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1.  Introduction

Monte Carlo simulations are of great use for PET system development as they allow different system designs to 
be explored without expensive construction or testing. This, however, requires accurate modeling of the physics 
of PET systems. This can be a computationally expensive task, as the propagation of high-energy photons must 
be tracked through complex geometries, and their interactions with these materials must be modeled accurately. 
Designing a Monte Carlo simulation that is both accurate and fast requires making important choices about 
what physical effects to model and how to do so efficiently.

Two of the most commonly used software packages for Monte Carlo simulations of PET are GATE and 
SimSET (Harrison et al 2006). GATE is the most comprehensive piece of software for modeling PET systems  
(Jan et al 2011). Based on Geant4, a physics library published by CERN, it is able to accurately model the physics 
of photon transport through various materials (e.g. in the patient and the detector system), as well as the various 
methods through which energy is deposited into detector materials, such as scintillation crystals. Depending on 
the needs of the user, different physical phenomenon can be enabled or disabled to accelerate the simulation, or 
make it more accurate. GATE is, however, traditionally known for being quite computationally expensive. GATE 
also contains tools to model the electronics chains present in PET systems, which allows for reduction of the data 
output from the simulation (Guez et al 2008). This is important as the number of hits required to simulate even a 
small number of coincidence events can be prohibitively large. It is also important, as the readout electronics can 
play an important factor in the imaging quality and count rate performance of a system.

SimSET is a public-domain software package that was designed to model both SPECT and PET systems  
(Harrison et al 1993). From its initial inception is has been developed to model photoelectric absorption, Comp-
ton Scatter, Rayleigh Scatter (Kaplan et al 1998), positron annihilation acolinearity (Harrison et al 1999), and 
block detectors (Harrison et al 2006). Its design is primarily based around cylindrical geometries, so it does limit 
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Abstract
Monte Carlo simulation software plays a critical role in PET system design. Performing complex, 
repeated Monte Carlo simulations can be computationally prohibitive, as even a single simulation 
can require a large amount of time and a computing cluster to complete. Here we introduce Gray, 
a Monte Carlo simulation software for PET systems. Gray exploits ray tracing methods used in 
the computer graphics community to greatly accelerate simulations of PET systems with complex 
geometries. We demonstrate the implementation of models for positron range, annihilation 
acolinearity, photoelectric absorption, Compton scatter, and Rayleigh scatter. For validation, we 
simulate the GATE PET benchmark, and compare energy, distribution of hits, coincidences, and 
run time. We show a 13.6 ± 0.1× speedup using Gray, compared to GATE for the same simulation, 
while demonstrating nearly identical results. We additionally simulate the Siemens Biograph mCT 
system with both the NEMA NU-2 scatter phantom and sensitivity phantom. We estimate the 
total sensitivity within 3 ± 2% when accounting for differences in peak NECR. We also estimate the 
peak NECR to be 199.5 ± 0.2 kcps, or within 0.5 ± 0.1% of published experimental data. The activity 
concentration of the peak is also estimated within 1.3%.
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the types of systems that can be simulated. Detectors have some requirements of rotational symmetry, and the 
activity distribution simulated is limited to inside the cylinder circumscribed by the detectors. Furthermore, 
SimSET does not support simulation of the readout electronics.

Both GATE and SimSET have been shown to produce results that correlate well with experimental data.  
Particularly, both packages demonstrate accurate modeling of the experimental results from PET scanners 
under standardized NEMA NU-2 measurements (Lamare et al 2006, Schmidtlein et al 2006, Gonias et al 2007,  
MacDonald et al 2008, Delso et al 2011, Poon et al 2012, 2015, Aklan et al 2015).

GATE models the physics within a PET system, in part, by stepping through the geometry and testing for 
interactions at each step. However, if one makes the assumption that a photon will travel straight until it interacts 
with a material, then it becomes quite natural to borrow from the concept of ray tracing, which is used in the 
field of animation and computer graphics to render complex scenes in great detail. This allows the full distance 
of travel of a particle in a volume to be calculated. The probability of a particular interaction and its location can 
then be estimated from the distance of travel. This method reduces the number of steps through the geometry 
required per photon to the number of unique volumes through which the photon travels.

Here we will introduce a new Monte Carlo simulation tool, called Gray, short for gamma ray tracer, publicly 
released under the MIT open source license. We will explain the methods and assumptions behind the ray trac-
ing, physics, and data acquisition models contained within Gray, and then run several simulations to both valid
ate the proper implementation of these models, as well as compare the results with GATE on well established 
benchmarks. We also simulate the Siemens Biograph mCT with the NEMA NU2-2007 scatter phantom and 
sensitivity phantom and compare the results to published experimental results.

2.  Methods

2.1.  Ray tracing
Gray uses a ray tracing program adapted from the example published by Buss (2003). This program provides a 
basis for calculating the intersection of a ray with a variety of different viewable shape objects. The foundation of 
this program is a k-d tree data structure. K-d trees are an efficient data structure for segmenting N-dimensional 
space so that a nearest point can be found efficiently. The k-d tree in this case is combined with an axis-aligned 
bounding box (AABB) to quickly find the extents of an object, and then test for a possible intersection. If a possible 
intersection does exist, a function specific to the viewable object type is used to test for an actual intersection and 
the intersection distance. This intersection distance is then used within physics models to calculate interaction 
probabilities.

Each of the objects within a simulation is stored on a leaf of the k-d tree. The leaves are sorted under nodes 
of the k-d tree which contain information on how to split the scene along an X, Y, or Z-aligned plane. Nodes are 
nested under other nodes to form a tree structure, which is traversed to move about the scene. As the program vis-
its a leaf, it checks for an intersection between the ray along which the photon is traveling and the objects in that 
leaf. For most scenes, a k-d tree requires traversing an average of O(log n) nodes before reaching a leaf, where n is 
the number of viewable objects in the scene. Assuming a photon requires a constant number of traversal calcul
ations, our simulation then scales as O (m log n), where m is the number of photons we must simulate.

Gray supports a number of basic shapes, such as spheres, cylinders, rectangular prisms, that can be used as 
detectors, sources, or neither. All of these geometries for a simulation can be viewed using an OpenGL-based 
viewer included in Gray, depicted in figure 1. One primary benefit of Gray’s foundation on a ray tracing model is 
that any arbitrary geometry can be modeled as a collection of polygons. The number of polygons is limited only 
by the memory needed to store the polygons and the K-d tree. This allows for complex phantoms, such as a per-
son or mouse, to be easily modeled. These phantoms can then also be used as a source or a detector. When used 
as a source, the volume is surrounded by an AABB. A decay is then randomly generated within the bounds of the 
AABB, and a ray is cast from that point to make sure the interior of the material is intersected, as shown in figure 2. 
In this way, almost any three-dimensional model of an object could be turned into a source.

2.2.  Physics
Gray currently models five physical properties dominant in PET imaging: positron range, annihilation 
acolinearity, photoelectric absorption, Compton scatter, and Rayleigh scatter. For positron range, we primarily 
use the double exponential model introduced by Derenzo (1979), and simulated for multiple isotopes by Levin 
and Hoffman (1999).

P (x) = aCek1x + a (1 − C) ek2x� (1)

a =

[
1 +

k1

k2

(
1

C
− 1

)]−1

.� (2)
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We have introduced the parameter a to scale P (x) so it can be used as a probability density function. The 
parameter C controls the mix between the two exponential models. This model currently assumes a uniform 
material, for which water is used as a default. Gray is able to load in any user defined isotope, where its half-life, 
branching ratio (probability of emitting a positron), prompt gamma emission (if any), and positron range are 
defined. This allows positron range to be modified for other materials. The next three properties, photoelectric 
absorption, Compton scatter, and Rayleigh scatter use the Evaluated Photon Data Library (EPDL), commonly 
known as the Livermore model (Cullen et al 1997). A material’s chemical composition and density are used to 
calculate probabilities of Compton scattering or photoelectric absorption across a variety of energies relevant 
for PET, making sure that K-edge absorption discontinuities are taken into account. Log–log interpolation is 
performed between distinct energies to calculate the linear attenuation coefficient, and thus the probability of 
interaction in an object.

For the scattered angle and deposited energy, the Klein–Nishina model, modified by the scattering function in 
the EPDL is used. The Livermore model defines the differential cross section for Compton Scattering as follows:

δσc

δΩ
= S (x)

δσkn

δΩ
� (3)

Figure 1.  Gray includes an OpenGL-based viewer so that geometries can be visualized in 3D. Shown here is the GATE PET 
benchmark simulation (Jan et al 2011). The BGO and LSO crystals are shown in yellow and blue, respectively. The cylindrical 
phantom is seen in the center, with the tungsten septa and lead shielding in dark blue.

Figure 2.  Arbitrary source geometries, such as a heart or a lung, can be modeled using a polygon mesh. Positrons are randomly 
generated inside of the object’s enclosing AABB. A ray is cast from the position to determine whether or not it is inside of the active 
geometry. The ray tracing software provides a mechanism to detect whether the inside or outside of an object was detected. We label 
rejected positrons with blue dashed lines and accepted ones with solid orange lines.

Phys. Med. Biol. 63 (2018) 105019 (14pp)
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where S is the scattering function tabulated in the EPDL. The scattering parameter, x, and the Klein–Nishina 

differential cross section, δσkn
δΩ  are defined by:

x (θ, E) =
E

hc
sin

(
θ

2

)
� (4)

δσkn

δΩ
=

r2
c

2
P

(
P +

1

P
+ sin2 θ

)
� (5)

where E in the incoming photon energy and θ is the scattering angle. The constant rc is the classical electron 
radius, and h and c are Planck’s constant and the speed of light, respectively. The parameter P is defined in terms 
of scattering angle and energy of the incoming photon. The variable α is the ratio of the incident photon energy 
to the rest mass of an electron.

P (θ, E) = (1 + α (1 − cos θ))
−1 .� (6)

A similar form is used for the differential cross section of Rayleigh scattering, δσr
δΩ , by modifying the classical 

Thompson differential cross section, δσt
δΩ, by the scattering form factor, F (x).

δσr

δΩ
= F (x)2 δσt

δΩ
� (7)

δσt

δΩ
=

r2
c

2

(
1 + cos2 θ

)
.� (8)

F (x), like S (x), is also tabulated in the EPDL. Each of the differential cross sections are then integrated in the 
azimuthal angle φ, and converted into cumulative distribution function in terms of the radial angle, θ. A unique 
cumulative distribution function is created for every material specified, from which the inversion method is used to 
generate a random angle. Acolinearity is, by default, modeled as a 0.57° full-width at half-max (FWHM) Gaussian 
deviation from a perfect 180°, back-to-back annihilation (Shibuya et al 2007). Acolinearity, however, can be disabled 
or modified by the user on a per-isotope basis. Gray does not currently take into account three-photon positron 
annihilation, as this occurs 1/137 of the time (Ore and Powell 1949, DeBenedetti and Siegel 1954).

2.3.  DAQ model
We have modeled the data acquisition (DAQ) system for Gray as a series of processes that operate on the energy 
depositing interactions, or ‘hits’, calculated by the physics model of Gray. Each process takes in a set of hits, 
performs a particular operation that could potentially modify the hit, and returns the result. This set of hits is 
then passed to the next process until the entire process chain is complete. The resulting output of the process 
chain is referred to as singles events. The singles events are then typically passed to two coincidence processors 
that will sort out coincidence events. Two coincidence processors allows for a delay window correction scheme 
to be implemented. For the singles process chain, the different process types that are supported are filtering, 
blurring, dead time, and merging.

Filtering allows energy discrimination to be performed on the stream. A blurring process will blur either 
the time or energy of the pulse with a Gaussian distribution of a specified width. The energy blurring process is 
allowed to either be a fixed percentage of the current energy, or to degrade with the inverse square of energy com-
pared to a reference energy. A dead time process will remove events from the stream based on either a paralyzable 
or a non-paralyzable model. Finally, the merging process will combine hits together, taking into account energy 
and position. For the dead time and merging processes, the structure of the system can be taken into account by 
mapping each detector element in the system to a particular component, such as a block detector or readout chip. 
By specifying that all detectors belong to the same detector block, hits within that block could be merged together 
using Anger logic, for example.

The coincidence processors operate in parallel on the singles output. These processors tag each of the singles 
events in a coincidence event as having the same coincidence ID. Multiples events, where more than two singles 
occur within the same coincidence window, can optionally be kept or rejected.

The Gray DAQ model operates independently of the physics model of Gray. This allows for a stand alone 
application that takes in hits, or singles, and is able to run the exact same data acquisition model, similar to Digi-
GATE (Jan et al 2011). This makes it an incredibly useful tool for exploring system design choices, such as multi-
plexing, that can have complicated and adverse effects on system performance, while keeping the geometry and 
physics constant. An advantage over DigiGATE is that the standalone Gray DAQ model is able to work with hits 
or singles data, allowing data output to be reduced significantly compared to hits alone. This feature allows the 
DAQ model to be terminated and restarted after any process step, allowing for parameters of a particular process 
to be explored efficiently.

Phys. Med. Biol. 63 (2018) 105019 (14pp)
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2.4.  Parallelism
Monte Carlo simulations of PET systems lend themselves well to parallel computing environments, as the 
simulation can easily be split in time across many computing nodes to reducing the total time required for the 
simulation. To take advantage of this property, we have implemented native multithread support in Gray. The 
simulation is split up across threads based on time. Half lives and decay properties of different isotopes from 
sources in the simulation are accounted for so the work is evenly distributed across all nodes. We do not bridge 
the data acquisition model across the splits in the file, as we regard this as a minor effect.

2.5.  Model validation
We perform three different simulations to validate that Gray accurately models the physical properties within 
a PET system. First we model a point source of 18F inside of water and log the annihilation positions of the 
positrons. The distribution of annihilation points is then compared to the Monte Carlo results presented by 
Levin and Hoffman (1999).

Next we model a mono-energy (511 keV), pencil beam source aimed at a large (100 cm  ×  100 cm  ×  100 cm) 
block of LSO (Lu2SiO5, density  =  7.4 g ml−1, Zef f = 56.5). We place a second block of the same size behind the 
source to catch backscattered radiation. We log the first position of interaction for the photon and compare this 
to the model predicted by XCOM for that material type. Additionally for Compton scatter events, the scattering 
angle is calculated and compared to the model predicted by Klein–Nishina.

For the last simulation, we run the GATE PET Benchmark in both GATE and Gray. The geometry of the 
benchmark can be seen in figure 1. The GATE PET benchmark is a simulation with 1280 000 crystals (half BGO, 
half LSO), tungsten septa, lead end shielding, and a cylindrical phantom containing two sources with 100 kBq of 
15O and 18F, respectively. The resulting energy spectra, spatial distribution of hits and coincidences, and runtime 
is compared. We examine the statistical relevance of these differences compared to the standard deviation of a 
Poisson random variable with a mean of the GATE simulation value. We contextualize the magnitude of this dif-
ference by running a second benchmark simulation in GATE and performing the same analysis as was done for 
Gray. For these simulations, we disable motion of the scanner within GATE. To compare runtime, we run each 
simulation 3 times and report mean and standard error for both GATE and Gray. For both GATE and Gray we 
additionally report the percentage of the total runtime required to simulate the hits in the system without output 
or a DAQ model. We also use the GATE PET Benchmark to demonstrate Gray’s multithreading capabilities. We 
run Gray using 1 up to 8 threads on an quad-core Intel i7 and report the speed-up in simulation time relative to 
the single thread case. Finally, we report the percentage of runtime required for GATE to complete the bench-
mark with the positron sources in the benchmark replaced with a geantino particle source. The geantino is a 
fictional particle that does not interact with any materials. We do this simulation to contextualize the amount 
of processing time that is spent tracking annihilation photons through the simulated world. The source activity 
is doubled for the geantino source to make sure the number of geantinos matches the number of photons from 
positron annihilation.

2.6.  Simulation of a clinical PET system
Following the procedures outlined by Poon et al, we simulate the Siemens mCT PET/CT scanner with the NEMA 
NU-2 2007 scatter phantom (Poon et al 2012, 2015). The Siemens scanner has a PET system with a ring diameter 
of 84.9 cm. The system’s 192 blocks of crystal arrays (4 axially and 48 transaxially) contain a square array of 169 
LSO crystals, each measuring 4 mm by 4 mm by 20 mm. The cover of the scanner is modeled as plastic, and the 
patient bed as carbon fiber. We do not model the 176Lu background in the LSO of the scanner. A set of blocks 4 wide 
axially, and 1 radially are tied together into what is termed a bucket. Two buckets radially are then multiplexed 
together and are allowed one single event per system clock cycle of 80 ns. Only the first event is accepted in the 
case of many events within the two multiplexed buckets. The data acquisition (DAQ) system was modeled with 
the following series of processes built into Gray:

	 (i)	�Merging of events in the same block using Anger logic if they occur within 300 ps for triggering logic.
	 (ii)	�Gaussian energy blurring of 11.7% at 511 keV.
	 (iii)	�Energy gating events to above 150 keV.
	 (iv)	�Merging of events in the same block using Anger logic if they occur within 40 ns to model pulse 

integration.
	 (v)	�A 40 ns non-paralyzable dead time model at the multiplexed bucket level.
	 (vi)	�Time blurring the singles events with a Gaussian of 375.0 ps FWHM.
	 (vii)	�Energy windowing from 435 keV to 650 keV.
	(viii)	�Coincidence windowing to events within 2.05 ns for a full window width of 4.1 ns, with a delayed 

coincidence window offset by 100 ns.

Phys. Med. Biol. 63 (2018) 105019 (14pp)
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Only the parts of the DAQ that were described by Poon et al (2012) were put into the model. We simplify the 
dead time model used by Poon et al by using a continuous model, and neglecting the discrete behavior of the sys-
tem clock. To do this, we assume the dead time will be a uniform random variable between 0 ns and 80 ns, result-
ing in an average dead time of 40 ns. As the exact decay time and integration time are not specified, we also assume 
a 40 ns integration time to match the dead time model, and do not model the exponential decay of the pulse. 
The maximum ring difference of 49 and minimum bucket difference of 9 specified by Poon et al were applied in 
post-processing. We additionally simplify the patient bed as a 0.6 cm thick slab of carbon fiber extending 45.0 cm 
transaxially and 70.0 cm axially, with 3.66 cm high rectangular sides of the same thickness and length, as Gray 
does not currently support the voxelized phantoms used in the GATE study.

The scatter phantom was modeled as a polyethylene cylinder 70 cm in length and 20.3 cm in diameter with a 
18F source of the same length and 3.2 mm in diameter offset 4.5 cm below the center of the field of view. We simu-
late 17 activity concentration levels between 0.38 kBq ml−1 and 45.1 kBq ml−1. We simulate 0.3 s of time for the 
45.1 kBq ml−1 concentration. We adjust the remaining simulations for the decay of 18F to simulate approximately 
the same number of positron decays. At each activity level during the NEMA scatter phantom count rate study, a 
qualified singles rate per block is reported. This represents the number of events fed into the coincidence process 
following energy windowing. Additional, in the same manner as Poon et al we report the randoms rate, trues and 
scatters rate, noise equivalent count rate (NECR), and scatter fraction (Poon et al 2012). We report an average 
percent difference from the experimental rate reported by Poon et al over all the activity concentration. We deter-
mine the experimental value for each activity concentration by linearly interpolating from the experimental data 
points reported. The percent difference for each point is calculated in the following manner:

percent dif f = 100%

(
|Rexp − Rsim|

Rexp

)
� (9)

where Rexp and Rsim are the rates from the experimental measurements by Poon et al (2012) and our Gray 
simulations, respectively. We also model the NEMA NU-2 2007 sensitivity phantom to provide a comparison to 
the results reported by Jakoby et al (2011). The sensitivity phantom was modeled as a polyethylene cylinder 70 cm 
in length and 3.2 mm in diameter, with a 37.0 kBq 18F source. We do not simulate the aluminum sleeves specified 
in the NEMA standard, because the positron range model within Gray is not material dependent, so additional 
material is not needed to cause positron annihilation. We run the simulation 1500.0 s with the half-life of 18F 
disabled to keep a constant activity. Per the NEMA protocol described by Jakoby et al, we plot the axial sensitivity 
profile, and calculate the total sensitivity. Both Jakoby et al and Poon et al describe the same Siemens mCT system, 
but the peak NECR in Poon et al is 12% higher, and Poon et al does not present sensitivity numbers, so we also 
compare the Gray sensitivity values with those of Jakoby et al scaled by the difference in the peak NECR. By doing 
this, we assume sensitivity should scale linearly with peak NECR for the same system geometry, energy window, 
and time window. We report error for singles, prompts, and randoms as the estimated standard deviation of a 
poisson random variable. Error is propagated for all other derived quantities.

3.  Results

The positron range distribution, compared with the model by Levin and Hoffman is shown in figure 3. The 
model in this figure is the probability density function (PDF) of the positron range multiplied by the number of 
positrons and the bin width.

In figure 4 we show the attenuation of a mono-energetic, pencil beam source into a large LSO block. For each 
photon, we log the position of first interaction and the type of interaction, and plot this against the linear attenu-
ation from the Livermore model.

For photons that undergo Compton scattering, we calculate the scattering angle they undergo and the results 
are shown in figure 5 relative to the Livermore model. The same analysis is done for Rayleigh scattered photons 
in figure 6.

Next, we compare the performance of Gray on the GATE PET benchmark. When running the simulation as 
a single thread within a Ubuntu 14.04 virtual machine with 4GB of memory, and a single core of a 2 GHz Intel 
Core i7, the CPU time required was 9.8 ± 0.1 min, while GATE required 133 ± 6 min. The fraction of the runtime 
used to simulate hits within the simulation geometry was 99.6% and 92.9% for Gray and GATE, respectively. A 
comparison of the energy spectrum of the hits generated by each model is shown in figure 7, while the spatial 
distribution of hits within the crystals of the GATE benchmark can be seen in figure 8. For the spatial distribution 
comparison, hits within the LSO and BGO layers of the simulation are combined together.

The possible number of unique crystal pairs is quite large when comparing coincidence events. This fact 
makes the occurrence of any particular pair of crystals unlikely. To reduce statistical noise, we rebin the crystals 
in the benchmark simulation down by a factor of 100, to the module level. We then perform the same analysis for 
module pairs as was done for hits (figure 8), with the results shown in figure 9.

Phys. Med. Biol. 63 (2018) 105019 (14pp)
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Figure 3.  We see good agreement between the simulated positron range distribution in water, versus the analytical model proposed 
by Levin and Hoffman. Models for other common isotopes such as 11C, 13N, and 15O have also been implemented.

Figure 4.  The depth of the first interaction of a 511 keV photon inside of a block of LSO is shown. The histogram is split by color 
to denote the proportion of photoelectric, Compton scattering, and Rayleigh scattering interactions. The Livermore-based linear 
attenuation model is also shown for reference.

Figure 5.  The scatter angle of all of the Compton scatter events relative to the Livermore model.

Phys. Med. Biol. 63 (2018) 105019 (14pp)
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When we ran Gray with multiple threads, we see the speedup relative to using a single thread in figure 10. At 
8 threads, we see a relative speed up of 3.975 ± 0.003× from the single thread case. Gray in this case was run on 
macOS High Sierra, and not in a virtual machine to avoid the associated overhead. Running the PET Benchmark 
in GATE with the positron sources replaced by geantino sources required 72.4% of the original runtime.

The qualified singles rate for the Siemens Biograph mCT for the varying activity concentrations with the 
NEMA scatter phantom is shown in figure 11.

The NEMA count rate curves for randoms, trues and scatter, NECR, and scatter fraction are shown in 
figures 12–15. Table 1 summarizes the average percent difference for the simulated curves as compared to the 
experimental results presented by Poon et al. The last point is excluded as an outlier due to system saturation, as dis-
cussed by Poon et al. We estimate a peak NECR of 199.5 ± 0.2 kcps at an activity concentration of 26.9 kcps ml−1,  
compared to 200 kcps at an activity concentration of 26.5 kcps ml−1 determined experimentally by Poon et al 
(2012).

The axial sensitivity profile calculated from the NEMA sensitivity phantom simulation is show in figure 16. 
We calculate a total system sensitivity of 11.2 ± 0.1 cps kBq−1. This is a 14 ± 3% difference from the 9.7 ± 0.2 cps 
kBq−1 by Jakoby et al. If we scale the result reported by Jakoby et al by the differences in peak NECR to 10.8 ± 0.2 
cps kBq−1 the percent difference becomes 3 ± 2%.

4.  Discussion

We can see from figures  3–6 that positron range, photoelectric absorption, Compton scattering, Rayleigh 
scattering have been implemented in Gray accurately within the ray tracing framework. Furthermore, when we 

Figure 6.  The scatter angle of all of the Rayleigh scatter events relative to the Livermore model.

Figure 7.  The energy deposited by the hits in the GATE PET Benchmark simulation, as calculated by the two software packages.
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simulate the GATE PET benchmark, we see a 13.6 ± 0.1× speedup in computational time, while still maintaining 
physical accuracy within what would be expected from statistical error. We can conclude from the fact that GATE 
takes 72.4% of its total runtime to track particles that do not interact that Gray’s primary advantage over GATE 
is its computational efficiency in tracking photons through the simulation using the k-d tree-based ray tracing 
backend.

There are some differences in the results of the simulations that can be seen in figure 7 through figure 9. The 
first obvious difference can be seen at the near zero tail of the energy spectrum in figure 7. This difference is almost 
entirely attributable to GATE modeling the scattering of electrons within materials. Disabling the ‘eMultipleS-
cattering’ and ‘Bremsstrahlung’ physics models in GATE largely removes this difference. Removing these effects 
results in a 10.2% reduction in runtime for GATE. The speedup for Gray in this case is reduced to 12.2 ± 0.1×. A 
slight difference at the photopeak in the energy spectrum is also seen in figure 7. Gray neglects that positrons do 
not annihilate at rest, which causes a small blur in the energies of the emitted gammas from 511 keV. The differ-
ence in counts is less than 1.0% if all counts above 508 keV are totaled. As this effect will typically be dominated 
by the energy resolution of a detector material, we regard this difference as insignificant. For both the hits and the 
coincidences shown in figures 8 and 9, we see strong agreement between the normalized differences for the Gray-
GATE comparison and the GATE-GATE comparison, indicating the differences seen between Gray and GATE 
are dominated by statistical noise rather than different physics.

The multithread capabilities within Gray, as seen in figure 10 show a good ability to use the full functionality 
of multicore systems. We achieve almost exactly a 4×  speed up that we would expect on a quad-core processor for 
a CPU-bound process. We suspect the fact that this happens at 8 threads, rather than at 4 threads is due to con-
tention with windowing system and other background processes. The Intel Core i7 used for this measurement 
supports hyperthreading, and thus 8 simultaneous threads. This should not be an issue in more computational 
environments. Furthermore, Gray is able to automatically detect the number of threads that can be simultane-
ously run by a machine, allowing it to easily take full advantage of the computational power of the processor. Gray 
has also been designed to be able to report how it would split a simulation in time over a number of threads. This 
can be used to equally split the computational load of a simulation over an arbitrary number of nodes within a 
server cluster, for example. Beyond scaling across many cores and many nodes, we imagine further acceleration of 
the k-d tree structure should be possible using GPUs (Foley and Sugerman 2005).

Figure 8.  In the top left and the top right, we see the spatial distribution of hits from Gray and GATE, respectively. These two 
distributions are subtracted and shown in the bottom left. To contextualize the difference, we normalize each pixel in the difference 
image with respect to the standard deviation expected from a Poisson distribution, assuming the mean to be the GATE simulation 
value. The normalized result is then histogramed in the bottom right. The same process is performed on a second benchmark 
simulation in GATE, and is shown in the same graph for reference.

Phys. Med. Biol. 63 (2018) 105019 (14pp)
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For the simulated results of the Siemens Biograph mCT, we see from figure 11 a close match between our 
results and the experimental results indicating the physical behavior of the Siemens mCT is modeled accurately. 
Furthermore, this validates our approximation of assuming a continuous, rather than discrete, dead time model. 
From figures 12–15 we can see that we achieve very good agreement with the experimental results shown by Poon 
et al across all count rates for the NEMA scatter phantom count rate experiment. Particularly we estimate a peak 
NECR within 0.5 ± 0.1% of the experimental peak determined by Poon et al, and the activity concentration of 
the peak within 1.3%. These estimates could potentially be improved by simulating more than 17 activity con-
centrations. Of key interest is how well Gray matches the experimental curve in figure 14 near the NECR peak. 
This shows that Gray will be quite useful for simulation studies attempting to optimize peak NECR across dif-
ferent system configurations. The two key differences seen in table 1 are seen in the average percent differences 
for the qualified singles rate and the randoms rate. The average is increased by larger differences at low activity 

Figure 9.  In the top left and the top right, we see the pairwise distribution of coincidences from Gray and GATE, respectively. These 
two distributions are subtracted and shown in the bottom left. We normalize and histogram the values from the difference image, 
plotting the histogram values in the bottom right, similar to the analysis in figure 8.

Figure 10.  We show the speed-up acheived using the multithread capabilities of Gray. The measured values represent the wall time, 
or real world time, of the single node case, divided by the real world time for the many node case. The calculations were done on an 
Intel i7 processor with four cores, supporting eight threads.
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levels as Gray does not currently model the 176Lu background of the scanner. Poon et al noted that the 176Lu 
background adds 1.1 Mcps in qualified singles. This is equivalent to 5.7 kcps in qualified singles per block, and 
1.24 kcps in total random coincidences. If we assume we can add a constant to the singles count rate and randoms 
rate curves to model the additional background, the percent differences for the singles and randoms rates drop 
to 11.05 ± 0.01% and 11.5 ± 0.2%, respectively. We anticipate that this background could be readily modeled by 
a noise process in the Gray DAQ model, as was done by Poon et al (2015) in the custom DAQ model used with 
SimSET without significant impact on runtime.

From figure 16 we see that we accurately reproduce the previously reported axial sensitivity profile up to a scale 
factor (Jakoby et al 2011). The fact that the difference between the scaled total sensitivity from Jakoby et al and that 
reported by Gray are within 3 ± 2% shows that Gray appropriately models the physics of the scanner. It is outside 
the scope of this work to attempt to explain the differences in peak NECR between Poon et al and Jakoby et al.

The 13.6 ± 0.1× speedup we demonstrate here is on the same order of magnitude speed up over GATE noted 
for SimSET by Poon et al (2015). In that work, though, the authors noted several disadvantages for SimSET which 
are noted: restrictions on the activity distribution with respect to the detectors and the lack of an integrated DAQ 
model. Gray does not suffer from these limitations, which makes it of particular use for simulation of breast-ded-
icated systems and other extremity-focus scanners since source geometries can arbitrarily be mixed with detec-
tor geometries. Unlike SimSET, though, its runtime is proportional to the simulated number of photons, rather 
than the detected number of photons, making it less advantageous for simulations with complex geometries in 
non-sensitive areas of the system. An additional disadvantage of Gray is that the positron range model is fixed to 

Figure 11.  The number of qualified singles per block simulated in the Siemens mCT. The results presented by Poon et al for both 
GATE simulation and experiment are reproduced with permission for comparison. Qualified singles represent the number of events 
after enery gating from 435 keV to 650 keV.

Figure 12.  The number of random coincidences from a delayed coincidence window of a simulated Siemens mCT with a NEMA 
scatter phantom.
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Figure 13.  The number of true and scattered coincidences simulated in the Siemens mCT using the NEMA scatter phantom. Both 
prompts and randoms are limited to a 24 cm field of view per the NEMA standard.

Figure 14.  The NECR simulated in the Siemens Biograph mCT. A smoothed randoms estimate is assumed to match Poon et al.

Figure 15.  The scatter fraction simulated for the Siemens Biograph mCT.
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a reference material, typically water. It does not take into account the material in which the positron is currently 
located. This can cause inaccuracies inside of less dense material, such as bone or lung, or in the transition into 
these materials. Gray internally uses the same ray tracing capabilities for photons to track a positron’s entry and 
exit out of a material. We plan to modify this tracking to take into account the different material properties, simi-
lar to Harrison et al (1999) with SimSET, in the future.

5.  Conclusion

In this work we introduced Gray, which is a ray-tracing-based Monte Carlo simulator for PET. The ray tracing 
formulation has several advantages. The primary advantage of ray-tracing is that it is computationally efficient 
when traversing the scene geometry, and secondly it allows for complex, vectorized geometries of both sources 
and detectors. We demonstrate correct implementation of several key models in system design for PET: positron 
range, annihilation acolinearity, photoelectric absorption, Compton scatter, and Rayleigh scatter. We see an 
13.6 ± 0.1× speedup using Gray, compared to GATE, and achieve statistically similar results when simulating the 
GATE PET benchmark. We show that both the physics and DAQ model implemented allow accurate modeling 
of the NEMA sensitivity and count rate performance of the Siemens Biograph mCT, estimating the sensitivity 

within 3 ± 2%, and the peak NECR within 0.5 ± 0.1%.
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NECR 5.5 ± 0.1 5.5

Scatter fraction 0.5 ± 0.2 0.8
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