
Theoretical bounds
Applicable proof search

Towards NP−P

Towards NP−P and Satisfiability
via Proof Complexity and Proof Search

Sam Buss

Logical Foundations of Computer Science, 2009

Sam Buss Proof Complexity and Proof Search

Theoretical bounds
Applicable proof search

Towards NP−P

Introduction
Cook’s Program
Proof search – abstract

A logical reason for P 6= NP?

A ’“logical” reason, rather than a “combinatorial” reason.

G. Kreisel, Symp. on Automatic Deduction, LNM #125, 1968

“Suppose we . . . have a proof system; . . . the ‘faith’ is that in a
natural way this will yield a feasible proof procedure for feasible
theorems.

“Conjecture: Under reasonable conditions on feasibility, there is an
analogue to Gödel’s second incompleteness theorem, that is the
article of faith above is unjustified.”

Sam Buss Proof Complexity and Proof Search

Theoretical bounds
Applicable proof search

Towards NP−P

Introduction
Cook’s Program
Proof search – abstract

What “logical” reasons are there for believing P 6 −NP?

One is that P = NP would make the practice of mathematics too
easy: Proof search could be automated (automatized) by
formalizing mathematical questions completely and then blindly
searching for proofs of conjectured statements. If P = NP, this
process could succeed whenever proofs are not too large. This
would be a major change in the practice of mathematics!

Gödel [1956 letter to von Neumann]

“. . . consequences of the greatest importance. . . . The mental work
of a mathematician concerning Yes-No questions could be
completely replaced by a machine.”

See [Buss 1995, in Feas. Math. II] for a detailed discussion.

A related objection is that it would mean mathematics would
become completely formal, with little room left for human intuition
and understanding. This feels unlikely and undesirable.

Sam Buss Proof Complexity and Proof Search

Theoretical bounds
Applicable proof search

Towards NP−P

Introduction
Cook’s Program
Proof search – abstract

Given a particular proof system P.

Given a formula ϕ, decide if it has a short P-proof.

Given a formula ϕ with a P-proof, find a P-proof.

Characterize the formulas that have reasonable length
(polynomial length) P-proofs.

Compare the proof strength of P with other proof systems.

These questions are interesting even for propositional proof
systems. Indeed, under some special assumptions, the existence of
propositional proofs is an NP-complete problem, and hence a
feasible method to find optimal propositional proofs will also give
feasible algorithm to find proofs in any proof system.

Sam Buss Proof Complexity and Proof Search

Theoretical bounds
Applicable proof search

Towards NP−P

Introduction
Cook’s Program
Proof search – abstract

Propositional proof systems

Common propositional proof systems:

Resolution – proof system for proving DNF formulas.

Frege proofs – textbook system based on modus ponens.

Extended Frege/extended resolution – allow introduction of
new variables that abbreviate other formulas (clauses).

Definition (Proof length)

The length of a proof is the number of symbols used in the proof.

Extended Frege systems can equivalently be characterized in terms
of Frege proof systems with proof length measured in terms of
number of lines or steps in the proof.

Sam Buss Proof Complexity and Proof Search

Theoretical bounds
Applicable proof search

Towards NP−P

Introduction
Cook’s Program
Proof search – abstract

Cook’s Program for proving NP 6= coNP

Definition (Cook-Reckhow 1975)

An abstract proof system is a polynomial time function from
{0, 1}∗ onto the set of tautologies.

A traditional proof system can be viewed as an abstract system by
letting f (w) equal the formula proved by the proof w . In this way,
one can form strong proof systems, even treating ZF as a
propositional proof system.

Theorem

There exists an (abstract) proof system in which all tautologies
have polynomial size proofs if and only if NP = coNP.

A system with this property is called super.

Sam Buss Proof Complexity and Proof Search

Theoretical bounds
Applicable proof search

Towards NP−P

Introduction
Cook’s Program
Proof search – abstract

Cook’s program for separating NP and coNP
Prove that stronger and stronger proof systems are not super, until
it is established for all abstract proof systems.

Known (near-)exponential lower bounds on proof length include:

Method of truth-tables

Tree-like resolution/Regular resolution [Tseitin, 1968]

Resolution [Haken, 1985; Raz, 2004; Razborov, 2003]

Bounded depth Frege systems
[Beame-Pitassi-Impagliazzo/Kraj́ıček-Pudlák-Woods, 1992]

Cutting Planes system [Pudlák, 1997]

Nullstellensatz systems
[Buss-Impagliazzo-Kraj́ıček-Pudlák-Razborov-Sgall, 1996]

Bounded depth Frege systems with counting mod m axioms
(fixed m). [BIKPRS’96]

Intuitionistic and modal propositional logics. [Hrubes, 2007.]

Sam Buss Proof Complexity and Proof Search

Theoretical bounds
Applicable proof search

Towards NP−P

Introduction
Cook’s Program
Proof search – abstract

At the frontier of proof length lower bounds

Open problems

Separate depth k Frege from depth k + 1 Frege with CNF
formulas. [This is closely related to non-conservativity
properties conjectured for fragments of Bounded Arithmetic.]

Lower bounds for bounded depth Frege systems with mod p
counting gates, or with counting gates (TC0-Frege).

For the systems listed on the previous page, the exponential lower
bounds on proof length are obtained for the pigeon-hole principle
tautologies or for the clique-coloring graph tautologies.
In effect, the systems lack the ability to count.

Sam Buss Proof Complexity and Proof Search

Theoretical bounds
Applicable proof search

Towards NP−P

Introduction
Cook’s Program
Proof search – abstract

The Frege system, TC 0-Frege, and stronger systems can carry out
counting arguments:

Theorem (Buss 1986)

There are polynomial size Frege proofs of the the pigeonhole
principle tautologies.

Open problem

Find problems other than the pigeonhole principle or the
clique-coloring principle to serve as lower bounds for stronger
propositional proof systems.

Sam Buss Proof Complexity and Proof Search

Theoretical bounds
Applicable proof search

Towards NP−P

Introduction
Cook’s Program
Proof search – abstract

Some theorems about the hardness of proof search

Theorem (Aleknovitch-Buss-Pitassi-Moran, 2000)

For almost all natural proof systems (resolution, Frege,
nullstellensatz, sequent, cut free sequent, etc.), it is impossible to

approximate shortest proof length to a factor of 2log1−o(1) n in
polynomial time, unless P = NP.

The proof uses a reduction from Minimum Monotone Circuit
Satisfying Assignment.

Sam Buss Proof Complexity and Proof Search

Theoretical bounds
Applicable proof search

Towards NP−P

Introduction
Cook’s Program
Proof search – abstract

Definition

A proof system P is automatizable if there is a procedure, which
given a formula ϕ with shortest P-proof of length n, finds some
P-proof of ϕ in time poly(n).

Theorem (Bonet-Pitassi-Raz, 1997)

If Frege proofs (or, TC 0-Frege proofs) are automatizable, then
factorization of Blum integers is in P.

The proof uses a feasible Craig interpolation construction based on
the Diffie-Hellman cryptographic protocol.

Both interpolation and k-provability for (TC 0-)Frege systems are
shown not to be polynomial time, unless factorization of Blum
integers is in polynomial time.

A Blum integer is a product of two primes both congruent to 3
mod 4.

Sam Buss Proof Complexity and Proof Search

Theoretical bounds
Applicable proof search

Towards NP−P

Introduction
Cook’s Program
Proof search – abstract

Theorem (Alekhnovitch-Razborov, 2001)

If resolution is automatizable, then the weak parameterized
complexity hierarchy W[P] collapses.

The proof uses a reduction from Minimum Monotone Circuit
Satisfying Assignment.

Theorem (Krupski, 2006; Buss-Kuznets, this meeting)

For the reflected Logic of Proofs, rLP, deciding provability, or
k-provability, is NP-complete.

Theorem (Pentus, 2006; Savateev, this meeting)

For certain fragments of the Lambek calculus, deciding provability,
or k-provability, is NP-complete.

Sam Buss Proof Complexity and Proof Search

Theoretical bounds
Applicable proof search

Towards NP−P

SAT Algorithms
DPLL and Clause Learning
WRTI proofs

Towards practical algorithms for Satisfiability

Problem: Given an instance Γ of SAT, a set of clauses, find a
satisfying assignment, or produce a refutation.

Theorem (Monien-Speckenmeyer, 1985; · · · ;
Paturi-Pudlák-Saks-Zane/Pudlák, 1998; Schöning, 1999;
Iwama-Tamaki, 2004)

There are algorithms for 3-SAT that run in time 2c·n with
c < 1.

There are algorithms for k-SAT that run in time 2(1−1/k)n.

There are algorithms for SAT that run in time m2n−ε
√

n.

n = number of variables.
m = number of clauses.
Best constant so far: 2c = 1.324. (IT’04).

Sam Buss Proof Complexity and Proof Search

Theoretical bounds
Applicable proof search

Towards NP−P

SAT Algorithms
DPLL and Clause Learning
WRTI proofs

Practical algorithms for “real-world” satisfiability testing mostly
use the DPLL algorithm:
[Davis-Putnam, 1960; Davis-Loveland-Logemann, 1962]

DPLL algorithm. Γ - Instance of SAT, σ - partial truth assignment.

DPLL Search(Γ, σ):

0. If Γ�σ is falsified, return false.

1. If Γ�σ is satisfied, exit (σ is satisfying assignment).

2. Choose a literal x .

3. Call DPLL Search(Γ, (σ ∪ (x 7→ True))).

4. Call DPLL Search(Γ, (σ ∪ (x 7→ False))).

5. Return false.

The literal selection (step 2.) usually exploits unit propagation and
pure literals.

Sam Buss Proof Complexity and Proof Search

Theoretical bounds
Applicable proof search

Towards NP−P

SAT Algorithms
DPLL and Clause Learning
WRTI proofs

The DPLL algorithm is essentially equivalent to tree-like, regular
resolution, since it corresponds to traversing a resolution refutation
from the final (empty) clause.

Clause Learning. (Marques Silva & Sakallah, 1996)

Clause learning is a method of learning (inferring) new clauses
when a contradiction is found during DPLL. When Γ is falsified, a
“reason” for the falsification is extracted: this “reason” is a
clause C such that Γ � C . C is learned; that is, C is added to Γ.

The intuition is that the learned clause C can now be reused
without needing to be re-derived.

Clause learning is generally combined with a fast backtracking
method that allows for automatically backtracking as far as
possible to eliminate the current contradiction. This makes the
algorithm much less sensitive to the choice of branching literal x
(in step 2).

Sam Buss Proof Complexity and Proof Search

Theoretical bounds
Applicable proof search

Towards NP−P

SAT Algorithms
DPLL and Clause Learning
WRTI proofs

Example: Pigeonhole tautologies.

Clause Learning No Learning

Formula Steps Time (s) Steps Time

PHP4
3 5 0.0 5 0.0

PHP7
6 129 0.0 719 0.0

PHP9
8 769 0.0 40319 0.3

PHP10
9 1793 0.5 362879 2.5

PHP11
10 4097 2.7 3628799 32.6

PHP12
11 9217 14.9 - -

More importantly, DPLL with clause learning does much better on
“real-world”, structured problems, e.g., from software or hardware
verification. In some settings, it can frequently solve problems with
hundreds of thousands of variables.

Sam Buss Proof Complexity and Proof Search

Theoretical bounds
Applicable proof search

Towards NP−P

SAT Algorithms
DPLL and Clause Learning
WRTI proofs

The important aspects of clause learning include:

Literal selection heuristics,

Clause learning strategies,

Clause forgetting strategies (garbage collection),

Restart strategies,

Execution optimizations.

The clause learning strategies use unit propagation, keep track of
the level (stage) at which variables are set, and choose conflicts so
as to improve the quality of the learned clauses and the ability to
backtrack efficiently.

Sam Buss Proof Complexity and Proof Search

Theoretical bounds
Applicable proof search

Towards NP−P

SAT Algorithms
DPLL and Clause Learning
WRTI proofs

A Logical Characterization of Clause Learning

From [Beame-Kautz-Sabharwal, 2004; van Gelder, 2005;
Buss-Hoffmann-Johannsen, ta], we can give a proof theoretic
characterization of the power of DPLL algorithms with clause
learning.

Definition (BHJ)

A w-resolution inference with variable x is of the form

C D

(C \ x) ∪ (D \ x)

A regular proof is one in which no resolution variable used twice on
a single path.

Sam Buss Proof Complexity and Proof Search

Theoretical bounds
Applicable proof search

Towards NP−P

SAT Algorithms
DPLL and Clause Learning
WRTI proofs

Instead of dag-proofs, one can use tree-like proofs with lemmas, a
lemma being a formula derived earlier in the proof. Thus, in a tree
refutation of Γ using lemmas, the leaves of the trees are either
formulas in Γ or are lemmas.

Definition

An input proof is a tree-like proof in which every inference has
at least one hypothesis which is a leaf.

An input clause is a clause derived by an input sub-proof.

A WRTI-proof is a tree-like w-resolution proof in which input
clauses may be used as lemmas.

Theorem (BHJ)

General dag resolution proofs can be polynomially simulated by
WRTI proofs.

Sam Buss Proof Complexity and Proof Search

Theoretical bounds
Applicable proof search

Towards NP−P

SAT Algorithms
DPLL and Clause Learning
WRTI proofs

Theorem (BHJ)

The regular WRTI proofs are polynomially equivalent to
non-greedy clause learning DPLL algorithms.

“Non-greedy” = Contradictions can be ignored.

The clause learning algorithms simulated include all the standard
learning methods including first UIP clauses, all-UIP clauses, rel sat
clauses, decision clauses, first cut clauses. The original Marques
Silva & Sakallah methods are enough for the converse simulation.

Sam Buss Proof Complexity and Proof Search

Theoretical bounds
Applicable proof search

Towards NP−P

SAT Algorithms
DPLL and Clause Learning
WRTI proofs

Open problems

Does regular WRTI directly polynomially simulate general
dag-like resolution? Similarly for pool resolution?

Find better logical characterizations for DPLL clause learning
algorithms, say for greedy algorithms.

Find more efficient SAT algorithms, either improving on DPLL
clause learning, or improving the exponential time SAT
algorithms. Find connections between these two approaches
to satisfiability.

Sam Buss Proof Complexity and Proof Search

Theoretical bounds
Applicable proof search

Towards NP−P

Some trial approaches to NP−P via proof complexity.

1. Via diagonalization and incompleteness:

Definition

Fix a proof system P. The statement Con(P, n) is a tautology
expressing the principle that there is no P-proof of contradiction of
length ≤ n.

Theorem (Cook, 1975; Buss, 1991)

For P either Frege or extended Frege system, there are
polynomial-size P-proofs of Con(P, n).

Proof idea is to express a partial truth definition for formulas of
length ≤ n. Similar in spirit to constructions by Gödel, Friedman,
Pudlák for first order systems of arithmetic.

Sam Buss Proof Complexity and Proof Search

Theoretical bounds
Applicable proof search

Towards NP−P

2. [Kraj́ıček, 2001; Alekhnovitch, Ben-Sasson, Razborov,
Widgerson, 2000].
Assume f is a pseudo-random number generator
f : {0, 1}n → {0, 1}m, with m > n, specified by a polynomial size
formula or circuit. Fix w0 ∈ {0, 1}m. Let x ∈ {0, 1}n. Form a
formula ϕ(~x) expressing

f (x) 6= w0.

Conjecture: For any formal system, there is a pseudo-random
number generator such that ϕ(x) requires near-exponential size.

Theorem

Kraj́ıček, 2007 The conjecture holds for any system in which the
pigeonhole principle is not provable.

Sam Buss Proof Complexity and Proof Search

Theoretical bounds
Applicable proof search

Towards NP−P

The motivation for the use of the pseudo-random number
generator tautologies is to use, say, the natural proofs barrier of
[Razborov-Rudich, 1997], to obtain lower bounds on propositional
proof length.

So far, however, the natural proofs approach, when applied to
propositional proofs or proofs in bounded arithmetic (S2

2 (α)), has
been successful in showing the hardness of proofs of propositional
tautologies expressing NP 6= coNP only for systems in which the
pigeonhole principle fails badly.

In these systems, it is consistent that there is a 1-1 correspondence
between n and 2nε

, and hence any exponential size circuit can be
consistently formulated over only polynomially many nodes.

Sam Buss Proof Complexity and Proof Search

Theoretical bounds
Applicable proof search

Towards NP−P

Open problems

Find ways to apply constructions in computational complexity to
propositional proof complexity. For instance,

Find better linkage of proof complexity to complexity lower
bounds and cryptographic constructions and
pseudo-randomness,

Better algebraic lower bound methods,

Randomized methods that transcend the pigeonhole principle.

Break past the “counting barrier”.

the end

Sam Buss Proof Complexity and Proof Search

Theoretical bounds
Applicable proof search

Towards NP−P

Open problems

Find ways to apply constructions in computational complexity to
propositional proof complexity. For instance,

Find better linkage of proof complexity to complexity lower
bounds and cryptographic constructions and
pseudo-randomness,

Better algebraic lower bound methods,

Randomized methods that transcend the pigeonhole principle.

Break past the “counting barrier”.

the end

Sam Buss Proof Complexity and Proof Search

	Theoretical bounds
	Introduction
	Cook's Program
	Proof search – abstract

	Applicable proof search
	SAT Algorithms
	DPLL and Clause Learning
	WRTI proofs

	Towards NP-P

