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Total NP Search Problems — TFNP

Definition (Meggido-Papadimitriou’91; Papadimitriou’94)

A Total NP Search Problem (TFNP) is a polynomial time relation
R(x , y) so that R is

- Total: For all x , there exists y s.t. R(x , y),

- Honest (poly growth rate):
If R(x , y), then |y | ≤ p(|x |) for some polynomial p.

The TFNP Problem is:
Given an input x , output a y s.t. R(x , y).

TFNP is intermediate between P (polynomial time) and NP
(non-deterministic polynomial time).
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Defn: FP is the set of polynomial time functions.

Thm: If P = NP, then TFNP problems are in FP.

Pf: This is immediate. Query the bits of a solution y . �

Thm: If TFNP problems are in FP, then NP ∩ coNP = P.

Pf: If (∃y ≤ s)A(x , y) ↔ (∀y ≤ t)B(x , y) is in NP ∩ coNP, then
A(x , y) ∨ ¬B(x , y) defines a TFNP predicate. �

In particular, problems in NP ∩ coNP give rise to TFNP

problems.

Open: Does TFNP contain FP
NP? More precisely, is FPNP

polynomial time Turing reducible to TFNP?
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The totality condition ∀x ∃y R(x , y) is a semantic property.
Thus TFNP is a semantic class, not a syntactic class.
Correspondingly, we have two open open questions:

Open questions:
1. Is there an effective enumeration of the TFNP problems?
2. Does TFNP have a complete problem?

The semantic condition means that TFNP problems must come
with a justification of the totality property. The two main
frameworks for justifying totality are:

Complexity Theory: Giving combinatorial principles implying
totality.

Bounded Arithmetic: Proving totality in formal theories.

This talk will survey both approaches, plus discuss recent results.
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Part I. Complexity Theoretic Approach to TFNP

[Papadimitriou’94, ...]

1st example:

Pigeonhole Principle, Pigeon (PPP)
Input: x ∈ N and injective f : [x ] → [x−1] (purportedly)
Output: a, b ∈ [x ] s.t. either f (a) /∈ [x−1] or f (a) = f (b).

The function f can be specified by either

a. A Boolean circuit (multiple output bits), or

b. An oracle.

Thus, the input size is polynomially bounded in |x |.

The function is exponential size, but is specified implicitly with a
polynomial size description.
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Let R(x , y) and Q(x , y) be TFNP problems.

Definition (Many-one reduction, 4)

A (polynomial time) many-one reduction from R to Q (denoted
R 4 Q) is a pair of polynomial time functions f (x) and g(x , y) so
that, for all x , if y is a solution to Q(f (x), y), then g(x , y) is a
solution to R , namely R(x , g(x , y)).

Definition (PPP)

PPP is the class of TFNP problems many-one reducible to
Pigeon.

That is PPP is specified by the combinatorial principle:

PPP:

There is no injective map from [x ] to [x−1].
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More TFNP classes [Papadimitriou’94]:

PPA:

Any undirected graph with degrees ≤ 2 which has a vertex of
degree 1 has another vertex of degree 1.

PPAD:

Any directed graph with in-/out-degrees ≤ 1 which has a ver-
tex of total degree 1 has another vertex of total degree 1.

PPADS:

Any directed graph with in-/out-degrees ≤ 1 which has a
source, also has a sink.

In all cases, the (exponential size) graph is given implicitly by a
function f which computes the neighbors of a given vertex.
f is represented by either a circuit or an oracle.
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Yet more:

Polynomial Local Search, PLS:
[Johnson, Papadimitriou, Yanakakis’88]

A directed graph with outdegree ≤ 1, and a nonnegative cost
function which strictly decreases along directed edges, has a
sink.

Factoring:

Any integer ≥ 2 has a prime factor.

SMITH:

An odd degree graph has an even number of Hamiltonian cy-
cles.

The latter two problems are particularly natural since they do not
implicitly involve an exponential size graph.
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NASH:

A two player game specified by payoff matrices, has a Nash
equilibrium (a mixed strategy which is local optimally for each
player).

P-LCP (Positive Linear Complementarity)

For an n× n matrix M and vector q, there is either a solution
x, y s.t.

y = Mx+ q, x, y ≥ 0, xT y = 0,

or a principal minor with determinant ≤ 0.

These also do not involve exponential size graphs.
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Complete Problems (see “compendium” online)

The following are many-one complete for PPAD:
- 3D- and 2D-Sperner Lemma (Papadimitriou’94, Chen-Deng’06a]
- (2-player) NASH [Daskalakis-Goldberg-Papadimitriou’06,

Chen-Deng’06b, Chen-Deng-Teng’09]
For nonrelativized PPAD only, i.e., circuit

specifications of graphs only!!
- (2D-)Brower Fixed Point [P’94; C-D’06a]

Open: Smith is in PPA. It is in PPAD? Is it PPA-complete?

Open: P-LCP is in PPAD. Is it PPAD-complete?
[Adler-Verma’06/’11] conjecture no.

Factoring is many-one reducible to PPA via randomized
reductions. [Jerábek’15, Buresh-Oppenheim’06]
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For PPA, there are fewer known complete problems, apart from the
canonical problem Leaf.

On non-orientable manifolds: Sperner and Tucker are
PPA-complete. [Grigni’01; Friedl et al.’06; Deng et al.’ta]

[P’94] claimed Tucker is PPAD-complete. But the argument
only showed:

Thm: Tucker is PPAD-hard.

This holds in the two dimensional case as well:

Thm: [Pálvölgi’09] 2-D Tucker is PPAD-hard.
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Tucker’s Lemma: Let T be an antipodally symmetric
triangulation of the unit ball Bn. Let λ map vertices of T to
{±1, . . . ,±n} s.t. λ(−v) = −λ(v) for boundary vertices v . Then
T contains a 1-simplex (an edge) {v ,w} with λ(v) = −λ(w).

The Tucker search problem is many-one equivalent to the
(discrete) Borsuk-Ulam problem.

Theorem (Aisenberg-Bonet-B.)

Tucker and 2-D Tucker are PPA-complete.
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k-Truncated Tucker Lemma [ABBCI’15]. Let k > 2. The
k-Truncated Tucker Lemma is defined similarly to the Tucker
lemma, except λ is only defined on low-dimensional subspaces.
(Details omitted.)

For k > 0, the k-Truncated Tucker lemma is natural and can be
expressed as a TFNP problem that does not require encoding an
exponentially large graph.

Theorem (ABBCI’15; Aisenberg’16)

k-Truncated Tucker 4many-one (k+1)-Truncated Tucker.
k-Truncated Tucker Lemma ⇒ k-Kneser-Lovász Theorem.

Open Question: Do the k-Truncated Tucker search problems
form a proper hierarchy of TFNP problems?

More Open Questions: Is the Octahedral Tucker Lemma

PPA-complete? (The Octahedral Tucker uses the first barycentric
triangulation and is in PPA [Pálvölgi’09].)
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PPAD

PPP

PPA

PPADS

TFNP

Subclasses of TFNP. In the oracle setting, the shown inclusions
are proper [BCEIP 1998].
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II. Bounded Arithmetic Approach to TFNP

Bounded Arithmetic theories.
Weak fragments of Peano arithmetic.

Induction restricted to bounded (∆0) formulas.

Hierarchy of first-order theories [B’85]:

S1
2 ⊆ T 1

2 4 S2
2 ⊆ T 2

2 4 S3
2 ⊆ · · ·

Hierarchy of second-order theories:

U1
2 ⊆ V 1

2 ⊆ · · ·

TFNP problems can be defined using provability in a theory of
bounded arithmetic to establish totality.
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First Witnessing Theorems for Bounded Arithmetic [B’85]

Graph Computational
Theories Definability Complexity

S1
2 Σb

1 (TFNP) P

T 1
2 or S2

2 Σb
2 P

NP

T 2
2 or S3

2 Σb
i+1 P

Σb
i+1

U1
2 Σ1,b

1 PSPACE

V 1
2 Σ1,b

1 EXPTIME

Def’n: We identify the Σb
1-definable functions of a theory R as the

TFNP functions which are definable in R .

Thus: The TFNP problems definable in S1
2 are precisely the

polynomial time functions.

For other classes, the definable functions listed in the table are not
in TFNP, since their graph is not in P (nor in NP).
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Theorem (B-Kraj́ıček’94)

The TFNP problems which are definable in T 1
2 (equivalently, S2

2 )
are precisely the PLS (Polynomial Local Search) problems.

Equivalently, PLS is many-one complete for the Σb
1-definable

functions of T 1
2 (or, S2

2 ).
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More PLS-based TFNP problems:

Colored PLS: [Kraj́ıček-Skelley-Thapen’07]. Herbrandized PLS
search problems with coNP definable set of feasible solutions.

Πp

k -PLS: [Beckmann-B.’09/’10]. Herbrandized PLS search
problems with Πp

k−1 definable set of feasible solutions.

Theorem. [KST’07, BB’09/’10]

1. Colored PLS is many-one complete for the TFNP problems of
T 2
2 .

2. Πp
k -PLS is many-one complete for the TFNP problems of T k

2 .
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Weak Pigeonhole and Ramsey

Weak Pigeonhole (WPHP)

There is no injective map from [2x ] to [x ].

Ramsey

A graph G on [x ] has either a clique or an independent set of
size 1

2 log x.

No completeness results are known for these problems:

Theorem

a. WPHP is provable/definable as a TFNP problem in T 2
2 .

[Paris-Wilkie-Woods’88, Maciel-Pitassi-Woods’00/’02]

b. Ramsey is provable/definable as a TFNP problem in T 3
2 .

[Pudlák’91, see also Jerábek’09]
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Herbrandized Ordering Principle (HOP)

A linear ordering ≺ on [x ] cannot have a total immediate pre-
decessor function.

k-round Game Induction Principle (GIk)

A winning strategy for two player k-round game is preserved
under iterations of many-one reductions between games.

Theorem: [B.-Kolodziejczyk-Thapen’14] HOP is provable in T 2
2 .

It is unlikely HOP is many-one complete for the TFNP problems
of T 2

2 .

Theorem: [Skelly-Thapen’11] GIk is many-one complete for the
TFNP problems of T k

2 .

[Pudlák-Thapen’12]: Similar results for k-round max/min games,
and a related Nash equilibrium principle.
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Local Improvement Principles

k-round Local Improvement Principle LIk

Labels on a directed acyclic graph on [x ] can be consistently
updated in a well-founded manner for k-rounds.

LI (no subscript) allows k = x (exponentially many rounds)
LLI - graph is a line. RLI - graph is a rectangle.

Theory Many-One Complete

T k
2 or Sk+1

2 LIk [KNT’11]
V 1
2 LI [KNT’11]

V 1
2 LIlog, LI with O(log n) rounds [BB’14]

U1
2 LLI, Linear LI [BB’14]

U1
2 LLIlog [KNT’11]

V 1
2 RLI, Rectangular LI [KNT’11]

V 1
2 RLIlog [BB’14]

U1
2 RLI1 [BB’14]
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Frege proofs

Frege proofs are the usual “textbook” proof systems for
propositional logic, using modus ponens as their only rule of
inference.

Connectives: ∧, ∨, ¬, and →.

Modus ponens (MP): A A → B
B

Axioms: Finite set of axiom schemes, e.g.: A ∧ B → A

Defn: Proof size is the number of symbols in the proof.
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Frege proofs and Extended Frege proofs

Frege proofs are the usual “textbook” proof systems for
propositional logic, using modus ponens as their only rule of
inference.

Connectives: ∧, ∨, ¬, and →.

Modus ponens (MP): A A → B
B

Axioms: Finite set of axiom schemes, e.g.: A ∧ B → A

Extended Frege proofs allow also the extension axiom, which lets
a new variable x abbreviate a formula A:

x ↔ A

Defn: Proof size is still the number of symbols in the proof.
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Open Question

Do Frege proofs polynomially simulate extended Frege proofs?
That is, can every extended Frege proof of size n be transformed
into a Frege proof of size p(n)) or 2p(log n), for some polynomial p?

Intuition: Extended Frege proofs can reason about Boolean
circuits, Frege proofs about Boolean formulas.

It is generally conjectured that Boolean circuits can require
exponential size to express as Boolean formulas.

By analogy, it is generally conjected Frege proofs can require
exponential size to simulate extended Frege proofs.
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Example of a Frege proof of A → A:

A → (B → A) Axiom
(A → (B → A)) → (A → (B → A) → A) → (A → A) Axiom
(A → (B → A) → A) → (A → A) M.P. 1,2
(A → (B → A) → A) Axiom
A → A M.P. 3,4
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Example of a Frege “proof” of a contradiction:

A → (¬A → A) Axiom
(A → (¬A → A)) → (A → (¬A → A) → A) → A Axiom
(A → (¬A → A) → A) → A M.P. 1,2
(A → (¬A → A) → A) Axiom
A M.P. 3,4
...
as above, interchanging A and ¬A
...
¬A
obtain a contradiction
⊥

Search Problem: Find the mistake in the proof!
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Frege proof consistency as a total NP search problem

Code an (exponentially long) Frege proof P with an oracle X . The
value X (i) gives the i -th symbol of P .

Search problem: Show that X does not code a valid Frege proof of
a contradiction.

Frege Consistency Search Problem - Informal

Input: Second-order X and first-order x .
Output: A set of values i1, . . . , iℓ so that the values
X (i1), . . . ,X (iℓ) show X does not code a valid Frege proof of a
contradiction.

Since the Frege proof is exponentially long, it may contain
exponentially long formulas.

However, ℓ should be polynomially bounded by |x |: Frege proofs
need to be carefully encoded to allow this.
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Frege proofs encoded by oracle X (i) contain:

- Fully parenthesized formulas, terminated by commas.

- Each parenthesis has a pointer to its matching parenthesis.

- Each comma has the type of inference for the previous
formula, plus pointers to the formulas used as hypotheses.

This allows any syntactic error in the Frege proof to be identified
by constantly many positions i1, . . . , iℓ in X .
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Theorem. [Beckmann-B.’??]

The Frege consistency search problem is many-one complete for
the TFNP problems of U1

2 .

Theorem. [Beckmann-B.’??; Kraj́ıček’??]

The extended Frege consistency search problem is many-one
complete for the TFNP problems of V 1

2 .

Recall that U1
2 and V 1

2 have proof complexity corresponding to
polynomial space and exponential time.
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Open Questions / Future Problems

1. Better alignment between the complexity and the bounded
arithmetic approaches to TFNP. E.g.

a. WPHP as a natural TFNP complexity class?
b. Bounded arithmetic theories corresponding to PPA or PPAD or

PPADS or PPP?
Already have: T 2

2 corresponds to PLS.

2. Proof systems whose consistency search problem is TFNP
complete for the theories T k

2 .
(Conjecture: Res(log) for T 1

2 .)

3. RLI2 and 1-Truncated Tucker have polynomial size
extended Frege proofs. Do they have (quasi)polynomial size
Frege proofs? Are definable as TFNP problems in U1

2?
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Thank you!
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