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Talk outline:

1. Weak theories of bounded arithmetic.
Provably total functions & NP-search problems.

2. Frege and extended Frege propositional proof systems.

3. Consistency search problems.
Many-one completeness for U1

2 and V 1
2 .
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Second-order Bounded Arithmetic Theories U1
2 and V

1
2 .

S1
2 is a bounded arithmetic theory for polynomial time (P).

U1
2 and V 1

2 are second-order bounded arithmetic theories for
polynomial space (PSPACE) and exponential time (EXPTIME).

[B, 1985]

First-order language for (non-negative) integers:
Symbols: 0, S , +, ·, #, ⌊ 1

2
x⌋, |x |, ≤.

|x | is the length of the binary representation of x .
x#y := 2|x |·|y | — gives polynomial growth rate functions.

First-order quantifiers range over integers:
Unbounded quantifiers: ∀x , ∃x .
Bounded quantifiers: ∀x≤t, ∃x≤t.
Sharply bounded quantifiers: ∀x≤|t|, ∃x≤|t|.

Second-order quantifiers range over sets of integers.
∀X , ∀Y . Implicitly, but not explicitly, bounded.
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Classifications of bounded formulas:

Σb
i , Π

b
i - Formulas with ≤ i alternating blocks of bounded

first-order quantifiers ignoring sharply bounded quantifiers. No
unbounded quantifiers. May contain second-order variables,
but no second-order quantifiers.

Σ1,b
0 - Formulas with no unbounded quantifiers, and no

second-order quantifiers. Equals
⋃

i Σ
b
i .

Σ1,b
i , Π1,b

i - Formulas with i alternating blocks of second order
quantifiers, ignoring first-order quantifiers. No unbounded
first-order quantifiers.

Normal forms:
W.l.o.g., negations are pushed in to atomic formulas, sharply
bounded quantifiers are pushed inside bounded first-order
quantifiers, and bounded first-order quantifiers are pushed inside
second-order quantifiers.
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Complexity characterizations

Σb
1 and Πb

1 formulas express exactly NP and coNP properties.

Σb
i and Πb

i formulas express exactly properties at the i -th level
of the polynomial time hierarchy.

Σ1,b
1 formulas express exactly NEXPTIME properties.

Γ-IND induction axioms

Γ-IND: ϕ(0) ∧ ∀x(ϕ(x) → ϕ(x+1)) → ∀xϕ(x); for ϕ ∈ Γ.

Γ-PIND/-LIND induction axioms

Γ-PIND: ϕ(0) ∧ ∀x(ϕ(⌊ 1
2
x⌋) → ϕ(x)) → ∀xϕ(x); for ϕ ∈ Γ.

Γ-LIND: ϕ(0) ∧ ∀x(ϕ(x) → ϕ(x+1)) → ∀xϕ(|x |); for ϕ ∈ Γ.

The PIND/LIND axioms are “feasible” forms of induction.
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Bounded Arithmetic Theories

“BASIC” - universal axioms giving simple properties of the
function and relation symbols.

Σ1,b
0 -comprehension axioms

(∀~x)(∀~X )(∃Z )(∀y ≤ t)[y ∈ Z ↔ ϕ(y , ~x , ~X )], for ϕ ∈ Σ1,b
0

Definition (S1
2 )

S1
2 is BASIC + Σb

1-PIND.

Definition (U1
2 )

U1
2 is BASIC + Σ1,b

1 -PIND + Σ1,b
0 -comprehension.

Definition (V 1
2 )

V 1
2 is BASIC + Σ1,b

1 -IND + Σ1,b
0 -comprehension.

Sam Buss Second-Order Arithmetic & Consistency Search Problems



Theory Induction formulas Induction type

S1
2 NP-predicates (Σb

1) length (LIND)/polynomial (PIND)

T 1
2 NP-predicates (Σb

1) successor (IND)
Sk
2 Σp

k -predicates (Σ
b
2) length (LIND)/polynomial (PIND)

T k
2 Σp

k -predicates (Σ
b
2) successor (IND)

U1
2 NEXPTIME (Σ1,b

1 ) length (LIND)/polynomial (PIND)

V 1
2 NEXPTIME (Σ1,b

1 ) successor (IND)
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Definability of functions

Definition

Let Γ be a class of formulas, and T be a theory. Also suppose f is
a total (multi)function, f = f (~a) or f = f (~a, ~A). Then f is

Γ-definable by T if, there is some ϕ ∈ Γ which defines the graph
of f such that

T ⊢ ∀~x ∃y ϕ(~x , y)

or (respectively),

T ⊢ ∀~x , ~X ∃y ϕ(~x , ~X , y).

In the many cases, y can be made provably unique by
strengthening ϕ.
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Theory Function definition Function class

S1
2 Σb

1-definable polynomial time (P) [B’85]

S2
2&T 1

2 Σb
2-definable P

NP [B’85]

Sk
2&T k

2 Σb
k -definable P

Σb
k
−1 [B’85]

S2
2&T 1

2 Σb
1-definable polynomial local search (PLS) [BK’94]

S3
2&T 2

2 Σb
1-definable Colored PLS [KST’06]

U1
2 Σ1,b

1 -definable PSPACE [B’85]

V 1
2 Σ1,b

1 -definable EXPTIME [B’85]

Remark: The first-order inputs ~x are usual inputs. Any
second-order inputs ~X are given as oracles.
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Total NP Search Problems (TFNP)

Σb
1-Defined Functions:

Definition

A Total NP Search Problem is given by a polynomial time property
ϕ(x , y) and a polynomial p such that

∀x ∃y [|y | ≤ p(|x |) ∧ ϕ(x , y)].

Canonical examples include PLS [JPY’88]; PPAD, PPADS
[MP’91,P’94], and many others.

Let T be a true theory, say U1
2 or V 1

2 .
Any Σb

1 definable function of T is a total NP search problem.
And is trivially in P

NP and hence PSPACE.

Goal: Characterize the provably total NP search problems of U1
2

and V 1
2 .
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Definition (Many-one reduction)

Suppose that (∀x)(∃y ≤ t)ϕ(y , x) and (∀x)(∃y ≤ s)ψ(y , x)
specify NP search problems, denoted y = Qϕ(x) and y = Qψ(x).
A many-one reduction from Qϕ to Qψ consists of a pair of
polynomial time functions g and h such that

whenever y = Qψ(g(x)), we have h(y , x) = Qϕ(x).

We write Qϕ ≤m Qψ to denote that there is a many-one reduction
from Qϕ to Qψ.

Definition

A theory proves that Qϕ ≤m Qψ provided that it proves

(∀x)(∀y)[y = Qψ(g(x)) → h(y , x) = Qϕ(x)]

for some explicitly polynomial time functions g and h.
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When second-order inputs are present, instead use:

Definition (Many-one reduction, relativized case)

Suppose that (∀x)(∃y ≤ t)ϕ(y , x ,X ) and (∀x)(∃y ≤ s)ψ(y , x ,X )
specify NP search problems, denoted y = Qϕ(x ,X ) and
y = Qψ(x ,X ). A many-one reduction from Qϕ to Qψ consists of
polynomial time functions α, g and h such that

whenever y = Qψ(g(x), α
X (x , ·)), we have h(y , x ,X ) = Qϕ(x ,X ).

We write Qϕ ≤m Qψ to denote that there is a many-one reduction
from Qϕ to Qψ.
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The following are known to be provably total, and many-one
complete, NP-search problems of U1

2 and V 1
2 .

Many-one complete
Theory NP Search problem

V 1
2 LI, Local Improvement [KNT’11]

V 1
2 LIlog, LI with O(log n) rounds [BB’14]

U1
2 LLI, Linear LI [BB’14]

U1
2 LLIlog [KNT’11]

V 1
2 RLI, Rectangular LI [KNT’11]

V 1
2 RLIlog [BB’14]

U1
2 RLI1 [BB’14]

This talk:

The consistency search problems for Frege and extended Frege
proof systems are many-one complete for U1

2 and V 1
2 .
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Part II. Frege proofs

Frege proofs are the usual “textbook” proof systems for
propositional logic, using modus ponens as their only rule of
inference.

Connectives: ∧, ∨, ¬, and →.

Modus ponens: A A → B
B

Axioms: Finite set of axiom schemes, e.g.: A ∧ B → A

Defn: Proof size is the number of symbols in the proof.
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Frege proofs and Extended Frege proofs

Frege proofs are the usual “textbook” proof systems for
propositional logic, using modus ponens as their only rule of
inference.

Connectives: ∧, ∨, ¬, and →.

Modus ponens: A A → B
B

Axioms: Finite set of axiom schemes, e.g.: A ∧ B → A

Extended Frege proofs allow also the extension axiom, which lets
a new variable x abbreviate a formula A:

x ↔ A

Defn: Proof size is still the number of symbols in the proof.
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Open Question

Do Frege proofs (quasi)polynomially simulate extended Frege
proofs?
That is, can every extended Frege proof of size n be transformed
into a Frege proof of size p(n)) or 2p(log n), for some polynomial p?

Intuition: Extended Frege proofs can reason about Boolean
circuits, Frege proofs about Boolean formulas.

It is generally conjectured that Boolean circuits can require
exponential size to express as Boolean formulas.

By analogy, it is generally conjected Frege proofs can require
exponential size to simulate extended Frege proofs.

For an example, consider the Pigeonhole Principle ...
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The pigeonhole principle as a propositional tautology

Let [n] = {0, . . . , n − 1}.
Let i ’s range over members of [n+1] and j ’s range over [n].

Totni :=
∨

j∈[n]

xi ,j . “Total at i”

Injnj :=
∧

0≤i1<i2≤n

¬(xi1,j ∧ xi2,j). “Injective at j”

PHPn+1
n := ¬

(

∧

i∈[n+1]

Totni ∧
∧

j∈[n]

Injnj

)

.

PHPn+1
n is a tautology.

Sam Buss Second-Order Arithmetic & Consistency Search Problems



Cook-Reckhow’s eF proof of PHPn+1
n

Code the graph of f : [n + 1] → [n] with
variables xi ,j indicating that f (i) = j .

PHPn+1
n (~x): “f is not both total and injective”

Use extension to introduce new variables

xℓ−1
i ,j ↔ xℓi ,j ∨ (xℓi ,ℓ−1 ∧ xℓℓ,j).

for i ≤ ℓ, j < ℓ; where xni ,j ↔ xi ,j .

Prove, for each ℓ that

¬PHPℓ+1
ℓ (~xℓ) → ¬PHPℓℓ−1(~x

ℓ−1).

Finally derive PHPn+1
n (~x) from PHP2

1(~x
1). � 0

1

i

0

1

j

n−2

n−1

n−2

n−1

n

xn−1
i,j
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Alternate construction of eF proofs of PHPn+1
n via S1

2

Theorem

S1
2 ⊢ ∀x, x does not code a set of pairs defining a function

violating the pigeonhole principle”.

Or: S1
2 (f ) ⊢ (∀x)¬(f : [|x |+1]

1−1
−→ [|x |]).

Definition

Let ϕ(x) be a polynomial time property, and n ≥ 1.
Then JϕKn is a polynomial-size propositional formula which is a
tautology iff N � (∀x < 2n)ϕ(x)

Theorem (Cook’75)

If ϕ(x) is a polynomial time property, and S1
2 ⊢ (∀x)ϕ(x), then the

tautologies JϕKn have polynomial size extended Frege proofs.
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Frege proof consistency as a total NP search problem

Code an (exponentially long) Frege proof P with an oracle X . The
value X (i) gives the i -th symbol of P .

Search problem: Show that X does not code a valid Frege proof of
a contradiction.

Frege Consistency Search Problem - Informal

Input: Second-order X and first-order x .
Output: A set of values i1, . . . , iℓ so that the values
X (i1), . . . ,X (iℓ) show X does not code a valid Frege proof of a
contradiction.

Since the Frege proof is exponentially long, it may contain
exponentially long formulas.

However, ℓ should be polynomially bounded by |x |: Frege proofs
need to be carefully encoded to allow this.
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Frege proofs encoded by oracle X (i) contain:

- Fully parenthesized formulas, terminated by commas.

- Each parenthesis has a pointer to

a. Its matching parenthesis, and
b. The principal connective inside the parentheses.

- Each comma has the type of inference for the previous
formula, plus pointers to the formulas used as hypotheses.

This allows any syntactic error in the Frege proof to be identified
by constantly many positions i1, . . . , iℓ in X .
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Theorem

The Frege Consistency Search Problem is provably total in U1
2 .

Theorem (Beckmann-B, i.p.)

The Frege Consistency Search Problem is U1
2 -provably many-one

complete for the Total NP Search Problems of U1
2 .

Theorem

The Extended Frege Consistency Search Problem is provably

total in V 1
2 .

Theorem (Beckmann-B, i.p.)

The Extended Frege Consistency Search Problem is V 1
2 -provably

many-one complete for the Total NP Search Problems of V 1
2 .
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Theorem

The Frege Consistency Search Problem is provably total in U1
2 .

Proof Sketch. Argue inside U1
2 .

Suppose X is a Frege proof of a contradiction of length x .

W.l.o.g., there are no variables in the Frege proof. (!)

Define, using a ∆b
1-predicate, the PSPACE property that the

formula at position i in X is true.

“PSPACE” means SPACE(|x |O(1)) relative to the oracle X .

Prove by induction on i that every formula in the proof coded
by X is true.

�
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Theorem (Beckmann-B, i.p.)

The Frege Consistency Search Problem is U1
2 -provably many-one

complete for the Total NP Search Problems of U1
2 .

Proof Sketch

Suppose U1
2 ⊢ (∃y ≤ a)(ϕ(y , a,A), where ϕ is a sharply bounded

formula.

Construct a Frege proof in stages. The Frege proof is variable-free
and is coded by a second-order predicate which is polynomial time
relative to A.

First stage: For each value of y ≤ a:
If ϕ(y , a,A) is false, give a Frege proof of ¬Jϕ(y , a,A)K.
This a true variable-free formula.
However, if ϕ(y , a,A) is true, include the formula ¬Jϕ(y , a,A)K
and (incorrectly) label it as being an axiom.
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Use a special case of the new-style witnessing theorem for U1
2 :

Theorem (New-style witnessing for U1
2 , Beckmann-B ’14)

Suppose U1
2 proves (∃y)ϕ(y , a,A) for ϕ a Σb

1-formula. Then there

is a polynomial space oracle Turing machine M such that

S1
2 proves “If Y encodes a complete computation of MA(a), then
ϕ(out(Y ), a,A) is true.”

By the witnessing theorem for S1
2 , it follows that there is a

polynomial time procedure f A,Y (a), which provably in S1
2 , given

a,A,Y , either finds a mistake in Y ’s encoding of MA(a)’s
computation or produces a value y = out(Y ) satisfying ϕ(y , a,A).
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Second phase of Frege proof: Use the Nepomnjaščǐı-Savitch
divide-and-conquer method to give exponential size formulas ψt,p

which define the entire computation of M. (ψt,p gives the p-th bit
of the configuration at time t.)

Third phase of Frege proof: For each possible settings of
Cook-Levin extension variables defining a complete run of f A,Y (a),
prove that one of the following holds

a. Some Cook-Levin extension variable is incorrect.

b. Some query to A or M gives an incorrect answer.

c. It finds a place where the definition of the ψt,p’s are incorrect.

d. It finds a value y such that ϕ(y , a,A) holds, and hence
Jϕ(y , a,A)K holds.

Fourth phase of Frege proof: Put all these together to derive a
contradiction (⊥). QED
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Separating Frege and extended Frege with combinatorial
principles?

There has been sustained effort to find combinatorial tautologies
which might exponentially separate Frege and extended Frege
proof lengths:

Tautology Poly size eF proof Quasipoly size F proof

PHPn+1
n Cook-Reckhow ’79 B ’87

Ramsey’s Theorem Krishnamurthy ’85 Pudlák ’92
Frankl’s Theorem Bonet-B-Pitassi ’95 Aisenberg-Bonet-B ’15
AB = I ⇒ BA = I Soltys-Kulinicz ’01 Hruběs-Tzameret ’13

RLIk , k ≥ 2 Beckmann-B ’14 open
Kneser-Lovasz Istrate-Crãciun ’14 A-B-B-C-I ’15

Truncated Tuckern1 A-B-B-C-I ’ip open

It is unlikely, but if V 1
2 is Σb

1-conservative over U1
2 , then Frege

proofs quasipolynomially simulate extnded Frege proofs.

A-B-B-C-I is Aisenberg-Bonet-B-Crãciun-Istrate
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Thank You!
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