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ABSTRACT
We prove the first unconditional consistency result for superpoly-

nomial circuit lower bounds with a relatively strong theory of

bounded arithmetic. Namely, we show that the theory V0

2
is consis-

tent with the conjecture that NEXP ⊈ P/poly, i.e., some problem

that is solvable in non-deterministic exponential time does not

have polynomial size circuits. We suggest this is the best currently

available evidence for the truth of the conjecture. Additionally, we

establish a magnification result on the hardness of proving circuit

lower bounds.
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1 INTRODUCTION
Bounded arithmetics are fragments of Peano arithmetic that for-

malize reasoning with concepts and constructions of bounded com-

putational complexity. Their language is tailored so that natural

classes of bounded formulas define important complexity classes.

For example, the set of all bounded formulas defines precisely the

problems in PH and the set of Σ𝑏
1
-formulas those in NP. The central

theories are comprised in Buss’ hierarchy [5]

S1

2
⊆ T1

2
⊆ S2

2
⊆ T2

2
⊆ · · · ⊆ T2 ⊆ V0

2
⊆ V1

2
(1)
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The theory S1

2
can be understood as formalizing P-reasoning,

and V1

2
as formalizing EXP-reasoning. The levels of T2 are deter-

mined by induction schemes for properties of bounded computa-

tional complexity. E.g., T1

2
has induction for NP, and T2 for PH.

Intuitively, these theories can construct and reason with polyno-

mially large objects of various computational complexities. The

theories V0

2
and V1

2
are extensions with a second sort of variables

ranging over bounded sets of numbers and are given by comprehen-

sion schemes. Intuitively, these sets represent exponentially large

objects.

Low levels of the bounded arithmetic hierarchy formalize a con-

siderable part of contemporary complexity theory. This includes

some advanced topics such as the Arthur-Merlin hierarchy [17],

hardness amplification [16], or the PCP Theorem [29]. We refer

to [26, Section 5] for a list of successful formalizations. Concerning

circuit complexity, the topic of this paper, Jeřábek proved that his

theory of approximate counting [15–17], which sits below T2

2
, for-

malizes Rabin’s primality test, and proves that it is in P/poly [16,
Example 3.2.10, Lemma 3.2.9]. Concerning lower bounds, many

of the known (weak) circuit lower bounds can be formalized in a

theory of approximate counting [26] and thus also in the theory T2

2
.

For example, the AC0
lower bound for parity has been formalized

in [26, Theorem 1.1] via probabilistic reasoning with Furst, Saxe

and Sipser’s random restrictions [12], and in [22, Theorem 15.2.3]

via Razborov’s [31] proof of Håstad’s switching lemma.

Razborov asked in his seminal work from 1995 for the “right

fragment capturing the kind of techniques existing in Boolean

complexity” [31, p.344]. Showing that any theory that is strong

enough to capture these techniques cannot prove lower bounds

for general circuits would give a precise sense in which current

techniques are insufficient. This however seems to be very difficult.

We refer to [33, Introduction] or [23, Ch.27-30] for a description of

the resulting research program, and to [30] for a recent result.

In contrast to unprovability, the first and final words of Krajíček’s

1995 monograph [22] ask for consistency results
1
, namely to prove

the conjecture in question “for nonstandard models of systems

of bounded arithmetic”. These are “not ridiculously pathological

structures, and a part of the difficulty in constructing them stems

exactly from the fact that it is hard to distinguish these structures,

by the studied properties, from natural numbers” [22, p.xii]. In

particular, showing that a given conjecture is consistent with certain

bounded arithmetics, already low ones, would exhibit a world where

both the conjecture and a considerable part of complexity theory

are true.

We therefore interpret consistency results as giving precise evi-

dence for the truth of the conjecture. This is without doubt prefer-

able to appealing to intuitions, or alluding to the experience that

1
The citations to follow refer not to circuit lower bounds but to P ≠ NP.
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the conjectures appear to be theoretically coherent, exactly because

a consistency result gives a precise meaning to this coherence.

1.1 Previous Consistency Results
Being well motivated, consistency results are also hard to come by,

and not much is known. In particular, it is unknown whether NP ⊈
P/poly is consistent with S1

2
.

It is not straightforward to formalize NP ⊈ P/poly because

exponentiation is not provably total in bounded arithmetics. On

the formal level, call a number 𝑛 small if 2
𝑛
exists. A size-𝑛𝑐 circuit

can be coded by a binary string of length at most 10 · 𝑛𝑐 · log(𝑛𝑐 ),
and hence by a number below 2

10·𝑛𝑐 ·log(𝑛𝑐 )
; this bound exists for

small 𝑛.

On the formal level, an NP-problem is represented by a Σ𝑏
1
-

formula 𝜑 (𝑥). A sentence expressing that the problem defined

by 𝜑 (𝑥) has size-𝑛𝑐 circuits looks as follows:

𝛼𝑐𝜑 := ∀𝑛∈Log>1
∃𝐶<2

𝑛𝑐 ∀𝑥<2
𝑛 (𝐶 (𝑥)=1 ↔ 𝜑 (𝑥)) .

Here, the quantifier on 𝑛 ranges over small numbers above 1. We

think of the quantifier on 𝐶 as ranging over circuits of encoding-

size 𝑛𝑐 , and of the quantifier on 𝑥 as ranging over length-𝑛 bi-

nary strings. Counting the ∃ hidden in 𝜑 , this is a bounded ∀∃∀∃-
sentence (namely a ∀Σ𝑏

3
-sentence).

Nowmore precisely, the central questionwhether S1

2
is consistent

withNP ⊈ P/poly asks for a Σ𝑏
1
-formula 𝜑 (𝑥) such that S1

2
+
{
¬𝛼𝑐𝜑 |

𝑐 ∈ N
}
is consistent. As mentioned a model witnessing this consis-

tency would be a world where a considerable part of complexity

theory is true and the NP-problem defined by 𝜑 does not have

polynomial-size circuits. This is faithful in that there also exists

an NP-machine𝑀 that cannot be simulated by small circuits in the

model. Namely, S1

2
proves that 𝜑 (𝑥) is equivalent to a formula

∃𝑦<2
𝑛𝑑 “𝑦 is an accepting computation of𝑀 on 𝑥” (2)

for a suitable NP-machine𝑀 , namely a model-checker for 𝜑 . Here,
the constant 𝑑 stems from the polynomial running time of𝑀 . We

write𝛼𝑐
𝑀

:= 𝛼𝑐𝜑 for𝜑 (𝑥) equal to (2). One can also fix themachine𝑀

in advance to a universal one, namely a model-checker𝑀∗
for an S1

2
-

provably NP-complete problem (e.g., SAT).
The predominant approach to the consistency of circuit lower

bounds is based on witnessing theorems: a proof of 𝛼𝑐
𝑀

in some

bounded arithmetic implies a low-complexity algorithm that com-

putes a witness𝐶 from 1
𝑛
. E.g., if the theory has feasible witnessing

in P, then it does not prove 𝛼𝑐𝜑 for any 𝑐 unless the problem defined

by 𝜑 (𝑥) is in P. However, S1

2
is only known to have feasible wit-

nessing in P for bounded ∀∃-sentences and 𝛼𝑐𝜑 is a ∀∃∀∃-sentence.
Fortunately, a self-reducibility argument implies that the quan-

tifier complexity of this formula can be reduced. Up to suitable

changes of 𝑐 , the formula 𝛼𝑐
𝑀∗ is S1

2
-provably equivalent to the

following sentence of lower quantifier complexity:

𝛽𝑐𝑀∗ :=

∀𝑛∈Log>1
∃𝐶<2

𝑛𝑐 ∃𝐷<2
𝑛𝑐 ∀𝑥<2

𝑛 ∀𝑦<2
𝑛𝑑

(𝐶 (𝑥)=0 → ¬“𝑦 is an acc. comp. of𝑀∗ on 𝑥”) ∧
(𝐶 (𝑥)=1 → “𝐷 (𝑥) is an acc. comp. of𝑀∗ on 𝑥”),

where 𝑑 stems from the polynomial runtime of𝑀∗
. We define

“NP ⊈ P/poly” :=
{
¬𝛽𝑐𝑀∗ | 𝑐 ∈ N

}
.

Note, 𝛽𝑐
𝑀∗ is a bounded ∀∃∀-sentence (namely a ∀Σ𝑏

2
-sentence).

For such sentences, S2

2
has feasible witnessing in PNP [5], and S1

2

has feasible witnessing by certain interactive polynomial-time com-

putations [21]. This was exploited by Cook and Krajíček [10] to

prove
2
that “NP ⊈ P/poly” is consistent with S2

2
unless PH ⊆ PNP,

and with S1

2
unless PH ⊆ PNP

tt
. Since the complexity of witness-

ing increases with the strength of the theory, it seems question-

able whether this method yields insights for much stronger theo-

ries: by the Karp-Lipton Theorem [19], PH ⊈ NPNP implies that

“NP ⊈ P/poly” is true, and true sentences are consistent with any

true theory. Moreover, the focus of this work is on unconditional

consistency results.

Using similar methods, a recent line of works [6–8, 24] has

achieved unconditional consistency results for fixed-polynomial

lower bounds, even for P instead of NP (based on [35]). For exam-

ple, the main result in [7] implies that S2

2
+ ¬𝛼𝑐𝜑 and S1

2
+ ¬𝛼𝑐

𝜓
are

consistent for certain formulas 𝜑 (𝑥) and𝜓 (𝑥) that define problems

in PNP and NP, respectively. Again it seems questionable whether

the underlying methods can yield insights for much stronger the-

ories: by Kannan [18], the lower bound stated by ¬𝛼𝑐𝜒 is true for

some formula 𝜒 (𝑥) defining a problem in NPNP. Moreover, the

formulas above depend on 𝑐 and new ideas seem to be required

to reach the unconditional consistency of superpolynomial lower

bounds.

1.2 New Consistency Results
The purpose of this paper is to prove the unconditional consistency

of NEXP ⊈ P/poly with the comparatively strong theory V0

2
. Con-

sistency results for V0

2
are meaningful, since V0

2
is stronger than T2

2

which, as discussed earlier, can formalize many results in complex-

ity theory. Our approach is not via witnessing but via simulating
comprehension. We explain this idea in a simple setting.

The problems in NEXP are naturally represented on the formal

level by Σ̂1,𝑏
1

-formulas 𝜑 (𝑥): an existentially quantified set variable

followed by a bounded formula. Then, the following is a direct

formalization of the consistency of NEXP ⊈ P/poly:

Proposition 1. There exists a Σ̂1,𝑏
1

-formula 𝜑 (𝑥) such that the the-
ory V0

2
+
{
¬𝛼𝑐𝜑 | 𝑐 ∈ N

}
is consistent.

In hindsight this is not hard to prove. For 𝜑 (𝑥) take a formula

negating the pigeonhole principle: it states that there exists a set

coding an injection from {0, . . . , 𝑥+1} into {0, . . . , 𝑥}. If this formula

were computed by circuits, then we could use quantifier-free induc-

tion to show that the pigeonhole principle is provable in V0

2
. But it

is well known that this is not the case (see [22, Corollary 12.5.5]).

Concerning the faithfulness of the direct formalization we get,

as before, a model of V0

2
where a certain NEXP-machine cannot be

simulated by small circuits. For a NEXP-machine𝑀 we can write

the formula (2) using instead of ∃𝑦 a quantification ∃𝑌 for a set

variable 𝑌 . It turns out that V0

2
proves that every Σ̂1,𝑏

1
-formula 𝜑 (𝑥)

is equivalent to such a formula for a suitable NEXP-machine 𝑀 ,

2PNP
tt

denotes polynomial time with non-adaptive queries to an NP-oracle. In [10] a

distinct but similar formalization of NP ⊈ P/poly is used.
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namely a model-checker for 𝜑 (𝑥). Proving this is not trivial be-

cause V0

2
is agnostic about the existence of computations of ma-

chines that run in exponential time. One of the contributions of

this work is to prove it; we give the details in Section 3.

Intuitively, V0

2
does not know whether non-trivial exponential-

size sets exist, namely sets not given by bounded formulas. But

then, how meaningful is the above consistency? Counting only

set quantifiers, 𝛼𝑐
𝑀

is equivalent to the conjunction of a ∀- and
a ∃-sentence, so 𝛼𝑐

𝑀
does possibly assert the existence of non-

trivial large sets. It turns out that we can move again to a suitably

modified sentence 𝛽𝑐
𝑀

of lower quantifier complexity, namely a ∀-
sentence (i.e., ∀Π1,𝑏

1
): such sentences do not entail the existence

of non-trivial large sets. This does not follow from simple self-

reducibility arguments but is a deep result of complexity theory,

namely the Easy Witness Lemma of Impagliazzo, Kabanets and

Wigderson [14, Theorem 31]. We use Williams’ version as stated

in [37, Lemma 3.1] (see [38, Theorem 3.1] for the equivalence):

Lemma 2 (Easy Witness Lemma). If NEXP ⊆ P/poly, then ev-
ery NEXP-machine has polynomial-size oblivious witness circuits.

An oblivious witness circuit for a machine𝑀 and input length 𝑛

is a circuit 𝐷 with at least 𝑛 inputs such that for every 𝑥 of length 𝑛,

if𝑀 accepts 𝑥 , then tt (𝐷𝑥 ) encodes an accepting computation of𝑀

on 𝑥 . Here, the circuit 𝐷𝑥 is obtained from 𝐷 by fixing the first 𝑛

inputs to the bits of 𝑥 , and tt (𝐷𝑥 ) is the truth table of 𝐷𝑥 . In the

statement of the lemma, polynomial-size refers to polynomial in 𝑛,

and the qualifier oblivious refers to the fact that 𝐷 does not depend

on 𝑥 .

In the language of two-sorted bounded arithmetic the stringtt (𝐷𝑥 )
corresponds to the set 𝐷𝑥 (·) of numbers accepted by 𝐷𝑥 . Hence,

for an NEXP-machine𝑀 we define 𝛽𝑐
𝑀

by replacing 𝐷 (𝑥) by 𝐷𝑥 (·)
and ∀𝑦 by ∀𝑌 :
𝛽𝑐
𝑀

:= ∀𝑛∈Log>1
∃𝐶<2

𝑛𝑐 ∃𝐷<2
𝑛𝑐 ∀𝑥<2

𝑛 ∀𝑌
(𝐶 (𝑥)=0 → ¬“𝑌 is an acc. comp. of𝑀 on 𝑥”) ∧
(𝐶 (𝑥)=1 → “𝐷𝑥 (·) is an acc. comp. of𝑀 on 𝑥”) .

We define

“NEXP ⊈ P/poly” := {¬𝛽𝑐𝑀0

| 𝑐 ∈ N}
for a suitable universal NEXP-machine𝑀0. We stress that Lemma 2

and the fact that 𝛼𝑐
𝑀0

and 𝛽𝑐
𝑀0

are equivalent up to a suitable change

of 𝑐 are argued outside the theories we consider. In particular, the

proof of their equivalence depends on the Easy Witness Lemma

and we do not know if the Easy Witness Lemma is provable in V0

2
.

The purpose of this paper is to prove:

Theorem 3. V0

2
+ “NEXP ⊈ P/poly” is consistent.

We emphasize here that our formalization of NEXP ⊈ P/poly
through the universal machine 𝑀0 and the 𝛽𝑐

𝑀0

sentences refers

exclusively to the setting of non-relativized complexity classes.

1.3 Simulating Comprehension
The idea behind our approach to the consistency of circuit lower

bounds is the following. By the Easy Witness Lemma, the inclu-

sion NEXP ⊆ P/poly implies that a rich collection of sets is rep-

resented by circuits (via their truth tables). A weak theory can

quantify over circuits and hence implicitly over this collection.

Thus, intuitively, 𝛽𝑐
𝑀0

should enable a weak theory to simulate

a two-sorted theory of considerable strength. More precisely, we

show that 𝛽𝑐
𝑀0

can be used to simulate a considerable fragment

of Σ1,𝑏
1

-comprehension, i.e., a considerable fragment of V1

2
. In partic-

ular, the simulated fragment proves the pigeonhole principle. This

implies Theorem 3 as it is well-known that V0

2
cannot prove this

principle. Thereby, Theorem 3 is ultimately based on the exponen-

tial lower bound for the propositional translation of this principle

in bounded depth Frege systems [1, 3]. On a high level, while the

approach based on witnessing uses complexity theoretic methods,

our approach is based on methods from mathematical logic, in

particular forcing (cf. [2]).

The sketched idea can be encapsulated as follows. By S1

2
(𝛼)

we denote the two-sorted variant of S1

2
. Its models consist of two

universes 𝑀 and X interpreting the number and the set sort, re-

spectively. Given such a model that additionally satisfies 𝛽𝑐
𝑀0

for

some 𝑐 ∈ N, we show that shrinking X to the sets represented

by circuits in 𝑀 yields a model of V1

2
. This has two interesting

corollaries. The first is:

Corollary 4. Let T be a theory that contains S1

2
(𝛼) but does not

prove all number-sort consequences of V1

2
. Then T+“NEXP ⊈ P/poly”

is consistent.

By a number-sort formula we mean one that does not use set-sort

variables. Note that the corollary refers to number-sort sentences

of arbitrary unbounded quantifier complexity. It is conjectured

that V1

2
has more number-sort consequences than all other theories

mentioned so far. But this is known only for S1

2
[20, 36], and there

even for ∀Π𝑏
1
-sentences. Corollary 4 directly infers evidence for the

truth of “NEXP ⊈ P/poly” from progress in mathematical logic on

understanding independence. Loosely speaking, we view it in line

with the belief that it is mathematical logic that ultimately bears on

fundamental complexity-theoretic conjectures (see e.g. again the

preface of [22]).

The second corollary is:

Corollary 5. If S1

2
(𝛼) does not prove “NEXP ⊈ P/poly”, then V1

2

does not prove “NEXP ⊈ P/poly”.

This is a magnification result on the hardness of proving circuit

lower bounds: it infers strong hardness (for V1

2
) from weak hardness

(for S1

2
(𝛼)). The term magnification has been coined in [27] in the

context of circuit lower bounds where such results are currently

intensively investigated (cf. [9]). In proof complexity such results

are rare so far. An example in propositional proof complexity ap-

pears in [26, Proposition 4.14]. Magnification results are interesting

because they reveal inconsistencies in common beliefs about what

is and what is not within the reach of currently available techniques.

Corollary 5 might foster hopes to complete Razborov’s program to

find a precise barrier in circuit complexity (cf. Remark 27).

2 DIRECT FORMALIZATION
In this section we provide the details of the simple proof of Propo-

sition 1. We begin by recalling the necessary preliminaries on

bounded arithmetic. This will be needed also in later sections. We

refer to [22, Ch.5] for the missing details.
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2.1 Preliminaries: Bounded Arithmetic
The language of bounded arithmetics is 𝑥⩽𝑦, 0, 1, 𝑥+𝑦, 𝑥 ·𝑦, ⌊𝑥/2⌋,
𝑥#𝑦, |𝑥 |, and built-in equality 𝑥=𝑦. Note that Cantor’s pairing ⟨𝑥,𝑦⟩
is given by a term. Iterating it gives ⟨𝑥1, . . . , 𝑥𝑘 ⟩ for 𝑘 > 2. A num-

ber 𝑥 is called small if it satisfies the formula ∃𝑦 𝑥=|𝑦 |. We ab-

breviate ∃𝑦 𝑥=|𝑦 | by 𝑥∈Log and 𝑥∈Log ∧ 1<𝑥 by 𝑥∈Log>1
. The

quantifiers ∀𝑥∈Log>1
and ∃𝑥∈Log>1

range over small numbers

above 1. If 𝑥 = |𝑦 |, we write 2
𝑥
for 1#𝑦 and similarly for other expo-

nential functions. E.g., a formula of the form ∀𝑥∈Log>1
. . . 2

𝑥2

. . .

stands for the formula ∀𝑥∀𝑦 (1<𝑥 ∧ 𝑥=|𝑦 | → . . . 𝑦#𝑦 . . .).

2.1.1 Theories. The theories of bounded arithmetic are given by a

set BASIC of universal sentences determining the meaning of the

symbols, plus induction schemes. For a set of formulas Φ, the set
(of the universal closures) of formulas

𝜑 (𝑥, 0) ∧ ∀𝑦<𝑧 (𝜑 (𝑥,𝑦) → 𝜑 (𝑥,𝑦 + 1)) → 𝜑 (𝑥, 𝑧),

for 𝜑 ∈ Φ, is the scheme of Φ-induction. Restricting to small num-

bers 𝑧 gives the scheme of Φ-length induction; formally, replace 𝑧

by |𝑧 | above. Here, and throughout, when writing a formula 𝜓

as𝜓 (𝑥) we mean that all free variables of𝜓 are among 𝑥 .

The set Σ𝑏∞ contains all bounded formulas, and Σ𝑏
𝑖
,Π𝑏

𝑖
, for 𝑖 ∈ N,

are subsets of Σ𝑏∞ defined by counting alternations of bounded quan-

tifiers∃𝑥⩽𝑡,∀𝑥⩽𝑡 , not counting sharply bounded ones∃𝑥⩽ |𝑡 |,∀𝑥⩽ |𝑡 |.
In particular, Σ𝑏

0
= Π𝑏

0
is the set of sharply bounded formulas. The

theories T𝑖
2
are defined by BASIC + Σ𝑏

𝑖
-induction. The theories S𝑖

2

are defined by BASIC + Σ𝑏
𝑖
-length-induction. Full bounded arith-

metic T2 :=
⋃

𝑖∈N T
𝑖
2
has Σ𝑏∞-induction.

2.1.2 Two-Sorted Theories. Two-sorted bounded arithmetics are

obtained by adding a new set of variables 𝑋,𝑌, . . . of the set sort.
Original variables 𝑥,𝑦, . . . are of the number sort. We shall use cap-

ital letters also for number-sort variables. Therefore, for clarity,

from now on we write ∃2𝑋 and ∀2𝑋 for quantifiers on set-sort vari-

ables 𝑋 . The language is enlarged by adding a binary relation 𝑥∈𝑋
between the number and the set sort. A number-sort formula is

one that uses only the number sort. In particular, it has no set-sort

parameters. By a term we mean a term in the number sort. We

write 𝑋⩽𝑧 for ∀𝑦 (𝑦∈𝑋 → 𝑦⩽𝑧).
Models have the form (𝑀,X) where 𝑀 is a universe for the

number sort and X is a universe for the set sort. The symbol ∈ is

interpreted by a subset of𝑀×X. The standard model is (N, [N]<𝜔 )
where [N]<𝜔 is the set of finite subsets of N; the number sort

symbols are interpreted as usual over N and ∈ by actual element-

hood.

The sets Σ𝑏∞ (𝛼), Σ𝑏
𝑖
(𝛼),Π𝑏

𝑖
(𝛼) are defined as Σ𝑏∞, Σ

𝑏
𝑖
,Π𝑏

𝑖
, allow-

ing free set-variables and the symbol ∈, but not allowing set-sort
quantifiers, nor set-sort equalities 𝑋=𝑌 . Another name for the

set Σ𝑏∞ (𝛼) is Σ1,𝑏
0

. The theories T𝑖
2
(𝛼), S𝑖

2
(𝛼), and T2 (𝛼), are given

byBASIC and analogous induction schemes as before, namely Σ𝑏
𝑖
(𝛼)-

induction, Σ𝑏
𝑖
(𝛼)-length induction, and Σ𝑏∞ (𝛼)-induction, respec-

tively. Additionally, we add the following axioms with the set sort.

Recalling the notation 𝑋⩽𝑧 introduced above, the new axioms

are (the universal closures of) set-boundedness ∃𝑧 𝑋⩽𝑧, and exten-
sionality 𝑋⩽𝑧 ∧ 𝑌⩽𝑧 ∧ ∀𝑦⩽𝑧 (𝑦∈𝑋 ↔ 𝑦∈𝑌 ) → 𝑋=𝑌 . We add the

scheme of (bounded) Δ𝑏
1
(𝛼)-comprehension, given by (the universal

closures of) the formulas

∃2𝑌⩽𝑧 ∀𝑦⩽𝑧
(
𝑦 ∈ 𝑌 ↔ 𝜑 (𝑋, 𝑥,𝑦)

)
, (3)

where 𝜑 (𝑋, 𝑥,𝑦) is Δ𝑏
1
(𝛼) with respect to the theory defined over

the two-sorted language as BASIC plus Σ𝑏
1
(𝛼)-length-induction, i.e.,

this theory proves 𝜑 (𝑋, 𝑥,𝑦) equivalent to both a Π𝑏
1
(𝛼)-formula

and a Σ𝑏
1
(𝛼)-formula.

For example, this scheme implies that there is a set𝑌 as described

when 𝜑 (𝑋, 𝑥,𝑦) is 𝑓 𝑋 (𝑥,𝑦)=1 where 𝑓 𝑋 (𝑥,𝑦) is a function that

is Σ𝑏
1
(𝛼)-definable in S1

2
(𝛼). The superscript indicates that 𝑋 com-

prises all the free variables of the set sort that appear in the Σ𝑏
1
(𝛼)-

formula that defines 𝑓 𝑋 (𝑥,𝑦). It is well known [5] that these are

precisely the functions that are computable in polynomial time

with oracles denoted by the set variables. We do not distinguish S1

2

(or S1

2
(𝛼)) from its variant in the language PV (resp., PV(𝛼)) which

has a symbol for all polynomial time functions (resp., with oracles

denoted by the set variables). We shall often use that S1

2
(𝛼) proves

induction for quantifier-free PV(𝛼)-formulas (cf. [22, Lemma 5.2.9]).

We write quantifier-free PV(𝛼)-formulas with latin capital letters;

e.g., 𝐹 (𝑋, 𝑥).

2.1.3 A Piece of Notation. For formulas 𝜑 (𝑌,𝑋, 𝑥) and 𝜓 (𝑍, 𝑧,𝑢)
we write

𝜑
(
𝜓 (𝑍, 𝑧, ·), 𝑋, 𝑥

)
for the formula obtained from 𝜑 by replacing every atomic sub-

formula of the form 𝑡∈𝑌 , for 𝑡 a term, by the formula 𝜓 (𝑍, 𝑧, 𝑡),
preceded by any necessary renaming of the bound variables of 𝜑

to avoid the capturing of free variables. We use this notation only

for formulas 𝜑 without set equalities.

2.1.4 Genuine Two-Sorted Theories. The theories T𝑖
2
(𝛼) and S𝑖

2
(𝛼)

have the same number sort consequences as T𝑖
2
and S𝑖

2
, respectively.

Also T𝑖
2
(𝛼) and S𝑖

2
(𝛼) are conservative over their subtheories with-

out Δ𝑏
1
(𝛼)-comprehension. Intuitively, the two-sorted versions of

bounded arithmetics are the usual ones plus syntactic sugar. Gen-

uine set-sorted theories are obtained from T2 (𝛼) by adding bounded
Φ-comprehension for certain sets of i.e., (3) for 𝜑 (𝑋, 𝑥,𝑦) in Φ.

The set Σ1,𝑏
∞ contains all two-sorted formulas with quantifiers of

both sorts, but bounded number-sort quantifiers. Again we disallow

set equalities. The sets Σ1,𝑏
𝑖

,Π1,𝑏
𝑖

, for 𝑖 ∈ N, are subsets of Σ1,𝑏
∞

defined by counting the alternations of set quantifiers (and not

counting number quantifiers). A Σ̂1,𝑏
1

-formula is of the form

∃2𝑌 𝜑 (𝑋,𝑌, 𝑥) (4)

where 𝜑 (𝑋,𝑌, 𝑥) is a Σ1,𝑏
0

-formula.

For 𝑖 ∈ N the theory V𝑖
2
is given by Σ1,𝑏

𝑖
-comprehension. In

particular, V0

2
is given by Σ1,𝑏

0
-comprehension. It has the same

number-sort consequences as T2.

Remark 6. Sometimes, the sets Σ1,𝑏
𝑖

(𝛼) are defined with bounded

set quantifiers ∃𝑋⩽ 𝑡 and ∀𝑋⩽𝑡 . The difference is not essential: for
every Σ1,𝑏

∞ -formula 𝜑 (𝑋,𝑌, 𝑥) there is a term 𝑡 (𝑥) such that S1

2
(𝛼)

proves

𝑡 (𝑥)⩽𝑦 →
(
𝜑 (𝑋,𝑌, 𝑥) ↔ 𝜑 (𝑋,𝑌⩽𝑦, 𝑥)

)
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where 𝑌⩽𝑦 stands for 𝜓 (𝑌,𝑦, ·) with 𝜓 (𝑌,𝑦,𝑢) := (𝑢⩽𝑦 ∧ 𝑢∈𝑌 ).
By Δ𝑏

1
(𝛼)-comprehension, the formula ∃2𝑌𝜑 is S1

2
(𝛼)-provably

equivalent to ∃2𝑌⩽𝑡 (𝑥) 𝜑 . It follows that every Σ1,𝑏
𝑖

(𝛼)-formula

is S1

2
(𝛼)-provably equivalent to one with bounded set sort quanti-

fiers.

Remark 7. Disallowing set equalities is convenient but inessential

in the sense that V𝑖
2
does not change when set equalities are allowed

in Σ1,𝑏
𝑖

. Indeed, let 𝜑 (𝑋, 𝑥) be a Σ1,𝑏
𝑖

-formula except that set equali-

ties are allowed. Then there is a Σ1,𝑏
𝑖

-formula 𝜑∗ (𝑋, 𝑥,𝑢) (without
set equalities and) with bounded set quantifiers such that S1

2
(𝛼)

proves

∃𝑢
(
𝜑 (𝑋, 𝑥) ↔ 𝜑∗ (𝑋, 𝑥,𝑢)

)
.

Proof. The formula 𝜑∗ is defined by a straightforward recur-

sion on 𝜑 . For example, if 𝜑 is 𝑋1=𝑋2, then 𝜑∗ is ∀𝑦⩽𝑢 (𝑦∈𝑋1 →
𝑦∈𝑋2) ∧ ∀𝑦⩽𝑢 (𝑦∈𝑋2 → 𝑦∈𝑋1); a 𝑢 witnessing the equivalence

is any common upper bound on 𝑋1 and 𝑋2. If 𝜑 is ∃2𝑌𝜓 (𝑋,𝑌, 𝑥)
and 𝜓∗ = 𝜓∗ (𝑋,𝑌, 𝑥,𝑢) is already defined, then 𝜑∗ is taken as

∃2𝑌⩽𝑡 (𝑥,𝑢) 𝜓∗ (𝑋,𝑌, 𝑥,𝑢) where the term 𝑡 is chosen according to

the previous remark. □

2.1.5 Circuits. A circuit with 𝑠 gates is coded by a number 𝐶 <

2
10·𝑠 · |𝑠 |

. On the formal level we shall only consider small circuits,

i.e., 𝑠 ∈ Log, so 2
10·𝑠 · |𝑠 |

exists. We use capital letters 𝐶, 𝐷, 𝐸 for

number variables when they are intended to range over circuits.

There is a PV-function eval(𝐶, 𝑥) that (in the standard model)

takes a circuit 𝐶 with, say, 𝑛 ⩽ |𝐶 | input gates, and evaluates

it on inputs 𝑥 < 2
𝑛
. This means that the input gates of 𝐶 are

assigned the bits of the length-𝑛 binary representation of 𝑥 ; we

assume eval(𝐶, 𝑥) = 0 if 𝑥 ⩾ 2
𝑛
or if 𝐶 does not code a circuit.

It is notationally convenient to have circuits that take finite

tuples 𝑥 = (𝑥1, . . . , 𝑥𝑘 ) as inputs; formally, such a circuit has 𝑘 se-

quences of input gates, the 𝑖-th taking the bits of𝑥𝑖 . Again, eval(𝐶, 𝑥)
denotes the evaluation function; it outputs 0 if any 𝑥𝑖 has length

bigger than the length its allotted input sequence. Our circuits have

exactly one output gate, so S1

2
proves eval(𝐶, 𝑥)<2. We write 𝐶 (𝑥)

for the quantifier-free PV-formula eval(𝐶, 𝑥)=1; in some places we

also write 𝐶 (𝑥)=1 and 𝐶 (𝑥)=0 instead of 𝐶 (𝑥) and ¬𝐶 (𝑥), respec-
tively.

For a circuit 𝐶 taking (ℓ + 𝑘)-tuples as inputs and an ℓ-tuple 𝑥

we let 𝐶𝑥 be the circuit obtained by fixing the first ℓ inputs to 𝑥 ;

it takes 𝑘-tuples as inputs. Formally, 𝐶𝑥 is a PV-term with vari-

ables 𝐶, 𝑥 and S1

2
(𝛼) proves (𝐶𝑥 (𝑦) ↔ 𝐶 (𝑥,𝑦)) and |𝐶𝑥 |⩽ |𝐶 |.

Lemma 8. For every quantifier-free PV-formula 𝐹 (𝑥) there is a 𝑐 ∈
N such that S1

2
proves

∀𝑛∈Log>1
∃𝐶<2

𝑛𝑐 ∀𝑥<2
𝑛 (

𝐶 (𝑥) ↔ 𝐹 (𝑥)
)
.

On the formal level, if 𝑌 is a set and 𝐶 is a circuit, then we say

that 𝑌 is represented by 𝐶 if ∀𝑦 (𝐶 (𝑦) ↔ 𝑦∈𝑌 ). In our notation,

such set 𝑌 is written 𝐶 (·), or eval(𝐶, ·)=1. More precisely, for a

formula 𝜑 (𝑌,𝑋, 𝑥) and a circuit 𝐶 we write

𝜑
(
𝐶 (·), 𝑋, 𝑥

)
,

for the formula obtained from 𝜑 by replacing every formula of

the form 𝑡∈𝑌 by 𝐶 (𝑡), i.e., by eval(𝐶, 𝑡)=1. Note that if the set 𝑌 is

represented by a circuit with 𝑛 inputs, then 𝑌<2
𝑛
, provably in S1

2
.

For example, we shall use circuits to represent computations of

exponential-time machines 𝑀 . Using the notation introduced in

Section 3.1.3,

“𝐶 (·) is a halting computation of𝑀 on 𝑥”

is a Π𝑏
1
-formula with free variables 𝐶, 𝑥 stating that the circuit 𝐶

represents a halting computation of𝑀 on 𝑥 .

2.2 Direct Consistency for NEXP
The set of Σ̂1,𝑏

1
-formulas without free variables of the set sort is

a natural class of formulas defining, in the standard model, all

the problems in NEXP. For such a formula𝜓 it is straightforward

to write down a set of sentences (a.k.a. a theory) stating that 𝜓

does not have polynomial size circuits. We explicitly define this

formalization of NEXP ⊈ P/poly as the set of all sentences of the
form¬𝛼𝑐

𝜓
, for 𝑐 ∈ N, for the sentence 𝛼𝑐

𝜓
defined in the introduction,

and then argue that its consistency with V0

2
follows from known

lower bounds in proof complexity.

We repeat the definition of 𝛼𝑐
𝜓
from the introduction:

Definition 9. Let 𝑐 ∈ N and let𝜓 = 𝜓 (𝑥) be a Σ̂1,𝑏
1

-formula (with

only one free variable 𝑥 , and in particular without free variables of

the set sort). Define

𝛼𝑐
𝜓

:= ∀𝑛∈Log>1
∃𝐶⩽2

𝑛𝑐∀𝑥<2
𝑛 (

𝐶 (𝑥) ↔ 𝜓 (𝑥)
)
.

We are ready to prove Proposition 1.

Proof of Proposition 1: The (functional) pigeonhole principle
formula PHP (𝑥) is the following Π1,𝑏

1
-formula:

∀2𝑋
(
∃𝑦⩽𝑥+1 ∀𝑧⩽𝑥 ¬⟨𝑦, 𝑧⟩∈𝑋 ∨
∃𝑦⩽𝑥+1 ∃𝑧⩽𝑥 ∃𝑧′⩽𝑥 (¬𝑧=𝑧′ ∧ ⟨𝑦, 𝑧⟩∈𝑋 ∧ ⟨𝑦, 𝑧′⟩∈𝑋 ) ∨
∃𝑦⩽𝑥+1 ∃𝑦′⩽𝑥+1 ∃𝑧⩽𝑥 (¬𝑦=𝑦′ ∧ ⟨𝑦, 𝑧⟩∈𝑋 ∧ ⟨𝑦′, 𝑧⟩∈𝑋 )

)
.

Note that𝜓 = 𝜓 (𝑥) := ¬PHP (𝑥) is (logically equivalent to) a Σ̂1,𝑏
1

-

formula. For the sake of contradiction assume that V0

2
+
{
¬𝛼𝑐

𝜓
| 𝑐 ∈

N
}
is inconsistent. By compactness, there exists 𝑐 ∈ N such that V0

2

proves 𝛼𝑐
𝜓
.

Claim: V0

2
+ 𝛼𝑐

𝜓
proves PHP (𝑥).

The claim implies the theorem: it is well known [22, Corol-

lary 12.5.5] that there is an expansion (𝑀,𝑅𝑀 ) of a model 𝑀 of

the BASIC axioms by an interpretation 𝑅𝑀 ⊆ 𝑀 of a new predi-

cate 𝑅 such that 𝑅𝑀 is bounded and witnesses ¬PHP (𝑛) for some

(non-standard) 𝑛 ∈ 𝑀 , and, further, (𝑀,𝑅𝑀 ) models induction for

bounded formulas. LetY be the collection of bounded sets definable

in (𝑀,𝑅𝑀 ) by bounded formulas. Then (𝑀,Y) is a model of V0

2

with 𝑅𝑀 ∈ Y, so (𝑀,Y) |= ¬PHP (𝑛).

We are left to prove the claim. Argue inV0

2
and set𝑛 := max{|𝑥 |, 2}.

Then 𝛼𝑐
𝜓
gives a circuit 𝐶 such that

∀𝑢⩽𝑥 (¬𝐶 (𝑢) ↔ PHP (𝑢)) .

We observe that V0

2
proves that PHP (𝑥) is inductive, i.e.,

PHP (0) ∧ ∀𝑢<𝑥 (PHP (𝑢) → PHP (𝑢 + 1)) . (5)
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Indeed, if 𝑋 is a set that witnesses ¬PHP (𝑢 + 1), then we construct

a set 𝑌 that witnesses ¬PHP (𝑢) as follows. If there does not exist
any 𝑣⩽𝑢+1with ⟨𝑣,𝑢⟩∈𝑋 , then the set𝑌 := 𝑋 itself is thewitness we

want. On the other hand, if there exists 𝑣⩽𝑢+1 with ⟨𝑣,𝑢⟩∈𝑋 , then

let 𝑌 be the set of pairs 𝑧 = ⟨𝑥,𝑦⟩ such that the two projections 𝑥 =

𝜋1 (𝑧) and 𝑦 = 𝜋2 (𝑧) satisfy the formula 𝜑 (𝑥,𝑦,𝑢, 𝑣) displayed next,

for the fixed parameters 𝑢 and 𝑣 :

𝑥⩽𝑢 ∧ 𝑦<𝑢 ∧
(
(𝑥>𝑣 ∧ ⟨𝑥−1, 𝑦⟩∈𝑋 ) ∨ (𝑥<𝑣 ∧ ⟨𝑥,𝑦⟩∈𝑋 )

)
.

Here, 𝑥−1 denotes the (truncated) predecessor PV-function. In
the definition of 𝑌 we used the two projections 𝜋1 and 𝜋2, also

as PV-functions. Since the definition of𝑌 is a quantifier-free PV(𝛼)-
formula, the set 𝑌 exists by quantifier-free PV(𝛼)-comprehension,

and it is clear by construction that it witnesses ¬PHP (𝑢).
To complete the proof, we replace ¬𝐶 (𝑢) for PHP (𝑢) in equa-

tion (5) and quantifier-free PV(𝛼)-induction gives¬𝐶 (𝑥), and hence
PHP (𝑥). □

Remark 10. The model (𝑀,X) that witnesses the above consis-
tency is amodel ofV0

2
where PHP (𝑛) fails for some non-standard𝑛 ∈

𝑀 : otherwise 𝛼1

¬PHP would be true and witnessed by trivial circuits

that always reject.

3 FORMALLY VERIFIED MODEL-CHECKERS
We shall need to formally reason about certain straightforwardly

defined exponential time machines, namely model-checkers and

universal machines. A model-checker 𝑀𝜑 for a formula 𝜑 (𝑋, 𝑥)
has oracle access to 𝑋 and, on input 𝑥 , decides whether 𝜑 (𝑋, 𝑥)
is true. For example, by nesting a loop for each bounded quanti-

fier, Σ1,𝑏
0

-formulas have straightforward model-checkers that run

in exponential time and polynomial space. We define such model-

checkers with care, so that S1

2
(𝛼) verifies their time and space

bounds as well as their correctness. This correctness statement

has to be formulated carefully because, in general, S1

2
(𝛼) cannot

prove that a halting computation of𝑀𝑋
𝜑 on 𝑥 exists. Thus, proving

correctness means to show that if a computation exists, then it does
what it is supposed to do. To prove this we use some constructions

that are similar in spirit to those in [4].

3.1 Preliminaries: Explicit Machines
In short, a machine will be called explicit if the theory S1

2
(𝛼) proves

that its halting computations terminate within a specified number

of steps, using no more than a specified amount of space in its

work tapes, and by querying its oracles no further than a specified

position.

3.1.1 Machine Model. Our model of computation is the multi-

tape oracle Turing machine with one-sided infinite tapes (i.e., cells

indexed by N) and an alphabet containing {0, 1}. The content of
cell 0 is fixed to a fixed symbol marking the end of the tape. At the

start, the heads scan cell 1. The machines can be deterministic or

non-deterministic. Such a machine 𝑀 has read-only input tapes,

and work tapes and oracle tapes. If there are 𝑘 input tapes, then

its inputs are 𝑘-tuples 𝑥 = (𝑥1, . . . , 𝑥𝑘 ) of numbers with the length-

|𝑥𝑖 | binary representation of 𝑥𝑖 written on the 𝑖-th input tape. The

length of the input is |𝑥 | = max𝑖 |𝑥𝑖 |. If𝑀 does not have oracle tapes,

then it is a machine without oracles. If 𝑀 has ℓ ⩾ 1 oracle tapes,

then we write𝑀𝑋
for the machine with oracles 𝑋 = (𝑋1, . . . , 𝑋ℓ ).

When the machine enters a special query state, it moves to one

out of 2
ℓ
many special answer states which codes the answers to

the ℓ queries written on the ℓ oracle tapes, i.e., whether the number

written (in binary) on the 𝑖-th oracle tape belongs to 𝑋𝑖 or not.

A partial space-𝑠 time-𝑡 query-𝑞 computation of 𝑀𝑋 on 𝑥 com-

prises 𝑡 + 1 configurations, the first one being the starting config-

uration, every other being a successor of the previous one, and

repeating halting configurations, if any. Being space-𝑠 means that

the largest visited cell on each tape is at most 𝑠 , and being query-𝑞
means that the largest visited cell on each oracle is at most most |𝑞 |.

3.1.2 Coding Computations. Fix a machine𝑀 . Let 𝑠, 𝑡, 𝑞 ∈ N and

consider a partial space-𝑠 , time-𝑡 , query-𝑞 computation of𝑀 on an

unspecified input with unspecified oracles. A configuration is coded

by an (𝑠+1)-tuple (𝑞, 𝑐0, . . . , 𝑐𝑠−1) of numbers: 𝑞 codes the current

state of the machine; 𝑐𝑖 codes, for each tape, a position bit indicating
whether the index of the currently scanned cell is at most 𝑖 and,

for each work or oracle tape, the content of cell 𝑖 . We assume that

these numbers are smaller than 𝑀 (the machine is (coded by) a

number), so we get an (𝑠+1) × (𝑡+1) matrix of such numbers. This

matrix is coded by the set 𝑌 of numbers bounded by ⟨𝑠, 𝑡, |𝑀 |⟩ that
contains exactly those ⟨𝑖, 𝑗, 𝑘⟩ such that 𝑖 ⩽ 𝑠 , 𝑗 ⩽ 𝑡 , 𝑘 < |𝑀 | and
the (𝑖, 𝑗)-entry of the matrix has 𝑘-bit 1.

The details of the encoding are irrelevant. What is required is

that there is a PV(𝛼)-function 𝑓 𝑌 such that 𝑓 𝑌 (𝑡, 𝑠, 𝑞, 𝑗) gives, about
the 𝑗-th configuration, a number coding the state, the positions

of the heads, the contents of the cells they scan, and the numbers

that are written in binary in the first |𝑞 | cells of the oracle tapes.
In the encoding sketched above, to find the position of a specific

head, 𝑓 𝑌 uses binary search to find 𝑖 ⩽ 𝑠 where its position bit flips;

computing the oracle queries is possible because the oracle tapes

contain numbers below 2
|𝑞 |
.

Having 𝑓 𝑌 , it is straightforward to write a Π𝑏
1
(𝛼)-formula

“𝑌 is a partial space-𝑠 time-𝑡 query-𝑞 comp. of𝑀𝑋 on 𝑥”. (6)

The free variables of this formula are 𝑌,𝑋, 𝑥, 𝑠, 𝑡, 𝑞. Exceptionally,

we shall also consider 𝑀 on the formal level, in which case 𝑀 is

an additional free number variable. All quantifiers in the Π𝑏
1
(𝛼)-

formula (6) can be S1

2
(𝛼)-provably bounded by 𝑝 (𝑠, 𝑡, |𝑞 |, |𝑀 |, |𝑥 |)

for a polynomial 𝑝 , where |𝑥 | stands for |𝑥1 |, . . . , |𝑥𝑘 |. If 𝑀 is a

machine without oracles, the formula is S1

2
(𝛼)-provably equivalent

to the one with 𝑞 = 0, and we omit ‘query-𝑞’. We also omit ‘space-𝑠’

if 𝑠 = 𝑡 . Further, replacing ‘partial’ by ‘halting’ or ‘accepting’ or

‘rejecting’ are obvious modifications of the formula.

3.1.3 ExplicitMachines. The binary search algorithm gives aPV(𝛼)-
function time𝑌 (𝑠, 𝑡) such that, provably in S1

2
, if 𝑌 is a halting

time-𝑡 space-𝑠 query-𝑞 computation of 𝑀𝑋
on 𝑥 , then time𝑌 (𝑠, 𝑡)

is the minimal 𝑗 ⩽ 𝑡 such that the 𝑗-th configuration in 𝑌 is halt-

ing. We make the further assumption that 𝑀 never writes blank

(but can write a copy of this symbol), so heads leave marks on

visited cells. Binary search can then compute the maximal non-

blank cell in the 𝑗-th configuration on any tape. By quantifier-

free induction for PV(𝛼)-formulas, S1

2
proves that this cell num-

ber is non-decreasing for 𝑗 = 0, 1, . . . , 𝑡 . Hence, there is a PV(𝛼)-
function space𝑌 (𝑠, 𝑡) such that, provably in S1

2
, if𝑌 is a halting time-𝑡
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space-𝑠 query-𝑞 computation of𝑀𝑋
on 𝑥 , then space𝑌 (𝑠, 𝑡) is the

maximal cell visited in 𝑌 on any tape. Similarly, there is a PV(𝛼)-
function query𝑌 (𝑠, 𝑡) that computes the maximal cell visited on a

query tape.

Definition 11. Amachine𝑀 is explicit if there are terms 𝑠 (𝑥), 𝑡 (𝑥),
and 𝑞(𝑥) such that S1

2
(𝛼) proves

“𝑌 is a halting space-𝑠 ′ time-𝑡 ′ query-𝑞′ comp. of𝑀𝑋 on 𝑥” →
time𝑌 (𝑠 ′, 𝑡 ′)⩽𝑡 (𝑥) ∧ space𝑌 (𝑠 ′, 𝑡 ′)⩽𝑠 (𝑥) ∧ query𝑌 (𝑠 ′, 𝑡 ′)⩽𝑞(𝑥).
We say that the terms 𝑠 = 𝑠 (𝑥), 𝑡 = 𝑡 (𝑥), 𝑞 = 𝑞(𝑥) witness

that 𝑀 is explicit. Further, if 𝑟 (𝑥) is another term, then we say

that 𝑟 = 𝑟 (𝑥) witnesses that 𝑀 is an explicit NEXP-machine if it is
non-deterministic with 𝑡 = 𝑠 = 𝑞 = 𝑟 , an explicit-EXP-machine if
it is deterministic with 𝑡 = 𝑠 = 𝑞 = 𝑟 , an explicit PSPACE-machine
if it is deterministic with 𝑡 = 𝑞 = 𝑟 and 𝑠 = |𝑟 |, an explicit NP-
machine if it is non-deterministic with 𝑡 = 𝑠 = |𝑟 | and 𝑞 = 𝑟 , and an

explicit P-machine if it is deterministic with 𝑡 = 𝑠 = |𝑟 | and 𝑞 = 𝑟 .

Observe that, if 𝑠, 𝑡, 𝑞witness that𝑀 is explicit, and 𝑠 ′ = 𝑠 ′(𝑥), 𝑡 ′ =
𝑡 ′(𝑥), 𝑞′ = 𝑞′(𝑥) are terms such that S1

2
⊢ 𝑠 (𝑥)⩽𝑠 ′(𝑥)∧𝑡 (𝑥)⩽𝑡 ′(𝑥)∧

𝑞(𝑥)⩽𝑞′(𝑥), then also 𝑠 ′, 𝑡 ′, 𝑞′ witness that 𝑀 is explicit. E.g., if 𝑟

witnesses that 𝑀 is an explicit P-machine, then 𝑟 also witnesses

that𝑀 is an explicit PSPACE-machine.

Given an explicit machine𝑀 , we omit ‘space-𝑠 time-𝑡 query-𝑞’

in (6) and its variations with ‘halting’, ‘accepting’ or ‘rejecting’. E.g.

for an explicit EXP-machine𝑀 , say witnessed by 𝑟 = 𝑟 (𝑥), we have
a Π𝑏

1
(𝛼)-formula

“𝑌 is an accepting computation of𝑀𝑋 on 𝑥”. (7)

This means that 𝑌 is a space-𝑟 (𝑥) time-𝑟 (𝑥) query-𝑟 (𝑥) computa-

tion of 𝑀𝑋
on 𝑥 that ends in an accepting halting configuration,

and all queries “𝑧 ∈ 𝑋 ?” during the computation satisfy 𝑧 < 2
|𝑟 (𝑥) |

.

In particular,

𝑌⩽⟨𝑟 (𝑥), 𝑟 (𝑥), |𝑀 |⟩ (8)

provably in S1

2
. Furthermore, all quantifiers in theΠ𝑏

1
(𝛼)-formula (7)

can be S1

2
(𝛼)-provably bounded by 𝑝 (𝑟 (𝑥), |𝑀 |, |𝑥 |) for a polyno-

mial 𝑝 , where |𝑥 | stands for |𝑥1 |, . . . , |𝑥𝑘 |.
Thereby, our mode of speech follows [22, Definition 8.1.2] in

that the time bound is used to determine the bound on the oracle

tapes.

3.1.4 Polynomial-Time Computations. . It is well-known that S1

2

formalizes polynomial time computations. We shall use this in the

form of the following lemma.

For an explicit P-machine𝑀 , its computations 𝑌 can be coded

by numbers 𝑦 and we get a Π𝑏
1
(𝛼)-formula

“𝑦 is a halting computation of𝑀𝑋 on 𝑥”.

Here, 𝑦 is a number sort variable, and the free variables are 𝑋, 𝑥,𝑦.

If𝑀 has a special output tape, we agree that the output of a com-

putation is the number whose binary representation is written

in cells 1, 2, . . . up to the first cell not containing a bit. We have

a PV(𝛼)-function out𝑀 such that, provably in 𝑆1

2
(𝛼), if 𝑦 is a halt-

ing computation of𝑀𝑋
on 𝑥 , then out𝑀 (𝑦, 𝑗) is the content of cell 𝑗

of the output tape in the halting configuration in case this is a bit;

otherwise out𝑀 (𝑦, 𝑗)=2. In particular, S1

2
(𝛼) proves out𝑀 (𝑦, 𝑗)⩽2,

Lemma 12. For every PV(𝛼)-function 𝑓 𝑋 (𝑥) there are an explicit P-
machine𝑀 and a PV(𝛼)-function 𝑔𝑋 (𝑥) such that S1

2
(𝛼) proves(

“𝑦 is a halting computation of𝑀𝑋 on 𝑥” ↔ 𝑦=𝑔𝑋 (𝑥)
)
∧(

𝑗< |𝑓 𝑋 (𝑥) | → out𝑀 (𝑔𝑋 (𝑥), 𝑗+1)=bit (𝑓 𝑋 (𝑥), 𝑗)
)
∧(

𝑗⩾ |𝑓 𝑋 (𝑥) | → out𝑀 (𝑔𝑋 (𝑥), 𝑗+1)=2

)
.

In the statement of the lemma, bit (𝑛, 𝑖) is a PV-function com-

puting the 𝑖-bit of the binary representation of 𝑛, i.e., bit (𝑛, 𝑖) =

⌊𝑛/2
𝑖 ⌋ mod 2 (in the standard model). In particular, we have that

bit (𝑛, 𝑖) = 0 for 𝑖 ⩾ |𝑛 |.

3.2 Deterministic Model-Checkers
For every Σ1,𝑏

0
-formula 𝜑 = 𝜑 (𝑋, 𝑥) in the language PV(𝛼) we

define its bounding term bt𝜑 (𝑥) as follows:
(1) bt𝜑 = 0 if 𝜑 is atomic,

(2) bt𝜑 = bt𝜓 if 𝜑 = ¬𝜓 ,
(3) bt𝜑 = bt𝜓 + bt\ if 𝜑 = (𝜓 ∧ \ ),
(4) bt𝜑 = bt𝜓 (𝑥, 𝑡 (𝑥)) + 𝑡 (𝑥) if 𝜑 = ∃𝑦⩽𝑡 (𝑥) 𝜓 (𝑋, 𝑥,𝑦).

Below, given a tuple𝑥 = (𝑥1, . . . , 𝑥𝑘 ), wewrite |𝑥 | for ( |𝑥1 |, . . . , |𝑥𝑘 |).

Lemma 13. For every Σ1,𝑏
0

-formula 𝜑 = 𝜑 (𝑋, 𝑥) there are an

explicit PSPACE-machine 𝑀𝑋
𝜑 , two terms 𝑟𝜑 (𝑥) and 𝑠𝜑 (𝑥), a Σ1,𝑏

0
-

formula C𝜑 (𝑋, 𝑥,𝑢), and a polynomial 𝑝𝜑 (𝑚,𝑛), such that

(a) S1

2
(𝛼) ⊢ “𝑌 is an acc. comp. of𝑀𝑋

𝜑 on 𝑥” → 𝜑 (𝑋, 𝑥),
(b) S1

2
(𝛼) ⊢ “𝑌 is a rej. comp. of𝑀𝑋

𝜑 on 𝑥” → ¬𝜑 (𝑋, 𝑥),
(c) S1

2
(𝛼) ⊢ “C𝜑 (𝑋, 𝑥, ·) is a halt. comp. of𝑀𝑋

𝜑 on 𝑥”,
(d) S1

2
(𝛼) ⊢ 𝑟𝜑 (𝑥) ⩽ 𝑝𝜑 (bt𝜑 (𝑥), |𝑥 |) ,

(e) 𝑟𝜑 (𝑥) and 𝑠𝜑 (𝑥) witness 𝑀𝑋
𝜑 as explicit EXP- and PSPACE-

machines, respectively.

In addition, if 𝜑 = 𝜑 (𝑋, 𝑥) is a Π𝑏
1
(𝛼)-formula, then there are a

term 𝑡𝜑 (𝑥) and a quantifier-free PV(𝛼)-formula C𝜑 (𝑋, 𝑥,𝑤,𝑢) such
that the theories T1

2
and S1

2
prove the formulas

(f) ∃𝑤⩽𝑡𝜑 (𝑥) “C𝜑 (𝑋, 𝑥,𝑤, ·) is a halt. comp. of𝑀𝑋
𝜑 on 𝑥”,

(g) 𝜑 (𝑋, 𝑥) → “C𝜑 (𝑋, 𝑥, 𝑡𝜑 (𝑥), ·) is an acc. comp. of𝑀𝑋
𝜑 on 𝑥”,

respectively.

Proof. A Σ1,𝑏
0

-formula 𝜑 = 𝜑 (𝑋, 𝑥) is called good if it satis-

fies (a)–(e). Observe that all Σ𝑏
0
(𝛼)-formulas are good: they are S1

2
(𝛼)-

provably equivalent to formulas 𝑓 𝑋 (𝑥)=1 for some PV(𝛼)-function
𝑓 𝑋 (𝑥), and we can choose a machine according to Lemma 12. Recall

that an explicit P-machine is also an explicit PSPACE-machine and

explicit EXP-machine (all three witnessed by the same term).

We leave it to the reader to check that the good formulas are

closed under Boolean combinations. We check that if

𝜑 (𝑋, 𝑥) = ∃𝑦⩽𝑡 (𝑥) 𝜓 (𝑋, 𝑥,𝑦) (9)

for a term 𝑡 (𝑥) and a good formula𝜓 = 𝜓 (𝑋, 𝑥,𝑦), then 𝜑 is good.

To lighten the notation, in the following we drop any reference

to the set-parameters 𝑋 in the formulas, and to the oracles 𝑋 in

machines, since they remain fixed throughout the proof.

The machine 𝑀𝜑 runs a loop searching for a 𝑦 in {0, . . . , 𝑡 (𝑥)}
that satisfies𝜓 . On input 𝑥 , it writes 𝑦 := 0 on a work tape and then
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loops: it checks whether𝑦 ⩽ 𝑡 (𝑥) and, if so, it updates𝑦 := 𝑦+1 and

runs𝑀𝜓 on (𝑥,𝑦); otherwise it halts. It accepts or rejects according
to a flag bit 𝑏 stored in its state space: 𝑏 is initially set to 0, and it is

set to 1 when and if an𝑀𝜓 -run accepts.

To prove (a)–(e) we want to construct a quantifier-free PV(𝛼)-
formula 𝐷 (𝑌, 𝑥,𝑦,𝑢) that extracts the𝑀𝜓 -computation simulated

in the 𝑦-loop. More precisely, we want S1

2
(𝛼) to prove that, if 𝑌

is a halting computation of𝑀𝜑 on 𝑥 , then 𝐷 (𝑌, 𝑥,𝑦, ·) is a halting
computation of𝑀𝜓 on (𝑥,𝑦). For this, we design the details of𝑀𝜑

in a way so that the 𝑗-th step of the computation of𝑀𝜓 on (𝑥,𝑦) is
simulated by𝑀𝜑 at a time easily computed from 𝑥,𝑦, 𝑗 .

Description of 𝑀𝜑 . Set 𝑟 (𝑥) = 𝑟𝜓 (𝑥, 𝑡 (𝑥)) where 𝑟𝜓 (𝑥,𝑦) is the
term claimed to exist for𝜓 . Note that S1

2
(𝛼) proves that 𝑟𝜓 (𝑥,𝑦) ⩽

𝑟 (𝑥) for 𝑦 ⩽ 𝑡 (𝑥). Additionally to properties (a)–(e) for 𝜓 , we

assume inductively that S1

2
(𝛼) proves that the halting configuration

of𝑀𝜓 on (𝑥,𝑦) equals the initial configuration except for the state,

that is,𝑀𝜓 cleans all worktapes and moves all heads back to cell 1

before it halts.

Our machine initially computes 𝑡 = 𝑡 (𝑥) and 𝑟 = 𝑟 (𝑥) and two

binary clocks initially set to 0
|𝑡 |

and 0
|𝑟 |
. The terms are evaluated us-

ing explicit P-machines according to Lemma 12. The initial settings

of the clocks are simply computed by scanning the binary represen-

tations of 𝑡 and 𝑟 that were computed at the start. This initial compu-

tation of terms, and initialization of clocks, takes time exactly ini(𝑥)
for some PV-function ini(𝑥). Further, S1

2
(𝛼) proves ini(𝑥) ⩽ |𝑡i (𝑥) |

for a suitable term 𝑡i (𝑥).
The 𝑦-loop is implemented as follows. First update 𝑦, the value

of the first clock. To do this, sweep over the first clock, and then

back, in exactly (2|𝑡 | +2) steps, doing the following: copy 𝑦 without

leading 0’s to some tape, so this tape holds the length-|𝑦 | binary
representation of 𝑦 (as expected by 𝑀𝜓 ); increase the clock by 1

if 𝑦 < 𝑡 , and reset it to 0
|𝑡 |

if 𝑦 = 𝑡 ; in the latter case store a bit

signaling this; this signal bit halts the computation (in the next 𝑦-

loop) instead of doing the 𝑦-update. After this 𝑦-update, simulate 𝑟

steps of𝑀𝜓 on (𝑥,𝑦) by an inner loop: in 2|𝑟 | + 2 steps sweep twice

over the second clock. If its value was smaller that 𝑟 , then increase

it by 1 and simulate the next step of 𝑀𝜓 ’s computation; this can

mean repeating the halting computation. If its value was not smaller

than 𝑟 , then set the clock back to 0
|𝑟 |
. Thus, exactly 2|𝑟 | + 3 steps

are spent for one step of𝑀𝜓 and one 𝑦-loop takes exactly 𝑡ℓ (𝑥) :=

(𝑟 (𝑥) + 1) · (2|𝑟 (𝑥) | + 3) steps.
If the signal bit halts the computation, then our machine first

cleans all tapes and moves heads back to cell 1, before halting. We

omit a description of this final polynomial time computation. It can

be implemented to take exactly fin(𝑥) steps for a PV-function fin(𝑥),
and S1

2
proves fin(𝑥) ⩽ |𝑡f (𝑥) | for a suitable term 𝑡f (𝑥).

Thus𝑀𝜑 runs in time exactly ini(𝑥) + (𝑡 (𝑥) + 1) · 𝑡ℓ (𝑥) + fin(𝑥).
It simulates 𝑟 steps of𝑀𝜓 on (𝑥,𝑦) at times

𝑡 (𝑥,𝑦, 𝑗) := ini(𝑥) + 𝑦 · 𝑡ℓ (𝑥) + ( 𝑗 + 1) · (2|𝑟 (𝑥) | + 3) (10)

for 𝑗 < 𝑟 (𝑥).

Explicitness. Let 𝑠𝜓 (𝑥,𝑦) be the term that witnesses𝑀𝜓 as an ex-

plicit PSPACE-machine. Let 𝑌 be a halting computation of𝑀𝜑 on 𝑥 .

There is a PV(𝛼)-function that from 𝑥 computes (a number coding)

the initial computation of terms and clocks, and S1

2
(𝛼) proves its

halting configuration is as described. Clearly, S1

2
(𝛼) proves that the

first ini(𝑥) steps of 𝑌 coincide with this computation. In particu-

lar, S1

2
(𝛼) proves that the clocks computed in 𝑌 have the desired

length. Similarly, there is a PV(𝛼)-function that from 𝑥,𝑦, 𝑗 com-

putes (a number coding) the space-|𝑠𝜓 (𝑥,𝑦) | configuration of𝑀𝜓

at time 𝑡 (𝑥,𝑦, 𝑗) in 𝑌 .
We prove, by quantifier-free induction, that the computation 𝑌

simulates the steps of 𝑀𝜓 at times 𝑡 (𝑦, 𝑗) := 𝑡 (𝑥,𝑦, 𝑗) for 𝑦 ⩽ 𝑡

and 𝑗 < 𝑟 . Assume this holds for time 𝑡 (𝑦, 𝑗). We verify it for

time 𝑡 (𝑦, 𝑗 + 1) or time 𝑡 (𝑦 + 1, 0) depending on whether 𝑗 <

𝑟 or 𝑗 = 𝑟 . Assume the former; the latter case is similar. Com-

pute the time-(2|𝑟 | + 3) computation (that sweeps twice over the

clock and simulates one more step of 𝑀𝜓 ) starting at the config-

uration at time 𝑡 (𝑦, 𝑗); then 𝑌 must coincide with this computa-

tion between time 𝑡 (𝑦, 𝑗) and time 𝑡 (𝑦, 𝑗 + 1). Hence, 𝑌 simulates

a step of 𝑀𝜓 at time 𝑡 (𝑦, 𝑗 + 1). Similarly, quantifier-free induc-

tion proves that the 𝑀𝜓 -configurations at the times 𝑡 (𝑦, 𝑗) in 𝑌

are successors of each others. This yields a quantifier-free PV(𝛼)-
formula 𝐷 (𝑌, 𝑥,𝑦,𝑢) as desired.

From the configuration at time ini(𝑥) + (𝑡 + 1) · 𝑡ℓ (𝑥) one can
compute the final fin(𝑥) steps of the clean-up computation be-

fore𝑀𝜑 halts, and the last fin(𝑥) steps of 𝑌 must coincide with that.

Hence, S1

2
(𝛼) proves that the configuration of 𝑌 at time ini(𝑥) + (𝑡 +

1) · 𝑡ℓ +fin(𝑥) is halting. Recalling that ini(𝑥) ⩽ |𝑡i (𝑥) | and fin(𝑥) ⩽
|𝑡f (𝑥) |, this implies that the terms 𝑟0 (𝑥) and 𝑠0 (𝑥) displayed next

|𝑡i (𝑥) | + (𝑡 (𝑥) + 1) · 𝑡ℓ (𝑥) + |𝑡f (𝑥) |,
|𝑡i (𝑥) | + (|𝑡 (𝑥) | + 1) + (|𝑟 (𝑥) | + 1) + |𝑠𝜓 (𝑥, 𝑡 (𝑥)) | + |𝑡f (𝑥) |

(11)

witness that𝑀𝜑 is explicit with respect to time and space, respec-

tively. As query-bound term 𝑞0 (𝑥) we can take 2
𝑠0 (𝑥)

, which exists

because, provably in S1

2
(𝛼), the term 𝑠0 (𝑥) is small, i.e., bounded

by |𝑠 ′(𝑥) | for some other term 𝑠 ′(𝑥). Since S1

2
proves 𝑡ℓ (𝑥) ⩽

16𝑟 (𝑥)2
and hence also 𝑟0 (𝑥) ⩽ 𝑞0 (𝑥), the term 𝑠𝜑 (𝑥) := 𝑞0 (𝑥) it-

self witnesses𝑀𝜑 as explicit PSPACE-machine. Similarly, 𝑟𝜑 (𝑥) :=

𝑟0 (𝑥) witnesses 𝑀𝜑 as an explicit EXP machine. This proves (e).

Note that the term 𝑟𝜑 does not serve also as witness that 𝑀𝜑

is an explicit PSPACE-machine because 𝑟𝜑 (𝑥) is actually smaller

than 𝑠𝜑 (𝑥); we need the tighter time-bound in (11) to be able to

prove (d) later.

Proof of (a)–(e). For (a) argue in S1

2
(𝛼) and suppose𝑌 is an accept-

ing computation of𝑀𝜑 on 𝑥 . Being accepting means that the final

state has flag 𝑏 = 1, while the starting state has flag 𝑏 = 0. By binary

search we find a time when 𝑏 flips from 0 to 1. This time deter-

mines 𝑦0 ⩽ 𝑡 such that the 𝑦0 loop accepts. Then 𝑍 := 𝐷 (𝑌, 𝑥,𝑦0, ·)
is an accepting computation of 𝑀𝜓 on (𝑥,𝑦0). Note that 𝑍 ex-

ists by Δ𝑏
1
(𝛼)-comprehension. Then (a) for𝜓 , implies𝜓 (𝑥,𝑦0) and

thus 𝜑 (𝑥).
For (b), argue in S1

2
(𝛼) and suppose 𝑌 is a rejecting computation

of 𝑀𝜑 on 𝑥 , so the flag is 0 in the final configuration. Let 𝑦 ⩽
𝑡 . Then 𝐷 (𝑌, 𝑥,𝑦, ·) is a rejecting computation of 𝑀𝜓 on (𝑥,𝑦):
otherwise the 𝑦 loop sets the flag to 1 and then binary search finds

a time where the flag flips from 1 to 0 in 𝑌 which contradicts the

working of𝑀𝜑 . Then (b) for𝜓 implies ¬𝜓 (𝑥,𝑦). As 𝑦 was arbitrary,

we get ¬𝜑 (𝑥).
For (c), it is easy to construct from C𝜓 a formula C𝜓,0 such

that S1

2
(𝛼) proves that the set C𝜓,0 (𝑥,𝑦, ·) is the computation of
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the 𝑦-loop of𝑀𝜑 on 𝑥 with flag 0 stored in the state space. There is

an analogous formula C𝜓,1 for flag 1. These formulas just stretch

the computation described by C𝜓 and interleave it with the trivial

updates of the clocks. The desired formula C𝜑 (𝑥,𝑢) ‘glues together’
these computations, plus the initial ini(𝑥) steps of initialization,
and the final fin(𝑥) steps of clean-up. We sketch the definition

of C𝜑 (𝑥,𝑢): from 𝑢 we can compute 𝑦 such that the truth value

of C𝜑 (𝑥,𝑢) is one of the bits in the code of the computation of

the 𝑦-loop of𝑀𝜑 on 𝑥 , or one of the bits in the code of the initial

or final computation. Then C𝜑 (𝑥,𝑢) states

(∃𝑧<𝑦 𝜓 (𝑥, 𝑧) ∧ C𝜓,1 (𝑥,𝑦,𝑢))∨
(¬∃𝑧<𝑦 𝜓 (𝑥, 𝑧) ∧ C𝜓,0 (𝑥,𝑦,𝑢)).

(12)

For (d) and (e), recall the choice of 𝑟𝜑 (𝑥) := 𝑟0 (𝑥) with 𝑟0 (𝑥)
in (11). Earlier we argued that 𝑟𝜑 (𝑥)witnesses𝑀𝜑 as an explicit EXP-
machine, which proves (e). For (d), recall that 𝑡ℓ (𝑥) = (𝑟 (𝑥) + 1) ·
(2|𝑟 (𝑥) | + 3) and hence 𝑟𝜑 (𝑥) = 𝑝 (𝑟 (𝑥), 𝑡 (𝑥), |𝑥 |) for a suitable

polynomial 𝑝 , provably in S1

2
. Recalling that 𝑟 (𝑥) = 𝑟𝜓 (𝑥, 𝑡 (𝑥)), and

that by (d) for𝜓 we have 𝑟𝜓 (𝑥,𝑦) ⩽ 𝑝𝜓 (bt𝜓 (𝑥,𝑦), |𝑥 |, |𝑦 |) provably
in S1

2
, from bt𝜑 (𝑥) = bt𝜓 (𝑥, 𝑡 (𝑥)) + 𝑡 (𝑥) we get, also provably in S1

2
,

that 𝑟𝜑 (𝑥) ⩽ 𝑝𝜑 (bt𝜑 (𝑥), |𝑥 |) for a suitable polynomial 𝑝𝜑 .

Proof of (f)–(g). Assume 𝜑 is a Π𝑏
1
(𝛼)-formula. We modify the

given construction as follows. Up to S1

2
(𝛼)-provable equivalence

we have

𝜑 (𝑋, 𝑥) = ∀𝑦⩽𝑡 (𝑥) 𝑔𝑋 (𝑥,𝑦)=1

where 𝑡 (𝑥) is a term and𝑔𝑋 (𝑥,𝑦) is a PV(𝛼)-function. As before, we
drop any reference to the set-parameters 𝑋 , and to the oracles 𝑋 ,

since they will stay fixed throughout the proof. We define 𝑀𝜑

similarly as before with the role of 𝑀𝜓 played by a P-machine

checking 𝑔(𝑥,𝑦)=1 according to Lemma 12. The only difference is

in the flag bit: it is initially set to 1, and it is set to 0 when and if

a 𝑦-loop rejects (meaning ¬𝑔(𝑥,𝑦)=1).

In this case we can choose 𝑟 small, i.e., equal to |𝑟 ′ | for some

term 𝑟 ′ = 𝑟 ′(𝑥), so there is a PV(𝛼)-function ℎ(𝑥,𝑦) that com-

putes (a number that codes) the computation of the 𝑦-loop of𝑀𝜑 .

Then C𝜑 (𝑥,𝑤,𝑢) ‘glues together’ these computations plus suitable

initial and final computations. The only problem is to determine the

flag 𝑏 stored in the states of𝑀𝜑 . For this we need to know the mini-

mal𝑤 ⩽ 𝑡 such that¬𝑔(𝑥,𝑤)=1 holds, or take𝑤 = 𝑡+1 if𝜑 (𝑥) holds.
Such𝑤 exists provably in T1

2
(𝛼). This shows (f) for 𝑡𝜑 (𝑥) := 𝑡 (𝑥) +1.

For (g), assuming 𝜑 (𝑥) we can take𝑤 = 𝑡 + 1 directly since in this

case the flag bit is always 1 provably in S1

2
(𝛼). □

Remark 14. The proof shows that the quantifier complexity of C𝜑
is close to that of 𝜑 . If 𝜑 ∈ Σ𝑏

0
(𝛼), then C𝜑 is a quantifier free PV(𝛼)-

formula. If 𝜑 ∈ Σ𝑏
𝑖
(𝛼) for 𝑖 > 0, then C𝜑 is a Boolean combination

of Σ𝑏
𝑖
(𝛼)-formulas. Note that if the outer quantifier in (9) is sharply

bounded, i.e., 𝑡 (𝑥) = |𝑡 ′(𝑥) | for some term 𝑡 ′(𝑥), then the𝑦-bounded
quantifiers in (12) are sharply bounded too.

3.3 Non-Deterministic Model-Checkers
We shall also need model-checkers for Σ̂1,𝑏

1
-formulas. As a first step

we prove a technical lemma showing how to convert an explicit

oracle PSPACE-machine𝑀𝑌
into an explicitNEXP-machine 𝑁 that

first guesses the oracle 𝑌 on a guess tape, and then simulates𝑀𝑌
.

As usual, we need to show that S1

2
(𝛼) is able to prove that this

construction does what is claimed.

Lemma 15. For every explicit PSPACE-machine 𝑀𝑌,𝑋 that, as
explicit EXP-machine, is witnessed by term 𝑟𝑀 (𝑥), there are an ex-
plicitNEXP-machine 𝑁𝑋 , a term 𝑟𝑁 (𝑥), a polynomial 𝑝𝑁 (𝑚,𝑛), and
quantifier-free PV(𝛼)-formulas 𝐹,𝐺, 𝐻 such that S1

2
(𝛼) proves the

formulas (a), (b), (d) below

(a) “𝑍 is an acc. comp. of𝑀𝑌,𝑋 on 𝑥” → “𝐹 (𝑍,𝑌,𝑋, 𝑥, ·)
is an acc. comp. of 𝑁𝑋 on 𝑥”.

(b) “𝑍 is an acc. comp. of 𝑁𝑋 on 𝑥” → “ 𝐺 (𝑍,𝑋, 𝑥, ·)
is an acc. comp. of𝑀𝐻 (𝑍,𝑋,𝑥, ·),𝑋 on 𝑥”

(c) 𝑟𝑁 (𝑥) ⩽ 𝑝𝑁 (𝑟𝑀 (𝑥), |𝑥 |),
(d) and the term 𝑟𝑁 (𝑥) witnesses 𝑁𝑋 as explicit NEXP-machine.

Proof. Set 𝑟 = 𝑟𝑀 (𝑥). By assumption, the triple of terms 𝑟, 𝑟, 𝑟

witnesses that𝑀𝑌,𝑋
is explicit. In particular, every query “𝑧 ∈ 𝑌 ?”

made by 𝑀𝑌,𝑋
on 𝑥 satisfies |𝑧 | ⩽ |𝑟 | and hence 𝑧 < 2

|𝑟 |
. The

machine 𝑁𝑋
on 𝑥 guesses a binary string 𝑌 of length 2

|𝑟 |
on a

guess tape and then simulates 𝑀𝑌,𝑋
on 𝑥 as follows: an oracle

query “𝑧 ∈ 𝑌 ?” of𝑀𝑌,𝑋
is answered reading cell 𝑧+1 on the guess

tape. As in the proof of Lemma 13, to prove (a)–(d) we need to design

the details of 𝑁 in a way so that the 𝑗-th step of the computation

of 𝑀 is simulated by 𝑁 at a time easily computed from 𝑥, 𝑗 . To

reduce notation, in the following we drop any reference to the

oracles 𝑋 as they will remain fixed throughout the proof.

Description of 𝑁 . The machine 𝑁 on 𝑥 first computes 𝑟 and two

binary clocks initialized to 0
|𝑟 |+1

and 0
|𝑟 |
, respectively. To write 𝑌

of length 2
|𝑟 |

on the guess tape themachine checks whether the first

clock equals 2
|𝑟 |

and, if not, increases it by one and moves one cell

to the right on the guess tape. This is done in exactly 2|𝑟 | + 5 steps.

Once the clock equals 2
|𝑟 |
, the machine moves back to cell 1 on

the guess tape and non-deterministically writes 0 or 1 in each step,

except in the step that rebounds on cell 0 to end in cell 1. The terms

are computed with explicit P-machines according to Lemma 12. The

initial computation of terms, and initialization of clocks, takes time

exactly ini(𝑥) for some PV-function ini(𝑥). Therefore, the guess
of 𝑌 takes exactly guess(𝑥) := ini(𝑥) + 2

|𝑟 | · (2|𝑟 | + 5) + 2
|𝑟 | + 1 steps.

Moreover, S1

2
proves guess(𝑥) ⩽ 𝑡g (𝑥), where

𝑡g (𝑥) := |𝑡i (𝑥) | + 2
|𝑟𝑀 (𝑥) | · (2|𝑟𝑀 (𝑥) | + 5) + 2

|𝑟𝑀 (𝑥) | + 1,

for a suitable term 𝑡i (𝑥) such that S1

2
proves ini(𝑥) ⩽ |𝑡i (𝑥) |.

The machine simulates 𝑟 steps of 𝑀𝑌
using the second clock.

Comparing this clock with 𝑟 and updating it takes 2|𝑟 | + 2 steps. If

the value of the clock is less than 𝑟 , then a step of𝑀𝑌
is simulated

by reading the (𝑧+1)-cell of the guess tape where 𝑧 is the content
of 𝑀𝑌

’s oracle tape for 𝑌 . This is done as follows. The machine

moves forward over the guess tape, and rewinds back to cell 1.

With each step forward it increases the first clock by one and

checks whether it equals 𝑧 or 2
|𝑟 |
. If and when the clock equals 𝑧,

it stores the oracle bit read on the guess tape in its state space.

Otherwise, i.e., 𝑧⩾2
|𝑟 |
, the machine stores oracle bit 0. When the

clock equals 2
|𝑟 |
, the scan of the guess tape ends, and the rewinding

to cell 1 starts (in the next step). Doing this takes time exactly 2
|𝑟 | ·

(2|𝑟 | + 4) + 2
|𝑟 | + 1 and the oracle bit is stored at time min{𝑧, 2 |𝑟 |} ·
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(2|𝑟 | + 4). Thus, when the value of the second clock is less than 𝑟 ,

one step of𝑀𝑌
is simulated in exactly

𝑡s (𝑥) := (2|𝑟𝑀 (𝑥) | + 2) + 2
|𝑟𝑀 (𝑥) | · (2|𝑟𝑀 (𝑥) | + 4) + 2

|𝑟𝑀 (𝑥) | + 2

steps. Otherwise, the simulation halts in an accepting or rejecting

state according to 𝑀𝑌
’s state. In total, the machine runs for ex-

actly guess(𝑥) + 𝑟 · 𝑡s (𝑥) + (2|𝑟 | + 2) steps. The steps of𝑀𝑌
on 𝑥 are

simulated at times

𝑡 (𝑥, 𝑗) := guess(𝑥) + ( 𝑗 + 1) · 𝑡s (𝑥)
for 𝑗 < 𝑟𝑀 (𝑥). The runtime is bounded by the term

𝑟𝑁 (𝑥) := 𝑡g (𝑥) + 𝑟𝑀 (𝑥) · 𝑡s (𝑥) + (2|𝑟𝑀 (𝑥) | + 2)

Explicitness.We argue that this bound on the runtime of 𝑁 can

be verified in S1

2
(𝛼), given a halting computation 𝑍 of 𝑁 on 𝑥 .

Note that, unlike the simulation in Lemma 13, a single step is sim-

ulated in possibly exponential time 𝑡s (𝑥). However, this possibly
exponential time computation is simply described: Since 𝑀𝑌

is

an explicit PSPACE-machine, its configurations can be coded by

numbers. Now, given a number coding the configuration of 𝑀𝑌

within 𝑍 at time 𝑡 ( 𝑗) := 𝑡 (𝑥, 𝑗), say with 𝑌 -oracle query 𝑧, and

given a time 𝑖 < 𝑡s (𝑥), we can compute the configuration of the

clocks and the state of the (to-be-)stored oracle-bit at time 𝑡 ( 𝑗) + 𝑖 .
Now, quantifier-free induction suffices to prove that the oracle bit

is stored at the desired time and equals the content of the (𝑧+1)-cell
of the guess tape (or 0 if 𝑧 ⩾ 2

|𝑟 |
). Quantifier-free induction proves

that the configurations of𝑀𝑌
within 𝑍 at times 𝑡 ( 𝑗) for 𝑗 < 𝑟 are

successors of those preceding them. In particular, S1

2
(𝛼) proves that

the configuration at time 𝑟𝑁 (𝑥) is halting. Space and query bounds

can be similarly verified, so 𝑁 is explicit and witnessed by 𝑟𝑁 (𝑥).
Proof of (a)–(d). For (a), the quantifier-free formula 𝐹 concate-

nates an initial polynomial-time computation of the terms and

clocks, a guess of 𝑌 , and a simulation of 𝑍 . Each configuration of

the guess of 𝑌 is computable in polynomial time. The simulation

of 𝑍 stretches each step of 𝑀𝑌
to a time 𝑡s (𝑥) computation, each

configuration of which is easily computed from 𝑌 and 𝑍 in polyno-

mial time. Quantifier-free induction proves that a 𝑌 -query 𝑧 in 𝑍 is

answered according to the bit in the (𝑧+1)-cell on the guess tape.

For (b), the quantifier-free formula𝐻 extracts the guess𝑌 from𝑍

and the quantifier-free formula 𝐺 extracts the simulated computa-

tion at the times 𝑡 (𝑥, 𝑗) for 𝑗 < 𝑟𝑀 (𝑥).
For (c) and (d), we already argued that the term 𝑟𝑁 (𝑥) wit-

nesses 𝑁 as an explicit NEXP-machine. The claim that 𝑟𝑁 (𝑥) ⩽
𝑝𝑁 (𝑟𝑀 (𝑥), |𝑥 |) holds for a suitable polynomial 𝑝𝑁 follows by in-

spection, and S1

2
(𝛼) proves it. □

Now we can state the lemma that proves that every Σ̂1,𝑏
1

-formula

has a formally verified model-checker. In its statement, the bound-

ing term bt𝜓 (𝑥) of a Σ̂1,𝑏
1

-formula𝜓 = 𝜓 (𝑋, 𝑥) as in Equation (4) is

defined to be the bounding term bt𝜑 (𝑥) of its maximal Σ1,𝑏
0

subfor-

mula 𝜑 = 𝜑 (𝑌,𝑋, 𝑥).

Lemma 16. For every Σ̂1,𝑏
1

-formula𝜓 = 𝜓 (𝑋, 𝑥), there exists an ex-
plicit NEXP-machine 𝑁𝑋

𝜓
, a term 𝑟𝜓 (𝑥), and a polynomial 𝑝𝜓 (𝑚,𝑛),

such that
(a) V0

2
⊢ 𝜓 (𝑋, 𝑥) → ∃2𝑌 “𝑌 is an acc. comp. of 𝑁𝑋

𝜓
on 𝑥”.

(b) S1

2
(𝛼) ⊢ ¬𝜓 (𝑋, 𝑥) → ¬∃2𝑌 “𝑌 is an acc. comp. of 𝑁𝑋

𝜓
on 𝑥”.

(c) S1

2
(𝛼) ⊢ 𝑟𝜓 (𝑥)⩽𝑝𝜓 (bt𝜓 (𝑥), |𝑥 |),

(d) the term 𝑟𝜓 (𝑥) witnesses 𝑁𝑋
𝜓

as explicit NEXP-machine.

Furthermore, if themaximal Σ1,𝑏
0

-subformula of𝜓 is aΠ𝑏
1
(𝛼)-formula,

then
(e) S1

2
(𝛼) ⊢ 𝜓 (𝑋, 𝑥) ↔ ∃2𝑌 “𝑌 is an acc. comp. of 𝑁𝑋

𝜓
on 𝑥”.

Proof. Let 𝜓 (𝑋, 𝑥) = ∃2𝑌 𝜑 (𝑌,𝑋, 𝑥) where 𝜑 = 𝜑 (𝑌,𝑋, 𝑥) is
a Σ1,𝑏

0
-formula. Recall that the bounding term of 𝜓 is bt𝜓 (𝑥) =

bt𝜑 (𝑥). In what follows, to lighten the notation, we drop any refer-

ence to the set parameters 𝑋 in formulas, and to the oracles 𝑋 in

machines, since they remain fixed throughout the proof.

Let 𝑀𝑌
𝜑 be the explicit PSPACE-machine given by Lemma 13

applied to 𝜑 . Let 𝑟𝜑 and 𝑝𝜑 be the term and the polynomial also

given by that lemma. By Lemma 13.e, the term 𝑟𝜑 witnesses𝑀𝑌
𝜑 as

explicit EXP-machine. Therefore, Lemma 15 applies to𝑀𝑌
𝜑 and 𝑟𝜑

and we get an explicit NEXP-machine 𝑁𝜓 , a term 𝑟𝜓 , and a polyno-

mial 𝑝𝜓 . We prove (a)–(e) using the quantifier-free PV(𝛼)-formulas

𝐹,𝐺, 𝐻 also given by Lemma 15, and the Σ1,𝑏
0

-formula C𝜑 given by

Lemma 13.

For (a), argue in V0

2
and assume 𝜓 (𝑥) holds. Choose 𝑌 such

that 𝜑 (𝑌, 𝑥) holds. By Lemma 13.c, the set 𝑍 := C𝜑 (𝑌, 𝑥, ·) is

a halting computation of 𝑀𝑌
𝜑 on 𝑥 . Note that 𝑍 exists by Σ1,𝑏

0
-

comprehension, which defines the theory V0

2
. By Lemma 13.b, the

computation𝑍 cannot be rejecting, so it is accepting. By Lemma 15.a,

the set 𝐹 := 𝐹 (𝑍,𝑌, 𝑥, ·) is an accepting computation of 𝑁𝜓 on 𝑥 .

Note that 𝐹 exists by Δ𝑏
1
(𝛼)-comprehension.

For (b), argue in S1

2
(𝛼) and assume𝑌 is an accepting computation

of 𝑁𝜓 on 𝑥 . By Lemma 15.b we have that 𝐺 (𝑌, 𝑥, ·) is an accepting

computation of 𝑀𝑍
𝜑 on 𝑥 , for 𝑍 := 𝐻 (𝑌, 𝑥, ·). Note that 𝑍 exists

by Δ𝑏
1
(𝛼)-comprehension. By Lemma 13.a we get that 𝜑 (𝑍, 𝑥, ·)

holds. Thus𝜓 (𝑥) follows.
For (c) and (d), refer to Lemma 15.c, the choices of 𝑟𝜓 and 𝑝𝜓 , and

the fact that bt𝜓 (𝑥) = bt𝜑 (𝑥). This also gives the claim that 𝑟𝜓 (𝑥)
witnesses 𝑁𝜓 as explicit NEXP-machine.

For (e), argue in S1

2
(𝛼). If ¬𝜓 (𝑥) holds, use (b). If 𝜓 (𝑥) holds,

choose 𝑌 such that 𝜑 (𝑌, 𝑥) holds. Then Lemma 13.g and Δ𝑏
1
(𝛼)-

comprehension imply that there exists an accepting computation 𝑍

of𝑀𝑌
𝜑 on 𝑥 . Now argue as in (a). □

4 CONSISTENCY FOR NEXP
In this section we use the results of Section 3 to define two for-

malizations of NEXP ⊈ P/poly. The so-called A-formalization
will be a variant of the one based on the 𝛼-formulas of Section 2.

This new variant will be based on NEXP-machines instead of Σ̂1,𝑏
1

-

formulas. Then we suggest an even better formalization, the B-
formalization, that will be based on the Easy Witness Lemma (EWL)

for NEXP-machines, and an associated collection of 𝛽-formulas

defined here. The B-formalization is better because its negation

is expressed by a Π1,𝑏
1

-formula, i.e., a two-sorted formula without

existential set quantifiers. In contrast, the corresponding formula

for the A-formalization is the conjunction of a Π1,𝑏
1

-formula and

a Σ1,𝑏
1

-formula. Finally, we will prove that the consistency of both
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formalizations with the theory V0

2
follows from Proposition 1 and

our work on formally-verified model-checkers.

4.1 A Universal Machine
A canonical NEXP-complete problem called 𝑄0 is:

Given ⟨𝑁, 𝑥, 𝑡⟩ as input, where 𝑁 is a (number coding
a) non-deterministic machine, and 𝑥 and 𝑡 are numbers
written in binary, does 𝑁 accept 𝑥 in at most 𝑡 steps?

A non-deterministic exponential-time machine 𝑀0 for 𝑄0, on in-

put ⟨𝑁, 𝑥, 𝑡⟩, guesses and verifies a time-𝑡 computation of 𝑁 on 𝑥 .

We ask for an implementation of this so that a weak theory can ver-

ify its correctness. This is a quite direct consequence of Lemmas 13

and 16.

Lemma 17. There exists an explicit NEXP-machine 𝑀0 with one
input-tape and without oracles, such that for every explicit NEXP-
machine𝑀 with one input-tape and without oracles, say witnessed by
the term 𝑡𝑀 (𝑥), there are quantifier-free PV(𝛼)-formulas 𝐹 (𝑍, 𝑥,𝑢)
and 𝐺 (𝑍, 𝑥,𝑢) such that

(a) S1

2
(𝛼) ⊢ “𝑍 is an acc. comp. of𝑀 on 𝑥” →

“𝐹 (𝑍, 𝑥, ·) is an acc. comp. of𝑀0 on ⟨𝑀,𝑥, 𝑡𝑀 (𝑥)⟩”,

(b) S1

2
(𝛼) ⊢ “𝑍 is an acc. comp. of𝑀0 on ⟨𝑀,𝑥, 𝑡𝑀 (𝑥)⟩” →

“𝐺 (𝑍, 𝑥, ·) is an acc. comp. of𝑀 on 𝑥”.

In particular,

(c) S1

2
(𝛼) ⊢ ∃2𝑍 “𝑍 is an acc. comp. of𝑀0 on ⟨𝑀,𝑥, 𝑡𝑀 (𝑥)⟩” ↔

∃2𝑍 “𝑍 is an acc. comp. of𝑀 on 𝑥”.

Proof. Let 𝜋1, 𝜋2, 𝜋3 be PV-functions that extract 𝑥1, 𝑥2, 𝑥3 from

the triple 𝑧 = ⟨𝑥1, 𝑥2, 𝑥3⟩. Define Π𝑏
1
-formulas as follows:

𝜑1 (𝑍, 𝑧) := 𝜑2 (𝑍, 𝜋1 (𝑧), 𝜋2 (𝑧), 𝜋3 (𝑧)),
𝜑2 (𝑍, 𝑁, 𝑥, 𝑡) := “𝑍 is a time-𝑡 acc. comp. of 𝑁 on 𝑥”.

Let𝑀𝑍
1
be the machine given by Lemma 13 applied to𝜑1 = 𝜑1 (𝑍, 𝑧),

and let 𝑟1 (𝑧) be the corresponding term. Since𝜑1 is aΠ
𝑏
1
(𝛼)-formula,

let 𝑡1 (𝑧) and𝐶1 (𝑍, 𝑧,𝑤,𝑢) be the term and the quantifier-freePV(𝛼)-
formula given by Lemma 13.g. We set 𝑀0 to the explicit NEXP-
machine given by Lemma 15 applied to𝑀𝑍

1
with term 𝑟1 (𝑧) witness-

ing it as EXP-machine by Lemma 13.e. In the proof of (a)–(b) we use

the quantifier-free PV(𝛼)-formulas 𝐹1,𝐺1, 𝐻1 given by Lemma 15

on𝑀𝑍
1
.

For (a) we set 𝐹 (𝑍, 𝑥,𝑢) := 𝐹1 (𝐶,𝑍, 𝑧,𝑢) where𝐶 abbreviates the

set 𝐶1 (𝑍, 𝑧, 𝑡1 (𝑧), ·) and in both cases 𝑧 abbreviates ⟨𝑀,𝑥, 𝑡𝑀 (𝑥)⟩.
Argue in S1

2
(𝛼) and assume 𝑍 is an accepting computation of 𝑀

on 𝑥 . Since 𝑀 is explicit and 𝑡𝑀 (𝑥) is a term witnessing it, we

have that 𝑍 is an accepting time-𝑡 computation of𝑀 on 𝑥 , for 𝑡 :=

𝑡𝑀 (𝑥). It follows that 𝜑2 (𝑍,𝑀, 𝑥, 𝑡𝑀 (𝑥)) holds, and hence 𝜑1 (𝑍, 𝑧)
holds. Since 𝜑1 is a Π𝑏

1
(𝛼)-formula, by Lemma 13.g we have that

the set 𝐶 := 𝐶1 (𝑍, 𝑧, 𝑡1 (𝑧), ·) is an accepting computation of 𝑀𝑍
1

on 𝑧. Such a 𝐶 exists by Δ𝑏
1
(𝛼)-comprehension because 𝐶1 is a

quantifier-free PV(𝛼)-formula. By Lemma 15.a we get that the

set 𝐹 := 𝐹 (𝑍, 𝑥, ·) = 𝐹1 (𝐶,𝑍, 𝑧, ·) is an accepting computation of𝑀0

on 𝑧; i.e., the right-hand side of the implication in (a) holds. Again, 𝐹

exists by Δ𝑏
1
(𝛼)-comprehension.

For (b) we set 𝐺 (𝑍, 𝑥,𝑢) := 𝐺1 (𝑍, 𝑧,𝑢) where, again, 𝑧 abbre-

viates ⟨𝑀,𝑥, 𝑡𝑀 (𝑥)⟩. Argue in S1

2
(𝛼) and assume 𝑍 is an accept-

ing computation of 𝑀0 on 𝑧. Then, by Lemma 15.b we have that

the set 𝐺 := 𝐺 (𝑍, 𝑥, ·) = 𝐺1 (𝑍, 𝑧, ·) is an accepting computation

of𝑀𝐻
1

on 𝑧 for 𝐻 := 𝐻1 (𝑍, 𝑧, ·). The two sets 𝐺 and 𝐻 exist by Δ𝑏
1
-

comprehension. Now, Lemma 13.a implies that 𝜑1 (𝐻, 𝑧) holds;

i.e., 𝐻 is an accepting time-𝑡 computation of𝑀 on 𝑥 , for 𝑡 := 𝑡𝑀 (𝑥),
and hence also an accepting computation of 𝑀 on 𝑥 . This shows

that the right-hand side in the implication in (b) holds.

The final statement is a consequence of (a) and (b) by Δ𝑏
1
(𝛼)-

comprehension. □

4.2 Formalization
Before we define the B-formalization of NEXP ⊈ P/poly, let us
revisit the so-called direct formalization of Section 2 and adapt it

to explicit machines. This adaptation will be referred to as the A-
formalization.

Recall the sentence 𝛼𝑐
𝜓
fromDefinition 9. If𝑀 is an explicitNEXP

with one input-tape and without oracles, then we write 𝛼𝑐
𝑀

:= 𝛼𝑐
𝜓

where𝜓 (𝑥) is the formula

∃2𝑌 “𝑌 is an accepting computation of𝑀 on 𝑥”. (13)

Note that this is a Σ̂1,𝑏
1

-formula as required by Definition 9. As we

argue below and is easy to see, the set of sentences {¬𝛼𝑐
𝑀0

| 𝑐 ∈ N}
is a formalization of NEXP ⊈ P/poly, this time in the language of

machines.

We define now the B-formalization, which has lower quantifier

complexity. This is based on the 𝛽𝑐
𝑀
-formulas that were defined in

the introduction, and that we recall next. As we did before, we use

number variables in capital letters 𝐶, 𝐷 when we think of them as

denoting circuits. Recall also the notations 𝐶 (𝑥) and 𝐷𝑥 (·) from
Section 2.1.5.

Definition 18. Let 𝑐 ∈ 𝑁 and let𝑀 be an explicit NEXP-machine

with one input-tape and without oracles. Define

𝛽𝑐
𝑀

:= ∀𝑛∈Log>1
∃𝐶<2

𝑛𝑐 ∃𝐷<2
𝑛𝑐 ∀𝑥<2

𝑛 ∀2𝑌

(𝐶 (𝑥)=0 → ¬“𝑌 is an acc. comp. of𝑀 on 𝑥”) ∧
(𝐶 (𝑥)=1 → “𝐷𝑥 (·) is an acc. comp. of𝑀 on 𝑥”) .

We set

“NEXP ⊈ P/poly” :=
{
¬𝛽𝑐𝑀0

| 𝑐 ∈ N
}
.

In words, the formula 𝛽𝑐
𝑀0

says that the NEXP-machine 𝑀0 for

the canonical NEXP-complete problem 𝑄0 has witness circuits of

encoding-size 𝑛𝑐 .

Lemma 19. For every 𝑐 ∈ N and every explicit NEXP-machine 𝑀
with one input-tape and without oracles, S1

2
(𝛼) proves (𝛽𝑐

𝑀
→ 𝛼𝑐

𝑀
).

Proof. The formula 𝛽𝑐
𝑀

states that the (single) existential set-

quantifier in 𝛼𝑐
𝑀

is witnessed by 𝐷𝑥 (·), and this set exists by Δ𝑏
1
(𝛼)-

comprehension. □

The next easy Proposition states that the formalizations intro-

duced so far are indeed formalizations of NEXP ⊈ P/poly.

Proposition 20. The following are equivalent.
(a) NEXP ⊈ P/poly.
(b)

{
¬𝛼𝑐

𝑀0

| 𝑐 ∈ N
}
is true.
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(c)
{
¬𝛼𝑐

𝑀
| 𝑐 ∈ N

}
is true for some explicit NEXP-machine𝑀 .

(d)
{
¬𝛽𝑐

𝑀0

| 𝑐 ∈ N
}
is true.

(e)
{
¬𝛽𝑐

𝑀
| 𝑐 ∈ N

}
is true for some explicit NEXP-machine𝑀 .

Proof. We show that (a)-(b)-(c) are equivalent, and that (a)-

(d)-(e) are equivalent. To see that (a) implies (b), assume (b) fails;

i.e., 𝛼𝑐
𝑀0

is true for some 𝑐 ∈ N. Then𝑄0 ∈ SIZE[𝑛𝑐 ]. As𝑄0 isNEXP-
complete, (a) fails. That (b) implies (c) is trivial since 𝑀0 is an

explicit NEXP-machine. That (c) implies (a) is obvious since every

explicit NEXP-machine defines a language in NEXP. To see that (a)

implies (d) argue as in the proof that (a) implies (b) swapping 𝛽

for 𝛼 . That (d) implies (e) is trivial since 𝑀0 is an explicit NEXP-
machine. Finally, that (e) implies (a) follows from the Easy Witness

Lemma 2. □

It is straightforward to see that the equivalences (b)-(c) and (d)-

(e) in Proposition 20 have direct proofs (i.e., proofs that do not rely

on the EWL). We use Lemma 17 to prove this on the formal level,

for both formalizations.

Lemma 21. For every 𝑐 ∈ N and every 1-input explicit NEXP-
machine𝑀 without oracles there is 𝑑 ∈ N such that S1

2
(𝛼) proves the

implications (𝛼𝑐
𝑀0

→ 𝛼𝑑
𝑀
) and (𝛽𝑐

𝑀0

→ 𝛽𝑑
𝑀
).

Proof. We refer to the implication between 𝛼 ’s as the 𝛼-case,
and to the implication between 𝛽’s as the 𝛽-case. Both have similar

proofs, so we prove them at the same time. Let𝑀 be witnessed by

the term 𝑡𝑀 (𝑥). Let 𝐹 (𝑍, 𝑥,𝑢) and𝐺 (𝑍, 𝑥,𝑢) be the formulas given

by Lemma 17 on 𝑀 . Argue in S1

2
(𝛼) and assume 𝛼𝑐

𝑀0

or 𝛽𝑐
𝑀0

, as

appropriate. Let 𝑛 ∈ Log>1
be given. We aim to find a circuit 𝐶 in

the 𝛼-case, and two circuits𝐶, 𝐷 in the 𝛽-case, witnessing 𝛼𝑒
𝑀

or 𝛽𝑒
𝑀
,

respectively, for the given 𝑛, and for suitable 𝑒 ∈ N. Choose 𝑑 ∈ N
such that |⟨𝑀,𝑥, 𝑡𝑀 (𝑥)⟩| < 𝑛𝑑 for all 𝑥 < 2

𝑛
. In the 𝛼-case, let 𝐶0

be a circuit with |𝐶0 | < 𝑚𝑐
that witnesses 𝛼𝑐

𝑀0

for𝑚 := 𝑛𝑑 . In the 𝛽-

case let 𝐶0, 𝐷0 be circuits with |𝐶0 |, |𝐷0 | < 𝑚𝑐
that witness 𝛽𝑐

𝑀0

for𝑚 := 𝑛𝑑 .

Choose 𝐶 such that 𝐶 (𝑥) = 𝐶0 (⟨𝑀,𝑥, 𝑡𝑀 (𝑥)⟩) and 𝑒 ∈ N such

that 𝐶 < 2
𝑛𝑒
. This 𝐶 will be the witness-circuit in the 𝛼-case, and

the first of the two witness-circuits in the 𝛽-case. For the latter,

we choose the second circuit 𝐷 as follows. By Lemma 17.a, the

set 𝐹 (𝑍, 𝑥, ·) is an accepting computation of 𝑀 on 𝑥 whenever 𝑍

is an accepting computation of𝑀0 on ⟨𝑀,𝑥, 𝑡𝑀 (𝑥)⟩. By Lemma 8

there is a circuit 𝐷 such that

𝐷 (𝑥,𝑢) ↔ 𝐺 (𝐷0 (⟨𝑀,𝑥, 𝑡𝑀 (𝑥)⟩, ·), 𝑥,𝑢)
for all 𝑥,𝑢 with 𝑥 < 2

𝑛
. Then 𝐶, 𝐷 < 2

𝑛𝑒
for suitable 𝑒 ∈ N. This is

the 𝑒 ∈ N we choose in the 𝛽-case.

We claim that 𝐶 witnesses 𝛼𝑒
𝑀

for the given 𝑛 in the 𝛼-case,

and 𝐶, 𝐷 witness 𝛽𝑒
𝑀

for the given 𝑛 in the 𝛽-case. Let 𝑥 < 2
𝑛
and

choose 𝑧 := ⟨𝑥,𝑀, 𝑡𝑀 (𝑥)⟩. Let 𝑍 be any set and let 𝑌 := 𝐹 (𝑍, 𝑥, ·),
which exists by Δ𝑏

1
(𝛼)-comprehension. If 𝐶 (𝑥) = 0, then 𝐶0 (𝑧) = 0

and both 𝛼𝑐
𝑀0

and 𝛽𝑐
𝑀0

imply that𝑌 is not an accepting computation

of 𝑀0 on 𝑧. By Lemma 17.a this means that 𝑍 is not an accepting

computation of𝑀 on 𝑥 . In both cases, this completes one half of the

verification of the witnesses. If 𝐶 (𝑥) = 1, then 𝐶0 (𝑧) = 1 and 𝛼𝑐
𝑀0

implies that there exists an accepting computation 𝑌 of 𝑀0 on 𝑧,

and 𝛽𝑐
𝑀0

implies that𝑌 := 𝐷0 (𝑧, ·) is such an accepting computation

of𝑀0 on 𝑧. But then Lemma 17.b implies that 𝑍 := 𝐺 (𝑌, 𝑥, ·), which
exists by Δ𝑏

1
(𝛼)-comprehension, is an accepting computation of𝑀

on 𝑥 . In both cases, this completes the other half of the verification

of the witness: in the 𝛽-case, because 𝑍 = 𝐷 (𝑥, ·). □

4.3 Consistency
For every explicitNEXP-machine𝑀 , which by default has one input-

tape and no oracles, recall that 𝛼𝑐
𝑀

:= 𝛼𝑐
𝜓
for𝜓 taken as in (13). For

a theory T that extends S1

2
(𝛼), consider the following A-statements

for T:

A: T + {¬𝛼𝑐
𝑀

| 𝑐 ∈ N} is consistent for some𝑀 ,

A0: T + {¬𝛼𝑐
𝑀0

| 𝑐 ∈ N} is consistent,

where𝑀 in A ranges over explicit NEXP-machines. Consider also

the corresponding B-statements for T:

B: T + {¬𝛽𝑐
𝑀

| 𝑐 ∈ N} is consistent for some𝑀 ,

B0: T + {¬𝛽𝑐
𝑀0

| 𝑐 ∈ N} is consistent,

where𝑀 in B ranges over explicit NEXP-machines.

Next, recall the statement of Proposition 1, which we now state

for an arbitrary theory T that extends S1

2
(𝛼). We refer to it as the C-

statement, or the direct consistency statement for T:

C: T + {¬𝛼𝑐
𝜓
| 𝑐 ∈ N} is consistent for some𝜓 (𝑥),

where𝜓 (𝑥) in C ranges over Σ̂1,𝑏
1

-formulas. Let us explicitly point

out that the formula 𝜓 (𝑥) of the C-statement has only one free

variable of the number sort, and no free variables of the set sort.

We view the following proposition as justification that our for-

malization is faithful. It takes record of which implications in Propo-

sition 20 hold over weak theories.

Proposition 22. Let T be a theory extending S1

2
(𝛼) and consider

the A,B,C-statements for T. Then, the following hold: the A-statements
are equivalent, the B-statements are equivalent, and both A-statements
imply both B-statements as well as the C-statement.

Proof. EachA-statement implies the corresponding B-statement

by Lemma 19. Further, Lemma 21 proves that the A-statements are

equivalent, and that the B-statements are equivalent; for the back

implications note that 𝑀0 is certainly an explicit NEXP-machine.

Further, it is obvious from the definition of 𝛼𝑐
𝑀

that A implies C

and hence both A-statements imply C. □

When T = V0

2
, we argue below that the model-checker lemmas

can be used to show that the implication A-to-C in Proposition 22

can be reversed. It will follow that all A,B,C-statements for V0

2
are

equivalent. Composing with Proposition 1 we get the following

corollary, which entails Theorem 3.

Theorem 23. For T = V0

2
all statements C, A, A0, B, B0 are true.

Proof. Proposition 1 states that C is true for T = V0

2
. Hence,

by Proposition 22, it suffices to show that C implies A for T = V0

2
.

But this follows from Lemma 16.a and 16.b. Indeed, this lemma

implies that every Σ̂1,𝑏
1

-formula𝜓 (𝑥) is V0

2
-provably equivalent to

a formula of the form (13) for suitable𝑀 . □
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5 MAGNIFICATION
For this section, a ∃2Π

𝑏
1
(𝛼)-formula is a Σ̂1,𝑏

1
-formula as in (4) in

which its maximal Σ1,𝑏
0

-subformula 𝜑 (𝑋,𝑌, 𝑥) is a Π𝑏
1
(𝛼)-formula.

Lemma 24. For every 𝑐 ∈ N and every ∃2Π
𝑏
1
(𝛼)-formula 𝜓 (𝑥,𝑦)

without free set variables, the theory S1

2
(𝛼) + 𝛽𝑐

𝑀0

proves

∃𝐶 ∀𝑦⩽𝑧
(
𝐶 (𝑦)=1 ↔ 𝜓 (𝑥,𝑦)

)
. (14)

Proof. Argue in S1

2
(𝛼) + 𝛽𝑐

𝑀0

. For simplicity assume 𝑥 is empty;

the general case can be handled by taking tuples through Cantor

pairing. For 𝜓 = 𝜓 (𝑦) choose 𝑀 := 𝑁𝜓 according to Lemma 16.

Note that since 𝜓 does not have free set variables, 𝑀 is without

oracles. By Lemma 16.e, the formula𝜓 (𝑦) is equivalent to

∃2𝑌 “𝑌 is an accepting computation of𝑀 on 𝑦”.

By Lemmas 19 and 21 we have 𝛼𝑑
𝑀

for some 𝑑 ∈ N. Let 𝑧 be given
and choose 𝑛 ∈ Log>1

with |𝑧 | ⩽ 𝑛. Let 𝐶 witness 𝛼𝑑
𝑀

for 𝑛. This 𝐶

witnesses (14). □

It follows that over S1

2
(𝛼) the circuit upper bound statement 𝛽𝑐

𝑀0

implies comprehension for ∃2Π
𝑏
1
(𝛼)-formulas without free set vari-

ables. For later reference, we note that allowing free set variables
entails full Σ̂1,𝑏

1
-comprehension:

Lemma 25. S1

2
(𝛼) + ∃2Π

𝑏
1
(𝛼)-comprehension proves V1

2
.

Proof. Let T denote S1

2
(𝛼)+∃2Π

𝑏
1
(𝛼)-comprehension. Since S1

2
(𝛼)+

Σ1,𝑏
1

-comprehension proves V1

2
, it suffices to show that the set of

formulas that are T-provably equivalent to a ∃2Π
𝑏
1
(𝛼)-formula is

closed under ∨,∧, ∃2𝑌, ∃𝑦⩽𝑡 (𝑥) and ∀𝑦⩽𝑡 (𝑥). We verify the latter:

the formula

∀𝑦⩽𝑢 ∃2𝑌 𝜑 (𝑋,𝑌, 𝑥,𝑢,𝑦)
with 𝜑 (𝑋,𝑌, 𝑥,𝑢,𝑦) a Π𝑏

1
(𝛼)-formula is T-provably equivalent to

∃2𝑍 ∀𝑦⩽𝑢 𝜑 (𝑋,𝑍 (𝑦, ·), 𝑥,𝑢,𝑦),

where 𝑍 (𝑦, 𝑣) abbreviates the atomic formula ⟨𝑦, 𝑣⟩ ∈ 𝑍 . Indeed,

assuming the former formula, the latter is proved by induction on𝑢.

As the latter is a ∃2Π
𝑏
1
(𝛼)-formula, induction for it follows from

comprehension. □

The following lemma makes precise the idea sketched in Sec-

tion 1.3.

Lemma 26. For every 𝑐 ∈ N and every model (𝑀,X) of 𝑆1

2
(𝛼) +𝛽𝑐

𝑀0

,
there exists Y ⊆ X such that (𝑀,Y) is a model of V1

2
.

Proof. By Δ𝑏
1
(𝛼)-comprehension, for every 𝐶 ∈ 𝑀 that is a

circuit in the sense of𝑀 there is a set 𝐴 ∈ X such that

(𝑀,X) |= ∀𝑦 (𝐶 (𝑦)=1 ↔ 𝑦∈𝐴) .

By extensionality such a set 𝐴 is uniquely determined by 𝐶 and we

write𝐶 for it. For these two claims we used the fact that𝐶 (𝑦)=1 →
𝑦<2

|𝐶 |
holds in every model of S1

2
.

Let

Y :=
{
𝐶 ∈ X | 𝐶 ∈ 𝑀 is a circuit in the sense of𝑀

}
.

Since Y ⊆ X, the model (𝑀,Y) satisfies all Π1,𝑏
1

-sentences which

are true in (𝑀,X), so in particular extensionality, set bounded-

ness, Σ𝑏
1
(𝛼)-induction, and 𝛽𝑐

𝑀0

.

The point of the model (𝑀,Y) is that it eliminates set param-

eters. More precisely, let 𝜑 (𝑥) be a Σ1,𝑏
∞ -formula with parameters

from (𝑀,Y), and define 𝜑∗ (𝑥) as follows: replace every subfor-

mula of the form 𝑡∈𝐶 where 𝑡 is a term (possibly with number

parameters from 𝑀) and 𝐶 is a set parameter from Y by 𝐶 (𝑡)=1

(i.e., by eval(𝐶, 𝑡)=1). Note every set parameter in 𝜑 (𝑥) becomes a

number parameter in 𝜑∗ (𝑥), and

(𝑀,Y) |= ∀𝑥 (𝜑 (𝑥) ↔ 𝜑∗ (𝑥)) . (15)

Claim: (𝑀,Y) |= S1

2
(𝛼).

Proof of the Claim. It suffices to show that (𝑀,Y) models Δ𝑏
1
(𝛼)-

comprehension. So let 𝜑 (𝑥) be a Δ𝑏
1
(𝛼)-formula with parameters

from (𝑀,Y) and 𝑎 ∈ 𝑀 . Then 𝜑∗ (𝑥) is a number-sort formula,

namely a Δ𝑏
1
-formula with (number) parameters from𝑀 . Since𝑀 |=

S1

2
, Buss’ witnessing theorem implies that 𝜑∗ (𝑥) is equivalent in𝑀

to a quantifier-free PV-formula with the same parameters. Lemma 8

applied to 𝑛 := max{|𝑎 |, 2} gives a circuit 𝐶 in the sense of𝑀 such

that

𝑀 |= ∀𝑥<2
𝑛 (𝐶 (𝑥) = 1 ↔ 𝜑∗ (𝑥)) .

Then 𝐶 ∈ Y and (𝑀,Y) satisfies ∀𝑦⩽𝑎(𝑦 ∈ 𝐶 ↔ 𝜑 (𝑦)) by (15). ⊣

By the Claim and Lemma 25, it suffices to show that (𝑀,Y)
has ∃2Π

𝑏
1
(𝛼)-comprehension. Let𝜓 (𝑥) be a ∃2Π

𝑏
1
(𝛼)-formula with

parameters from (𝑀,Y), and let 𝑎 ∈ 𝑀 . Then𝜓∗ (𝑥) is a ∃2Π
𝑏
1
(𝛼)-

formula without set parameters. We already noted that (𝑀,Y) |=
𝛽𝑐
𝑀0

. Hence, by the Claim, Lemma 24 applies and gives𝐶 ∈ 𝑀 such

that

(𝑀,Y) |= ∀𝑥⩽𝑎 (𝐶 (𝑥)=1 ↔ 𝜓∗ (𝑥)).
Then𝐶 ∈ Y and (𝑀,Y) satisfies ∀𝑥⩽𝑎 (𝑥∈𝐶 ↔ 𝜓 (𝑥)) by (15). □

As announced in Section 1.3 this lemma implies Corollaries 4

and 5.

Proof of Corollary 4. Assume that the theory T is inconsis-

tent with “NEXP ⊈ P/poly”. By compactness, T proves 𝛽𝑐
𝑀0

for

some 𝑐 ∈ N. Let𝜓 be a number sort consequence of V1

2
and (𝑀,X) a

model of T. We have to show that𝑀 |= 𝜓 . But by Lemma 26 there ex-

istsY ⊆ X such that (𝑀,Y) |= V1

2
, so (𝑀,Y) |= 𝜓 , and𝑀 |= 𝜓 . □

Proof of Corollary 5. Assume S1

2
(𝛼) does not prove “NEXP ⊈

P/poly”, say, it does not prove ¬𝛽𝑐
𝑀0

. Then there is a model (𝑀,X)
of S1

2
(𝛼)+𝛽𝑐

𝑀0

. By Lemma 26 there existsY ⊆ X such that (𝑀,Y) |=
V1

2
. Since 𝛽𝑐

𝑀0

is a Π1,𝑏
1

-formula, we have (𝑀,Y) |= 𝛽𝑐
𝑀0

. Thus, V1

2

does not prove “NEXP ⊈ P/poly”. □

Remark 27. The introduction mentioned that Corollary 5 might

raise hopes to complete Razborov’s program by construcing amodel

of S1

2
(𝛼) satisfying some 𝛽𝑐

𝑀0

. There are good general methods to

construct models even of certain extensions of T1

2
(𝛼) based on forc-

ing (see [34] and [25] for an extension). However, these methods are

tailored for Σ̂1,𝑏
1

(𝛼)-statements, not Π1,𝑏
1

like 𝛽𝑐
𝑀0

. By the method

of feasible interpolation and assuming the existence of suitable
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pseudorandom generators, Razborov [32] proved that for every Σ𝑏∞-

definable 𝑡 (𝑛) = 𝑛𝜔 (1)
and every Σ𝑏∞-formula 𝜑 (𝑥) there exists a

model (𝑀,X) of S2

2
(𝛼) that for some 𝑛 ∈ 𝑀 contains a set 𝐶 ∈ X

coding a size-𝑡 (𝑛) circuit that computes 𝜑 (𝑥); i.e., for every 𝑎 < 2
𝑛

there is 𝑋𝑎 ∈ X coding a computation of 𝐶 on 𝑎 of the truth value

of 𝜑 (𝑎). Getting a circuit (and computations) coded by a number

seems to require new ideas.

The best currently known unprovability result is due to Pich [28,

Corollary 6.2] and is conditional: a theory formalizing reasoning in

the class NC1
does not prove almost everywhere superpolynomial

lower bounds for SAT unless subexponential size formulas can

approximate polynomial size circuits. Reaching S1

2
seems to require

new ideas.
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