CMCS’2000 Preliminary Version

Incompleteness of Behavioral Logics

Samuel Buss?

Department of Mathematics
University of California, San Diego

Grigore Rosu 2

Department of Computer Science € Engineering
University of California, San Diego

Abstract

Incompleteness results for behavioral logics are investigated. We show that there is
a basic finite behavioral specification for which the behavioral satisfaction problem
is not recursively enumerable, which means that there are no automatic methods for
proving all true statements; in particular, behavioral logics do not admit complete
deduction systems. This holds for all of the behavioral logics of which we are
aware. We also prove that the behavioral satisfaction problem is not co-recursively
enumerable, which means that there is no automatic way to refute false statements
in behavioral logics. In fact we show stronger results, that all behavioral logics are
19-hard, and that, for some data algebras, the complexity of behavioral satisfaction
is not even arithmetic; matching upper bounds are established for some behavioral
logics. In addition, we show for the fixed-data case that if operations may have more
than one hidden argument, then final models need not exist, so that the coalgebraic
flavor of behavioral logic is lost.

1 Introduction

The results in this paper are a consequence of our and other scientists’ effort to
find complete deduction systems and Birkhoff-like axiomatizability results for
various versions of behavioral logics [21,3,12,2,18,16]. The fact that equational
reasoning was not, strong enough to derive equalities provable by coinduction
[19,10] and coinduction was not strong enough to prove equalities provable by

1 Supported in part by NSF grant DMS-9803515 and by grant INT-9600919/ME-103 from
the NSF (USA) and the MSMT (Czech republic)
2 Also Fundamentals of Computing, Faculty of Mathematics, University of Bucharest,
Romania.

This is a preliminary version. The final version will be published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

Buss anD Rosu

circular coinduction [17], and the fact that the Birkhoff-like equational axiom-
atizability for the coalgebraic version of hidden algebra was not pure [16,14],
made us believe that behavioral satisfaction might not admit a complete ax-
iomatization and thus to motivate the present work.

We show the incompleteness of those approaches to behavioral specifica-
tion and satisfaction currently in use which make a clear distinction between
wstble and hidden sorts, the equality being strict on the visible sorts and be-
havioral on the hidden sorts, that is, meant as “indistinguishability under
experiments”’. We generically call these logics behavioral logics. These include
hidden algebra [6-9], coherent hidden algebra [4,5], observational logic [13,1]
(the equational version) and other recent generalizations of hidden algebra
[19,17]. We are aware that there is not a full consensus on which notation is
best to deal with behavioral logics in general. However, we decided to take the
distinction between visible and hidden sorts, and hence the notion of behav-
ioral equivalence, as basics within our approach to incompleteness, because
this is conceptually a very general framework capturing most of the situations
of practical interest. By using such a general approach, it is possible to eas-
ily obtain incompleteness results for other approaches to behavioral logics as
consequences of the results of the present paper.

In order to show that a logic does not admit a complete axiomatization
it is necessary and sufficient to show that the satisfaction problem is not re-
cursively enumerable. That is to say, there is no algorithm taking as input a
specification and a sentence, and returning “Yes” if and only if the sentence
is satisfied by all specification’s models, otherwise looping forever. The in-
tuition behind this technique is that if a complete deduction system existed,
then an algorithm would be to just generate and check all possible proofs.
In this paper, we show a stronger result, that there are finite specifications
in all behavioral logics above, for which the satisfaction problem is II-hard
and thus is not recursively enumerable. Moreover, in many cases, the satisfac-
tion problem for behavioral logic is in II3, and thus the satisfaction problem
can be II-complete. The fact that behavioral satisfaction can be I13-hard
means not only that there is no complete axiomatization for the behavioral
satisfaction problem, but also that the complement of the behavioral satis-
faction problem is not recursively enumerable. This means there is no way
to algorithmically refute the sentences which are not behavioral consequences
of some finite behavioral specifications. Notice that this result is even less
intuitive than the incompleteness result, because for any fixed computable
model (in which the interpretations of operations are computable functions),
the satisfaction problem is co-r.e.

The fact that the behavioral logics we presented are incomplete does not
mean that something is wrong with the hidden algebra notation or that the
question we addressed is ill-posed. For an analogy, the standard first-order
theory of the natural numbers is of course well-known to be incomplete, but
it is nonetheless the correct first-order theory for the natural numbers. From

2

Buss anD Rosu

considerations such as Rice’s theorem, we should expect that any formal sys-
tem which is strong enough to capture a significant amount of the behavior
of computer systems is likely to be incomplete in some way; namely, it may
lack expressive power, or may lack a complete axiomatization, or may admit
unintended nonstandard models. Even if our results may seem negative, in
fact they motivate work on new automatic proof techniques and algorithms
to prove behavioral equivalences, such as A-coinduction [18] and/or circular
coinduction [17], which may be applicable for larger classes of problems, in
the same way in which induction is a very useful proof technique for natural
numbers.

The outline of the paper is as follows. In Section 2, we review the basic
definitions of two simple behavioral logics, with fixed data and loose data,
respectively, which we show incomplete and from which all the other current
behavioral logics are derived. We also point out how other behavioral logics
generalize one of these two simple logics by relaxing their syntactic constraints.
As a side point, we prove that when operations can have more than one hid-
den input, then there may be no final hidden algebra (in contrast to classical
results on the existence of final algebras when operations have only a single
hidden input). In Section 3, we review the Turing machines and introduce
our notations and the Toranity problem, which is a classical example of a
I13-complete decision problem. Section 4 proves the main result of the pa-
per, namely that behavioral satisfaction can be IT13-hard by a reduction from
Toranrty. Matching upper bounds are shown in Section 5 for two cases of
behavioral logics, with fixed data and loose data, respectively. In Section 6
we show that the fixed-data hidden algebra logic for data algebra of the inte-
gers with successor (an algebra in which first-order validity is decidable), the
behavioral satisfaction problem can be IIi-hard, so not even in the arithmetic
hierarchy. Again, a matching upper bound is established.

2 Two Basic Behavioral Logics

The different approaches to behavioral specification and satisfaction can be
classified in two broad categories, depending on whether a fixed data algebra is
assumed for all models or not. In this section we introduce two very restrictive
behavioral logics as references for the two categories. The other behavioral
logics currently in use can be derived from one of these two basic logics, by
relaxing their syntactic constraints. The fact that these two logics are syn-
tactically very restrictive is a positive issue w.r.t. incompleteness, since their
incompleteness implies the incompleteness of the other more relaxed behav-
ioral logics. We have tried to prove our incompleteness results for the weakest
(most restrictive) logics, so as to make our results as general as possible.

3

Buss anD Rosu

2.1 Fized Data

Hidden algebra first appeared in [6] and was further investigated in [7-9] and
many others. Here, we present an over-simplified version of hidden algebra
logic and refer to it as basic fized-data hidden algebra in the rest of the paper.

Definition 2.1 A hidden signature is a {v, h}-sorted signature 3, where
v 1s the visible sort and h is the hidden sort, consisting of:

two constants of wvisible sort, true and false, often called the data;

one attribute, i.e., an operation a: h — v,

a finite set of methods, i.e., operations m: h — h.

A hidden Y-algebra is a ¥-algebra A such that A, = {true, false}. A mor-
phism of hidden >.-algebras is a morphisms of X-algebras which is the
tdentity on v.

Note that, in keeping with our desire to restrict the systems as much as
possible, all operations (attributes and methods) are unary. The “fixed-data”
terminology comes from the fact that all models have a fixed interpretation of
the two visible constants. One important feature of basic fixed-data hidden
algebra is its coalgebraic aspect:

Theorem 2.2 The category of hidden algebras is isomorphic to a category of
coalgebras over a polynomial functor; in particular, there exists a final hidden
Y-algebra.

Behavioral equivalence can be defined in many equivalent ways. We prefer
one based on contexts in the present paper:

Definition 2.3 Given a hidden signature 32 and a special variable x of sort h,
a context c is a term a(my(ma(...(m;(%))...))), for some j > 0 (not necessarily
distinct) methods my, mo, ..., mj. Given a term t of sort h, i.e., a term

my(mh(...(mi(z))...)) over a variable x of sort h, we let c[t| denote the term
a(may(ma(...(m;(my (my (... (mi(2))..))))--.)))-

7
Contexts can be viewed as experiments. They consist of a series of methods
changing the state followed by the attribute which “observes” the state. Notice
that the contexts and the two visible constants are the only (modulo renaming
of variables) terms of visible sort.

Intuitively, two terms are behaviorally equivalent iff they give the same
results under all experiments. To make this formal, we next define what it
means for a Y-algebra to behaviorally satisfy an equation (Vz) t = t'. We
use [to denote behavioral satisfaction and = to denote ordinary equational
satisfaction.

Definition 2.4 Let A be a hidden Y-algebra. Then A behaviorally satis-
fies a X-equation (Vx) t =t of sort h, written A £y, (V) t =1, if and only
if, for all contexts ¢, A |=x (V) c[t] = c[t']. Behavioral satisfaction is ordinary

4

Buss anD Rosu

satisfaction on equations of visible sort, i.e., if t and t' have visible sort, then
A, (Vo)t=t iff AEs (Vo) t =1t

A behavioral specification is a pair (X, E), where ¥ is a hidden sig-
nature and E is a set of X-equations. A model of B = (X, E) is a hidden
algebra A which behaviorally satisfies all equations in E, and in this case we
may write A E B. Given a ¥-equation e, we may also write B)Efd e whenever
all models of B behaviorally satisfy e.

Equational reasoning is sound for behavioral satisfaction [8], but not com-
plete. We will show in the next section that actually there is no complete
deduction system for behavioral satisfaction. More precisely, we show that
for some behavioral specifications B = (3, E), the following problem called

fd,
BSATS™:

InpuT: A Y-equation ¢;

ouvreur: BE"e?

is not recursively enumerable even for finite E.

The rest of this subsection is dedicated to extensions of basic fixed-data
hidden algebra, relaxing the constraints on hidden signatures. The incomplete-
ness of basic fixed-data hidden algebra obviously yields the incompleteness of
all these extended frameworks. The hasty reader may skip this part.

A first generalization is hidden algebra [6-9], where more visible and hidden
sorts are allowed, and the only restriction on operations is to have at most
one hidden argument. A fixed data algebra over the visible signature must be
protected by all models.

A second generalization is to drop the restriction that the operations must
have at most one hidden argument [19,10]. Thus, the declarational power of
behavioral specifications is increased (for example, sets with union and inter-
section can now be naturally specified), still providing the proof techniques of
hidden algebra, including coinduction, but the coalgebraic aspect is destroyed,
in particular:

Proposition 2.5 For some ¥ with many-hidden-argument operations, there
s no final hidden Y-algebra.

Proof. For example, let ¥ contain only one operation 7w: hh — v. Let D
be the set {true, false}. Suppose that F = ((D, F},), Fr: F, x F, — D)
is a final hidden X-algebra. Since any set can be organized as a hidden X-
algebra by interpreting 7 in an arbitrary way, one gets that there exists a
function from any set to Fj, so Fj is nonempty. Let P be the hidden -
algebra ((D,P(Fy)), Pr: P(Fp) x P(F) — D), where P(F},) is the power set
of F, and P;(A, B) is true if A = B and false otherwise. Then there exists
a unique® morphism of hidden ¥-algebras a: P — F; suppose that a =
(1,: D — D,ay: P(F,) — Fy). Notice that A # B implies ay,(A) # an(B),

3 The uniqueness is not important here.

Buss anD Rosu

since if A # B and ay(A) = ai(B) then:

false = P.(A, B)
= 1,(Fx(4, B))
= Fr(an(A), an(B))
= Fr(an(A), an(A))
= 1,(Pr (A, A))
= P.(A,A)
= true.

Consequently, ap: P(F) — Fj is injective. But this is a contradiction,
because P(F') always has a larger cardinal than F for any set F'. O

A third generalization of basic fixed-data hidden algebra is to allow only
a subset of operations in ¥ to be used in experiments [19,10,15,11]. Powerful
proof techniques for behavioral satisfaction like coinduction are still sound,
and the equational reasoning can be also adapted to this general framework.
The interested reader is referred to the citations above.

2.2 Loose Data

There are approaches where the fixed data is not required, such as coherent
hidden algebra [4,5], observational logic [13,1], and ged hidden algebra [17].
We will show in the next section the incompleteness of an artificial restric-
tive framework briefly discussed below, called basic loose-data hidden algebra,
which is a subcase? of all these three approaches. Therefore, the three loose-
data approaches above are also incomplete.

The basic loose-data hidden algebra logic differs from the basic fixed-data
hidden algebra logic presented in the previous subsection in that the models
are not required to have a fixed interpretation of the visible sort. The notion
of “context” is exactly the same, and the “behavioral satisfaction” can be
similarly defined for Y-algebras as for hidden X-algebras.

Definition 2.6 Given a behavioral specification B = (3, E) and a ¥-equation
e, we write B)Eld e whenever e is behaviorally satisfied by all >-algebras be-
haviorally satisfying E.

Equational reasoning is also sound for this slightly different behavioral
satisfaction [4], but not complete as we will shortly see. More precisely, we

show that for some behavioral specifications B = (X, F), the following problem
called BSAT:

4 Obtained by appropriate constraints on signatures.

6

Buss anD Rosu

InpuT: A Y-equation ¢;
oureur: B E" e ?

is not recursively enumerable even for finite F/. As a side point, this is achieved
for a specification with only one visible constant, true. However, even true can
be replaced by an attribute if the reader finds it inconvenient to have visible
constants in the signature.

Definition 2.7 Given a X-equation e, say (Vx)t =1/, let e* be either the set
{e} if the sort of t and t' is visible, or the set of visible equations

{(Vz) c[t] = c[t'] | ¢ is a context},

if the sort of t and t' is hidden. Given a set of equations E, let E* be the set
of visible equations J,.p €*.

It is immediate from the definition of behavioral satisfaction that A = e
is equivalent to A |= e*. From this we get the following simple, but important
fact:

Proposition 2.8 For any behavioral specification B = (X, E') and ¥-equation
e, BE" ¢ iff B* |= e*.

Coherent hidden algebra extends this framework by allowing more visible
and hidden sorts, the only restriction on operations being to have at most
one hidden argument, and a subset of operations in > is allowed to define
the behavioral equivalence, the “behavioral operations”. Observational logic
and gcd hidden algebra extend it by allowing in addition even many-hidden-
argument behavioral operations. Therefore, all these logics are incomplete.

3 Turing Machines and the Totality Problem

There are many equivalent definitions of Turing machines in the literature.
We prefer one adapted from [20], and describe it informally in the sequel.
The reader is assumed familiar with basics of Turing machines, the role of the
following paragraphs being to establish our notations and conventions for the
rest of the paper.

Consider a mechanical device which has associated with it a tape of infi-
nite length in both directions, partitioned in spaces of equal size, called cells,
which are able to hold either a “0” or an “1” and are rewritable. The device
examines exactly one cell at any time, and can perform any of the following
four operations (or commands):

(i) Write an “1” in the current cell;
(ii)) Write a “0” in the current cell;
(iii) Shift one cell to the right;

(iv) Shift one cell to the left.

Buss anD Rosu

The device performs one operation per unit time, and this performance is
called a step. Formally,

Definition 3.1 Let Q) be a finite set of internal states, containing a start-
ing state q; and a halting state q;,. Let B = {0, 1} be a set of symbols (or
bits) and C = {0,1, —, <} be a set of commands. Then a (deterministic)
Turing machine is a mapping from QQ x B to () x C.

If the pair (g, b) is taken to (¢, ¢), then we sometimes write (¢, b) — (¢, ¢).
We assume that the tape contains only 0’s (or blanks) before the machine
starts performing.

Definition 3.2 A configuration of a Turing machine is a triple consisting
of an internal state and two infinite strings® , standing for the cells on the
left and for the cells on the right, respectively. We let (q, L|R) denote the
configuration in which the machine is in state q, with left tape L and right
tape R.

Given a configuration (¢, L|R), the content of the tape is LR, which is
infinite at both ends. By convention, the current cell is the first cell of the right
string. We also let (¢, L|R) — (¢, L'|R") denote the configuration transition
under one of the four commands. Given a configuration in which the internal
state is ¢ and the examined cell contains b, and if (¢, b) — (¢, ¢), then exactly
one of the following configuration transitions can take place:

(i) (¢, LIbR) — (¢, L|cR) if c =0 or ¢ = 1;
(i) (¢, LIbR) — (¢, Lb|R) i ¢ = —
(iii) (q, LV'|bR) — (¢, L|V'OR) if ¢ = «.
The machine starts performing in the internal state g5, so the initial config-
uration is (gs, - - -0- - -0[0- - -0- - -). Sometimes, we wish to run a Turing machine

on a specific input, say x = bibs- - -b,. In this case, its initial configuration is
(qs, - - -0- - -0|byba- - -by0- - -0- -).

Definition 3.3 A Turing machine stops when it first gets to its halting state,
dn-

Therefore, a Turing machine carries out a uniquely determined succession
of steps, which may or may not terminate. It is well-known that Turing
machines can compute exactly the partial recursive functions [20].

We claim that there are some Turing machines M, such that the following
problem, called ToraLiTy:

InpuT: An integer k > 0;
output: Does M halt on all inputs 1701% for all j > 0?7

is T1-complete, where I19 is the class in the arithmetic hierarchy which extends
both classes r.e. (recursively enumerable) and co-r.e., and contains predicates

® Notice that the two infinite strings contain only 0’s starting with a certain cell.

8

Buss anD Rosu

of the form P(a) := (Vx)(Jy)R(a, z,y) where R is a primitive recursive pred-
icate. It is obvious that Toravrry is in 119 for any Turing machine M. To
show that it is II9-hard, we may choose M to be a universal Turing machine
such that on input 1701%, M computes fi(j), where f; is the (partial) func-
tion computed by Turing machine with Godel number k£ under some canonical
assignment of Godel numbers to Turing machines. By appropriately choosing
conventions for Turing machines, fi(7) is defined if and only if the Turing
machine numbered k& halts on input j. Therefore, ToraLiry(k) has positive
solution if and only if the function fj is total. But the set {k | fy is total} is
[I3-complete [20]. It follows that ToraLity is I19-complete.

We henceforth fix some choice of M that makes the ToraLity problem
I19-complete.

4 Behavioral Satisfaction is II3-Hard

In this section we show that all versions of behavioral satisfaction discussed so
far are I19-hard, so in particular, the associated logics do not admit complete
deduction systems.

The strategy used is the expected one: reduction from a I19-complete prob-
lem to behavioral satisfaction. We chose Torariry, for a (fixed) Turing ma-
chine M which makes it TI3-complete. Next we define a behavioral specification
like in Section 2. Let

* ¥ be the following hidden signature:
- v, h are a visible and a hidden sort, respectively;
- true, false are two visible constants©

Attributes:

- WillStop : h — v;
Methods:

- blank: h — h;

- q: h— hfor each state q € Q);

- 04, 1;, 05, and 1,., all of the form h — h;
- always: h — h;

- More: h — h;

e FE be the finite set of equations:

(1) (Vz) blank(m(z)) = blank(x) for all methods m;

(2) (V) m(always(z)) = always(x) for all methods m # blank;

(3) (Vz) m(q(x)) = always(x) for any method m # blank and state ¢ € @,
such that m # More or q # qs;

1) (Y2) More(gu(x)) = g,(1,(x);

(V) bj(br (7)) = by (by()) for all b,b" € {0, 1};

(Vz) Od(blank()) = blank(x) for any d € {l,r};

(V) WillStop(always(x)) = true;

(4)
(5)
(6)
(7)

6 In fact, only true is needed for the loose-data case.

9

Buss anD Rosu

(8) (Vx) WillStop(gn(x)) = true;

Now, for every transition (¢,b) — (¢/, ¢), add:
(9a) (Vx) WillStop(q(b.(x))) = WillStop(¢'(¢,(x))) if c=0or ¢ =1,
(9b) (Vz) WillStop(q(b,(x))) = WillStop(q'(bi(x))) if ¢ = —,
(9c) (Vz) WillStop(q(b)(b.(z)))) = WillStop(q'(b..(b-(x)))) for b = 0 and b’ = 1,
if c =«

Let B be the behavioral specification (3, E). Notice that B is finite; more
precisely, the number of operations in ¥ is O(|@|), and the number of equations
in E is O(|Q|*), where |Q] is the number of internal states of M.

Lemma 4.1 If M stops on an input biby- - -b,, then
B E" (Va) WillStop(gs(bi,(ba, (- - (b, (blank(z)))- - -)))) = true.

Proof. It can be easily seen that every configuration transition in M can
be simulated by equational deduction using the equations (9a), (9b), and/or
(9¢c); notice that the equation (5) may be needed to bring the operations b,
on top of the terms as arguments of ¢ operations in order to be allowed to use
the equations (9a), (9b), and (9¢c), and that the equation (6) can be used to
generate more 0; and 0, operations when needed. Iterating this procedure, we
get that B satisfies the equation

(V) WillStop(qs(biy (bay (- - - (buy (blank(z)))- - -)))) = WillStop(gn(t(blank(x))))

for some appropriate sequence t of methods by € {0;,1;,0,,1.}. The rest
follows by equation (8). O
Let M be the following >-algebra:

o M, = {true, false};

e M, = ((QU L) x String x String) UO where O is a special new element;
o Muwiustop(D) = true for any strings S and 5’;

* Muwiustop((L, S, 8")) = true;

((
o Muwiustop((q,S,5")) = true iff the Turing machine M halts when starts with
the state (g, ---0---05[S’0---0- - -); otherwise it is false;

) =

* Myiank(X) = (L, ¢, ¢€) for any element X in My;
¢ M,(0) =0 for any q € Q;
o M,((L,S,5) =(q,S,S" for any ¢ € @ and any strings S, 5";
M,((¢,S8,5") =0 for any ¢,¢" € @ and any strings S, S";
My, (B) =0 for any by € {04, 1;,0,, 1, };
s My, ((q,5,5") =0 for any ¢ € Q, strings S,5’, and b, € {0;,1;,0,, 1. };
o My, ((L,S,8) =(L,Sb,S") for any b € {0,1} and strings S,S’, such that
b#0or S # ¢
10

Buss anD Rosu

Mo, ((L,€,5) = (L,¢,S5") for any string S’

My, ((L,S,5) = (L,S,bS") for any b € {0,1} and strings S,5’, such that
b#0or S #e¢

Mo, ((L,S)€)) = (L, S, ¢€) for any string S

M tways(X) = O;

M sore(8) = 0;

Mtore((L, S, 8)) = O for all strings S, S";

Miutore((q, S,5") = O for all ¢ € @ — {gs} and strings S, 5’;

Mousore((gs, S, 5")) = (gs, S, 197) for all strings S, 5”;

Proposition 4.2 M is a hidden Y-algebra which behaviorally satisfies B.

Proposition 4.3 Given k > 0, let e;, be the equation

(V) 45 (0r (1r (1 (- - (1 (blank(x)))- - -)))) = always(z),

where the method 1, occurs k times. Then the following are equivalent:
(i) Torauiry(k) is positive;

(i) BE" ey;
(iii) BE' ey.
Proof. (i) = (ii). Let sx be the term on the left-hand side of e;. Suppose
that there exists a context ¢ such that B does not (loosely) behaviorally satisfy
the equation (V) ¢[sk| = c[always(x)]. Clearly, ¢ must be a term of the form
WillStop(ma (ma(- - -(mj(%))- - -))), where mq, ma, ..., m; are methods.

If blank is among my, ma, ..., m;, then by iteratively using the equation (1),
B E" (Vx) ¢[si] = c[always(z)], contradiction. Therefore, blank does not oc-
cur in ¢. If always is in ¢, then by (2), B E" (Va) ¢[sy] = WillStop(always(t))
and B =" (Va) c[always(x)] = WillStop(always(t)) for some appropriate term
t of sort h. Therefore, B [E" (V) ¢[si] = clalways(x)], contradiction. There-
fore, always does not occur in ¢. By (2) and (7), one can immediately see that
B E" (Vx) clalways(x)] = true. If m; # More, then by the equations (3), (2),
and (7), B EY (Vz) ¢[sk] = true, contradiction. Therefore, m; is More. For
i < 4, let st be qs(1.(1(---(1(0-(1,(1-(- - (1, (blank(z)))---)))))--))), with
J — i occurrences of the operation 1,, followed by an operation 0,, and fol-
lowed by k operations 1,; notice that si = Sp. If there is an index 7 < j
such that m; # More and m;1q, ..., m; are all More, then by equation (4),
B E" (Vz) c[si] = ¢[s.], where ¢; is WillStop(my (ma(- - -(my(%))---))). Since
m; # More, by equations (3), (2), and (7) as above, B E' (Vx) ¢;[si] = true,
that is, B £ (V) ¢[sy] = true, contradiction.

Therefore, ¢ must have the form WillStop(More(More(- - -(More(*))---))),
for j > 0 occurrences of More. Then by (4), B =" (Vx) ¢[sy] = WillStop[sY).
Since ToraLity(k) is positive, the Turing machine M stops for any input 1701%

11

Buss anD Rosu

with j > 0. Then by Lemma 4.1, B " (Vz) WillStop[s?] = true. Conse-
quently, B E" (Vz) ¢[si] = c|always(x)], contradiction again.

Hence, B satisfies the equation (Vz) ¢[si| = c[always(x)] for any context c,
that is, B E" ey.

(ii) = (iii). Obvious, since any hidden X-algebra which is a model of B is also
a loose model of B, with the same behavioral equivalence on it.

(iii) = (i). If B E'? e; then by equational reasoning as above, B behaviorally
satisfies (Vx) WillStop[s)] = true for all 7 > 0. By Proposition 4.2, M
satisfies the equation (V) WillStop[s?] = true, that is, M wiustop((gs, €, 1701%))
is true, which means that the Turing machine M terminates on the input 1701%.
Hence, the answer of Toravity(k) is positive. 0

The following is the main result of the paper, showing that the behav-
ioral satisfaction and non-satisfaction problems cannot be mechanized in any
algorithmical way.

Theorem 4.4 In all versions of behavioral logics mentioned, there are behav-
ioral specifications for which the behavioral satisfaction problem is 119-hard.
Therefore, these logics do not have complete deduction systems. Moreover,
none of these logics admits algorithms to refute false statements.

Proof. Since the problem ToraLity is II3-complete, then by Proposition 4.3,
BSAT}" and BSAT) are I1Y-hard. Since the other versions of behavioral logics
are generalizations of either basic fixed-data hidden algebra or basic loose-data
hidden algebra, they are also II3-hard. Since the class ITJ strictly includes both
the set of r.e. predicates and the set of co-r.e. predicates, the behavioral sat-
isfaction and behavioral non-satisfaction problems in all the mentioned logics
are not r.e., so there is no algorithm to prove a true statement or to refute a
false statement in behavioral logics. O

5 Some Behavioral Logics are I19-Complete

Once we know that all behavioral logics mentioned are IT3-hard, a natural
next step is to find a place for these logics in the arithmetic hierarchy, if such
a place exists. In this section, we show that some behavioral logics are IT9-
complete, and in the next section we show that some fixed-data versions of
hidden algebra are not even in the arithmetic hierarchy, they being ITi-hard.
Our work in this and the next sections should be viewed only as a starting
point toward stronger characterization results of behavioral logics.

As opposed to the previous sections, our goal now is to find as general
behavioral logics as possible which are in the class I19, since this would imply
that all behavioral logics obtained as special instances of them are also in TI9.

The general idea is to choose those logics admitting complete deduction for
visible equations. If this is the case, then the behavioral satisfaction problem

12

Buss anD Rosu

becomes of the form:

InpuT: A behavioral specification B = (3, E) and a Y-equation (VX)) t =t/;
OutpuT: Is it the case that for every context ¢, there exists a proof p, such that
p proves (VX)) c[t] = ¢[t'] in B ?

which is a II9 statement.

5.1 Fized Data

We analyze two versions of fixed-data behavioral logics which are IT3-complete,
both special cases of hidden algebra [6-9].

The first behavioral logic we present considers that the data algebra is
finite, and for this reason we call it finite fized-data hidden algebra. 1t obviously
includes the restrictive basic fixed-data hidden algebra logic we presented in
Section 2.

Proposition 5.1 If B is any behavioral specification in the sense of finite
fizxed-data hidden algebra, then BSATéd is in 119.

Proof. Let ¢ be a first-order sentence that completely characterizes the fi-
nite data algebra D up to isomorphism. Then B |Ef 4 ¢ holds if and only if
{¢, E*} I e* (see Definition 2.7) where F means provability in first-order logic
with equality. This is a II9 statement. O

Now we present another behavioral logic, which we call flat fixed-data hid-
den algebra, which is a special case of hidden algebra logic that generalizes
Corradini’s coalgebraic equational logic [3].

Definition 5.2 A hidden signature is a V U H-sorted signature such that
each operation either has exactly one argument of sort in H and zero or more
arguments of sortsin V', or is a constant from a fized set of constants D which
is a recursively enumerable” set, called the data. The sorts in V are called
vistble and the sorts in H are called hidden.

Corradini’s approach is slightly more restrictive, in the sense that it does
not admit visible sorts as arguments of operations. On the other hand, hidden
algebra is more general, as it allows operations with visible arguments, hidden
constants, and the data can be any visible-sorted algebra (as opposed to just
a flat set).

The notions of behavioral specification and satisfaction defined in Section
2 easily translate to this slightly more general framework. The contexts are
now visible terms having exactly one occurrence of a special hidden variable
{*}, such that all their visible proper subterms are constants in D.

Corradini’s deduction system, generating a relation F¢, and its complete-
ness theorem in [3] can be easily generalized to operations allowing visible
parameters, thus obtaining the following:

7 D can be any set in [3].

13

Buss anD Rosu

Theorem 5.3 Given a behavioral specification B = (3, E) and above and a
Y-equation of visible sort e, then B)Efd e if and only if E F¢ e. Therefore,
BSAT,® is in T19.

Notice that Corradini’s framework allows only visible equations in F, but
this is not an inconvenience since E can be replaced by an r.e. set of visible
equations E* (see Definition 2.7). In order to make this operation part of the
deduction systems, we need to add a congruence inference rule to those in [3].

5.2 Loose Data

We claim that all versions of loose-data behavioral satisfactions for which the
equational reasoning is sound are in I13. These include observational (equa-
tional) logic, and coherent and gcd hidden algebra only for the case in which
all operations are congruent [4,17]. The reason is that Proposition 2.8 is ap-
plicable, reducing behavioral satisfaction to equational standard satisfaction.
We always assume that the set E of equations is r.e.

Proposition 5.4 BSATY is in 113 for any B as above.

Proof. Let B = (3, E) be any loose-data behavioral specification for which
the equational reasoning is sound, and e be any X-equation. By Proposition
2.8, B |Eld e iff E* |= e*, and by equational completeness theorem, iff E* - e*,
where now | is the equational derivation relation. Therefore, BSATY is in
I19. O

6 Others are not in the Arithmetic Hierarchy

We now consider the complexity of behavioral satisfaction for hidden algebra
in general, where the data can be any infinite algebra. We saw that for finite
data algebras, there is a single first-order sentence that fully characterizes the
data algebra and so the satisfaction problem is still in IIS. For infinite flat
data, with no operations on it, we also saw that the Corradini’s completeness
theorem is applicable and so the satisfaction problem is also in II9.

Now, for infinite data algebras, we assume the fixed data algebra is arith-
metically definable, and we shall see that in this case the satisfaction problem
is in II}. Recall II; is the first level of the analytic hierarchy [20], and thus
properly contains the arithmetic hierarchy. An elementary canonical repre-
sentation of the class II} is obtained as follows. Let f: N — N. We define
f(n) to be the sequence (f(0), f(1),..., f(n —1)). Then a predicate A(z) is
in I17 if and only if it can be expressed in the form

(1) Afz) == (Vf: N=N)Ey)T(z,y, f(y)),

where T’ is some primitive recursive predicate.

Proposition 6.1 Let us consider the general fived-data hidden algebra logic
where Y is enumerable, E is arithmetic, and D 1is a fized enumerable infinite

14

Buss anD Rosu

data algebra with an arithmetic representation. Then the behavioral satisfac-
tion problem is in I1}.

Proof. Any model of B can be encoded by a function f: N — N. Thus,
B [= e holds if and only if every f: N — N which codes a valid model of B
satisfies the equations e*. Since equational validity for the model defined by f
is arithmetic, the condition on f is arithmetic. Therefore B [e is II}. a

Now we show that there are natural fixed data algebras for which the be-
havioral satisfaction problem is IT}-hard. Let the data algebra D be (N, 0, S),
the set of integers with the successor function. Almost any infinite data al-
gebra effectively contains D of course; further, D is well-known to have a
decidable first-order theory.

Theorem 6.2 There is a finite set of equations E over a finite signature and
a family of equations e,, n = 0,1,2,..., such that the behavioral satisfaction
problem B E e, is I1}-complete.

Proof. Fix some ITi-complete predicate A(z) expressed in the form (1). We
construct a hidden signature and hidden equations and give a many-one re-
duction from the predicate A(z) to the behavioral satisfiability problem.

In addition, to the visible sort of N, we let our hidden signature have a
single hidden sort. This hidden sort will act only vacuously as a source of
dummy variables — we use h to denote a variable of hidden sort.

The language includes a finite list of function symbols which have one
hidden input and several visible inputs. These function symbols represent
primitive recursive functions augmented with an extra, ignored, hidden input.
For example, the functions corresponding to addition and multiplication are
Add(h,m,n) and Mult(h, m,n) and the set of equations contains their defining
equations, namely,

Add(h,z,0) = x
Add(h,z,S(y)) =
Mult(h,z,0) = 0
Mult(h,z, S(y)) = Add(h, Mult(h,x,y),x))
The Not function, which implements negation if one thinks of zero as denoting
truth and non-zero as denoting falsity, is defined by
Not(h,0) = S(0)
Not(h,S(y)) = 0

S(Add(h,x,y))

In a similar fashion, we include the primitive recursive functions for coding
sequences: () is the code for the empty sequence, and Concat(h,w,a) is the
operation for appending an integer a to the end of a sequence w. We also
include enough primitive recursive functions in the language so as to include
the function pr defined by

pr(h,z,y,2) =0iff T(x,y, z).
15

Buss anD Rosu

Finally, we add function symbols f(h,z,y) and g(h,z,y) and equations
that make g(h, z,y) equal to f(h,z,y), namely,

g(h,z,0) = ()
g(h,z,5(y)) = Concat(h, g(h, z,y), f(h,z,y)).
We do not add any equations restricting the function f.

One final function symbol is needed: a(h,x) which is intended to equal 0
if and only if f witnesses the truth of A(x). For this we add an equation

Mult(h, Not(h, g(h, 2,), a(h, z)) = 0
which enforces the condition
g(h,z,y) =0 — a(h,x) = 0.

We take as the set E all the above equations, and let B be (Xp, E). For
n > 0, let n denote the term S™(0) with value n. Let e, be the equation
a(h,n) = 0. Then it is straightforward to verify that

A(n) is true & B E e,.
O

It is an interesting observation that the above proof used an equational
system with no “methods”, but only “attributes.” This implies that it is not
really a result about behavioral logics, but is instead a result about equational
logic over a fixed algebra. Indeed, our proof can be recast as showing that in
ordinary equational logic, it can be IT}-hard to decide equational satisfaction in
w-models. Moreover, this technique can be used to transfer any hardness result
concerning ordinary equational logic over a fixed domain D into a hardness
result for hidden algebra over the fixed data algebra D.

7 Conclusion and Future Work

We showed that for some behavioral specifications in any behavioral logic cur-
rently in use, the satisfaction problem is II9-hard. Since the class II3 properly
includes both the classes of r.e. problems and co-r.e. problems, our result has
two major implications. The first one is that there is no algorithm to prove
true statements, in particular the behavioral logics are incomplete. The second
is that there is no algorithm to reject false statements.

Then we showed the IIS-completeness for the finite fixed-data and flat
fixed-data hidden algebra logics, respectively, and also for those loose-data
behavioral logics for which the equational reasoning is sound. The behavioral
satisfaction problem was shown to be ITi-complete in some cases of fixed-data
hidden algebra logics over infinite data algebras.

There are still many cases of behavioral logics which can be derived from
the two basic logics we presented in Section 2, which we did not analyze in this
paper. For example, what is the upper bound on the complexity of behavioral
satisfaction in loose-data behavioral logics in which equational reasoning is not

16

Buss anD Rosu

sound, such as coherent hidden algebra and gcd hidden algebra? How about
hidden algebra logic over infinite data algebra but with all operations having
exactly one hidden argument and no visible arguments? How important is the
restriction to not allow operations having more than one hidden argument?
Acknowledgments: We would like to thank Joseph Goguen for his com-
ments on various versions of this work and for his continuous belief that the
behavioral logics are incomplete. Special thanks to Ugo Montanari, Andrea
Corradini, and Bogdan Warinschi for various technical discussions related to
the work in this paper.

References

[1] Michael Bidoit and Rolf Hennicker. Observer complete definitions are
behaviourally coherent. In Kokichi Futatsugi, Joseph Goguen, and José
Meseguer, editors, OBJ/CafeOBJ/Maude at Formal Methods ’99, pages 83—
94. Theta, 1999. Proceedings of a workshop held in Toulouse, France, 20th and
22nd September 1999.

[2] Corina Cirstea. A coequational approach to specifying behaviours. In
Bart Jacobs and Jan Rutten, editors, Proceedings of the Second Workshop
on Coalgebraic Methods in Computer Science (CMCS’99), Amsterdam, The
Netherlands, March 1999, volume 19 of Electronic Notes in Theoretical
Computer Science. Elsevier Science, 1999.

[3] Andrea Corradini. A complete calculus for equational deduction in coalgebraic
specification. Technical Report SEN-R9723, ISSN 1386-396X, CWI, 1997.

[4] Razvan Diaconescu. Behavioral coherence in object-oriented algebraic
specification. Technical Report IS-RR-98-0017F, Japan Advanced Institute
for Science and Technology, June 1998. Submitted for publication.

[5] Razvan Diaconescu and Kokichi Futatsugi. CafeOBJ Report: The
Language, Proof Techniques, and Methodologies for Object-Oriented Algebraic
Specification. World Scientific, 1998. AMAST Series in Computing, volume 6.

[6] Joseph Goguen. Types as theories. In George Michael Reed, Andrew William
Roscoe, and Ralph F. Wachter, editors, Topology and Category Theory in
Computer Science, pages 357-390. Oxford, 1991. Proceedings of a Conference
held at Oxford, June 1989.

[7] Joseph Goguen and Razvan Diaconescu. Towards an algebraic semantics for the
object paradigm. In Hartmut Ehrig and Fernando Orejas, editors, Proceedings,
Tenth Workshop on Abstract Data Types, pages 1-29. Springer, 1994. Lecture
Notes in Computer Science, Volume 785.

[8] Joseph Goguen and Grant Malcolm. A hidden agenda. Theoretical Computer
Science, to appear 1999. Also UCSD Dept. Computer Science & Eng. Technical
Report CS97-538, May 1997.

17

Buss anD Rosu

[9] Joseph Goguen and Grant Malcolm. Hidden coinduction. Mathematical
Structures in Computer Science, to appear 1999.

[10] Joseph Goguen and Grigore Rosu. Hiding more of hidden algebra. In FM’99 —
Formal Methods, pages 1704-1719. Springer, 1999. Lecture Notes in Computer
Sciences, Volume 1709, Proceedings of World Congress on Formal Methods,
Toulouse, France.

[11] Joseph Goguen and Grigore Rosu. A protocol for distributed cooperative
work. In Gheorghe Stefanescu, editor, Proceedings of Workshop on Distributed
Systems 1999 (WDS’99), Iasi, Romania, 2 September 1999, volume 28 of
Electronic Notes in Theoretical Computer Science. Elsevier Science, 1999.

[12] H. Peter Gumm and Tobias Schroder. Covarieties and complete covarieties. In
Bart Jacobs, Larry Moss, Horst Reichel, and Jan Rutten, editors, Proceedings of
the First Workshop on Coalgebraic Methods in Computer Science (CMCS’98),
Lisbon, Portugal, March 1998, volume 11 of FElectronic Notes in Theoretical
Computer Science, pages 43—-56. Elsevier Science, 1998.

[13] Rolf Hennicker and Michel Bidoit. Observational logic. In Algebraic
Methodology and Software Technology (AMAST’98), volume 1548 of Lecture
Notes in Computer Science, pages 263—-277. Springer, 1999.

[14] Grigore Rogu. A Birkhoff-like axiomatizability result for hidden algebra and
coalgebra. In Bart Jacobs, Larry Moss, Horst Reichel, and Jan Rutten, editors,
Proceedings of the First Workshop on Coalgebraic Methods in Computer Science
(CMCS’98), Lisbon, Portugal, March 1998, volume 11 of FElectronic Notes in
Theoretical Computer Science, pages 179-196. Elsevier Science, 1998.

[15] Grigore Rosu. Behavioral coinductive rewriting. In Kokichi Futatsugi, Joseph
Goguen, and José Meseguer, editors, OBJ/CafeOBJ/Maude at Formal Methods
’99, pages 179-196. Theta, 1999. Proceedings of a workshop held in Toulouse,
France, 20th and 22nd September 1999.

[16] Grigore Rosu. Equational axiomatizability for coalgebra. Theoretical Computer
Science, to appear, 2000.

[17] Grigore Rosu and Joseph Goguen. Circular coinduction, 1999. Submitted to
publication.

[18] Grigore Rosu and Joseph Goguen. Hidden congruent deduction. In Ricardo
Caferra and Gernot Salzer, editors, Automated Deduction in Classical and Non-
Classical Logics, pages 252—267. Springer, 2000. Lecture Notes in Artificial
Intelligence, Volume 1761; papers from a conference held in Vienna, November
1998.

[19] Grigore Rosu and Joseph Goguen. Hidden congruent deduction. In Ricardo
Caferra and Gernot Salzer, editors, Automated Deduction in Classical and Non-
Classical Logics, pages 252—267. Springer, 2000. Lecture Notes in Artificial
Intelligence, Volume 1761; papers from a conference held in Vienna, November
1998.

18

Buss anD Rosu

[20] Hartley Rogers Jr. Theory of Recursive Functions and Effective Computability.
MIT press, Cambridge, MA, 1987.

[21] J.J.M.M. Rutten. Universal coalgebra: a theory of systems. Technical Report
CS-R9652, CWI, 1996.

19

