comprehension.

• = • • = •

Complexity results provable in bounded arithmetic

The theory T_2 can formulate many complexity results:

- Cook-Levin Theorem. [Cook'75; B'86]
- Karp-Lipton Theorem. [B'86]
- Hastad Switching Lemma. [Razborov'95]
- PARITY ∉ AC⁰. [Krajíček'95]
- Rabin test for primality. [Jeřábek'04]
- BPP ∈ P/poly [Jeřábek'04]
- BPP $\in \Sigma_2^p \cap \Pi_2^p$ [Jeřábek'07]
- MA = MAM (Merlin-Arthur). [Jeřábek'07]
- PCP Theorem [Pich'15]
- and more ...

Prior Consistency Results (selected)

Razborov'95: If the SPRNG conjecture holds, S_2^2 cannot prove (slightly) superpolynomial lower bounds on circuit size.

Theorem: [Cook-Krajíček'07]

- If $PH \not\subset P^{NP[\mathsf{log}]}$, then $NP \not\subset P/poly$ is consistent with S_2^1 .
- If $\mathrm{PH} \not\subset \mathrm{P}^{\mathrm{NP}}$, then $\mathrm{NP} \not\subset \mathrm{P}/\mathrm{poly}$ is consistent with $\mathrm{S}_2^2.$

Theorem: [Krajíček-Oliviera'17],[Carmosino-Kabanets-Kolkolova-Olviera'21] For fixed *c*,

- NP $\not\subset$ SIZE (n^c) is consistent with S₂¹.
- $P^{NP} \not\subset SIZE(n^c)$ is consistent with S_2^2 .
- $\operatorname{ZPP}^{\operatorname{NP}} \not\subset \operatorname{SIZE}(n^c)$ is consistent with APC_2 .

[Bydŏvský-Müller'20], [Bydŏvský-Krajíček-Müller'20], [Pich'15], [Pich-Santhanan'21], [Li-Oliviera'23] have other unconditional independence results.

白 マイビット イレー

For example,

Theorem: [Pich-Santhanan'21] For $\delta < 1$

• It is consistent with PV and $T^0_{APC_1}$ that NP-predicates cannot be approximated by co-nondeterministic circuits of size $2^{\delta n}$.

These proofs nearly all use the KPT version of the Herbrand witnessing theorem. Some of them use the randomization technique of the Nisen-Wigderson theorem [Nisan-Wigderson'94], extending [Krajíček'12].

Part IV: Formalizations of $NExp \not\subset P/poly$

Let M(x) be a canonical NEXP-complete predicate.

Formalization #1: For each $c \in \mathbb{N}$, let α^{c} be the formula

$$orall 2^n \ \exists \ {
m circuit} \ C < 2^{n^c} \ orall x < 2^n \ [C(x) = 1
ightarrow \exists^2 Y(Y \ {
m codes} \ {
m an} \ {
m accepting} \ {
m computation} \ {
m of} \ M(x)) \land C(x) = 0
ightarrow
eg \exists^2 Y(Y \ {
m codes} \ {
m an} \ {
m accepting} \ {
m computation} \ {
m of} \ M(x)) \]$$

- *n* is a size parameter.
- Inputs x are strings of length n.
- C ranges over Boolean circuits of size $\approx n^c$.
- $C(x) = 1 \Leftrightarrow M$ accepts x.

Part IV: Formalizations of $NExp \not\subset P/poly$

Let M(x) be a canonical NEXP-complete predicate.

Formalization #1: For each $c \in \mathbb{N}$, let α^{c} be the formula

$$orall 2^n \exists \operatorname{circuit} C < 2^{n^c} \forall x < 2^n [$$

 $C(x) = 1 \rightarrow \exists^2 Y(Y \text{ codes an accepting computation of } M(x)) \land$
 $C(x) = 0 \rightarrow \neg \exists^2 Y(Y \text{ codes an accepting computation of } M(x))]$

Formalization #2: For each $c \in \mathbb{N}$, let β^c be the formula

$$\begin{aligned} \forall 2^n \ \exists \ \text{circuits} \ C, D < 2^{n^c} \ \forall x < 2^n \ [\\ C(x) &= 1 \rightarrow (D(x, \cdot) \ \text{codes an accepting computation of } M(x)) \ \land \\ C(x) &= 0 \rightarrow \neg \exists^2 Y(Y \ \text{codes an accepting computation of } M(x)) \] \end{aligned}$$

 $\begin{array}{l} \bigvee_{c} \alpha^{c} \colon \text{Exactly states "NExp} \subset P/\text{poly"} . \\ \bigvee_{c} \beta^{c} \colon \text{Equivalent to "NExp} \subset P/\text{poly" by Easy Witness Lemma.} \end{array}$

 $\begin{array}{l} \{\neg \alpha^c\}_{c\in\mathbb{N}}: \text{ Exactly states "NEXP} \not\subset \mathrm{P/poly"}. \\ \{\neg \beta^c\}_{c\in\mathbb{N}}: \text{ Equivalent to "NEXP} \not\subset \mathrm{P/poly"} \\ & \text{via Easy Witness Lemma.} \end{array} \\ \text{The implications } \beta_c \rightarrow \alpha_c \text{ are trivial} \\ & (\text{via comprehension on } \{y : D(x, y)\}). \end{array}$

Theorem (Atserias-B.-Müller'23)

•
$$V_2^0 + \{\neg \alpha^c\}_{c \in \mathbb{N}}$$
 is consistent.

•
$$V_2^0 + \{\neg \beta_c\}_{c \in \mathbb{N}}$$
 is consistent.

I.e., V_2^0 + "NEXP $\not\subset$ P/poly" is consistent.

Proof sketch

Proof is by contradiction.

- Suppose $V_2^0 \vDash \alpha^c$ for some $c \in \mathbb{N}$. (For sake of a contradiction.)
- We'll show that V_2^0 proves PHP_n^{n+1} in this case.

 PHP_x^{x+1} := Pigeonhole principle on x many pigeons.

- But this is impossible, because the Paris-Wilkie translation would then imply that there are quasipolynomial size, constant-depth Frege proofs of PHPⁿ⁺¹_n. These are known not to exist, [Beame-Impagliazzo-Krajíček-Pitassi-Pudlák-Woods'92]
- In second-order arithmetic, the statement ¬PHP^{x+1}_x can be expressed as

$$\exists^2 Z \ [\quad \forall u \le x \, (Z(u) < x) \land \\ (\forall u < v \le x) (Z(u) \ne Z(v)) \]$$

- Note that $\neg PHP_x^{x+1}$ is a NEXP-predicate.
- Since we suppose V₂⁰ ⊨ α^c, there is a family of polynomial size Boolean circuits C_n(x) such that C_{|x|}(i) outputs *True* iff there is a Z violating the pigeonhole principle PHP_iⁱ⁺¹ (for i ≤ x).
- Then, similar to the Cook-Rechhow ['79] proof of PHP, this allows V₂⁰ to prove the pigeon hole principle holds for all x. Namely, from a Z violating PHP_iⁱ⁺¹, it is easy to construct (in V₂⁰) a Z' violating PHP_{i-1}ⁱ.
- From this, induction on the values of C_{|x|}(i) allows V₂⁰ to prove ∀x ¬PHP_x^{x+1}
- This gives the desired contradiction.
- A similar proof gives a stronger result:

Theorem (Atserias-B.-Müller'23) V_2^0 + "NExp $\not\subset$ PH/poly" is consistent.

Theorem (Atserias-B.-Müller'23)

For the $\{\neg\beta^c\}$ formalization:

- If $S_2^1 \nvDash NExp \not\subset P/poly$, then $V_2^1 \nvDash NExp \not\subset P/poly$.
- If $V_2^1 \vdash NExp \not\subset P/poly$, then $S_2^1 \vdash NExp \not\subset P/poly$.

This is an intriguing result since the theory V_2^1 is so strong.

Indeed, Razborov['95] identifies V_2^1 as a strong theory for which independence results will be highly indicative.

Proof sketch:

A model \mathcal{M} of $S_2^1 + \beta^c$ can be enlarged to be a model \mathcal{N} of $S_2^1 + \beta^c$ plus $\exists^2 \Pi_1^b$ -comprehension for formulas without free second-order parameters. Namely, by taking the second-order objects of \mathcal{N} to be those definable by 2^{n^c} -size circuits in \mathcal{M} . This is also a model of $V_2^1 + \beta^c$.

Open Questions

- Is $V_2^0 + \neg \alpha^{\log \log x}$ consistent? (Or, slower growing value for c?)
- Is V₂⁰ + "Exp ⊄ P/poly" consistent?
 Is V₂⁰ + "PSPACE ⊄ P/poly" consistent?
- Is V_2^0 + "NP \subset P/poly" consistent?
- Do V_2^0 or V_2^1 prove the Easy Witness Lemma?
- Independence results for V_2^1 ?

Thank you!

Sam Buss Consistency for $NEXP \nsubseteq P/poly$

æ

-> -< ≣ >