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QUASI-POLYNOMIAL SIZE FREGE PROOFS OF FRANKL’S THEOREM

ON THE TRACE OF SETS

JAMES AISENBERG, MARIA LUISA BONET, AND SAM BUSS

Abstract. We extend results of Bonet, Buss and Pitassi on Bondy’s Theorem and

of Nozaki, Arai and Arai on Bollobás’ Theorem by proving that Frankl’s Theorem on the

trace of sets has quasi-polynomial size Frege proofs. For constant values of the parameter t,

we prove that Frankl’s Theorem has polynomial size AC0-Frege proofs from instances of

the pigeonhole principle.

§1. Introduction. This paper extends results of Bonet, Buss, and Pitassi [2]
and Nozaki, Arai, and Arai [16] by proving that Frankl’s Theorem [7] has quasi-
polynomial size Frege proofs. A Frege system is a “textbook” style proof system
for propositional logic based on schematic axioms and inferences such as modus
ponens. An extended Frege system is a Frege system augmented with the exten-
sion rule allowing the introduction of abbreviations, cf. Cook-Reckhow [6]. Lines
in a Frege proof are Boolean formulas, whereas lines in an extended Frege proof
can express Boolean circuits. It is generally conjectured that some Boolean cir-
cuits can only be expressed by exponentially larger Boolean formulas. For this
reason, it is also generally conjectured that Frege proofs cannot polynomially
simulate extended Frege proofs; however this is an open question.

Bonet, Buss, and Pitassi [2] looked for examples of tautologies that might be
conjectured to provide exponential separations between the Frege and extended
Frege proof systems. They found only a small number of examples other than
partial consistency statements. The first type of examples were based on linear
algebra, and included the Oddtown Theorem, the Graham-Pollack Theorem,
the Fisher Inequality, and the Ray-Chaudhuri-Wilson Theorem. The remaining
example was Frankl’s Theorem on the trace of sets.

The four principles based on linear algebra all have short extended Frege
proofs using facts about determinants and eigenvalues. The same is true for the
“AB=I ⇒ BA=I” tautologies about square matrices A and B over GF2 that was
subsequently suggested by S. Cook. Recently, Hrubeš and Tzameret [10] showed
that determinant identities such as det(A) det(B) = det(AB) and AB = I ⇒

Supported in part by NSF grants DMS-1101228 and CCF-1213151.
Supported in part by grant TIN2010-20967-C04-02.

Supported in part by NSF grants DMS-1101228 and CCF-1213151 and by the Simons Foun-
dation award 306202.

© 0000, Association for Symbolic Logic

0022-4812/00/0000-0000/$00.00

1



2 JAMES AISENBERG, MARIA LUISA BONET, AND SAM BUSS

BA = I have quasi-polynomial size Frege proofs. Thus it seems highly likely (as
was already conjectured by [2]) that all these principles have quasi-polynomial
size Frege proofs.

The remaining principle, Frankl’s Theorem, was shown to have polynomial size
extended Frege proofs by [2]. The main result of the present paper, Theorem 8,
shows that the propositional formulations of Frankl’s Theorem also have quasi-
polynomial size Frege proofs.

Very few other other candidates (other than partial consistency principles) for
exponentially separating Frege and extended Frege systems have been proposed.
Ko lodziejczyk, Nguyen, and Thapen [13] suggested the propositional transla-
tions of various local improvement principles LI, LIlog and LLI as candidates,
motivated by results on their provability in the bounded arithmetic theory V 1

2 .
They proved the LI principle is equivalent to partial consistency statements for
extended Frege systems, but the other two remained as candidates. However,
Beckmann and Buss [1] subsequently proved that LIlog is provably equivalent
(in S1

2) to LI and that the linear local improvement principle LLI is provable
in U1

2 . Therefore the former is equivalent to a partial consistency statement, and
the latter has quasi-polynomial size Frege proofs. Thus neither of these provide
good candidates for exponentially separating Frege and extended Frege systems.
The rectangular local improvement principles RLIk ([13, 1] for k ≥ 2 are possible
candidates for separation, as they are neither known to be provable in U1

2 nor
known to be many-complete for the provably total NP search problems of V 1

2 .
Another family of propositional tautologies based on the Kneser-Lovász The-

orem was recently proposed by Istrate and Crãciun [11]. They showed that the
k = 3 versions of these tautologies have polynomial size extended Frege proofs,
but left open whether they have (quasi-)polynomial size Frege proofs. However,
subsequent work of Aisenberg, Bonet, Buss, Crãciun, and Istrate [in prepara-
tion] has established that the Kneser-Lovász tautologies have polynomial size
extended Frege proofs and quasi-polynomial size Frege proofs.

We thus lack many good candidates for super-quasipolynomially separating
Frege and extended Frege systems, apart from partial consistency principles
(cf., [6, 4]) or principles such as LI and LIlog which are equivalent to partial
consistency principles. This raises the question of whether Frege systems can
quasi-polynomially simulate extended Frege systems. This seems very unlikely
since none of the cases where Frege proofs (quasi-)polynomially simulate ex-
tended Frege proofs use methods that generalize to simulate arbitrary extended
Frege proofs. The known simulations, such as the results of the present paper,
may instead be useful to help show what kinds of techniques will be needed to
separate Frege and extended Frege proofs.

The two restricted cases of Frankl’s Theorem (Theorem 1) where the param-
eter t is equal to 1 or 2 have already been shown to have polynomial size Frege
proofs. The t = 1 case is Bondy’s Theorem, which Bonet, Buss, and Pitassi [2]
proved to have polynomial size Frege proofs. They proved more than this in fact;
namely, Bondy’s Theorem is equivalent over AC0-Frege to the pigeonhole princi-
ple Phpn+1

n . Their proof involved showing that the bounded arithmetic theories
I∆0+∆0-Php and I∆0+∆0-Bondy are equivalent. Nozaki, Arai, and Arai [16]
improved this by showing that the t = 2 case of Frankl’s Theorem (known as
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Bollobás’ Theorem) also has polynomial size Frege proofs. They did not explic-
itly address the question of AC0-Frege reducibility to the pigeonhole principle,
but it is easy to see that their constructions give such a reduction. In other
words, their proof shows that there are polynomial size AC0-Frege proofs of the
propositional translations of Bollabás’ Theorem from instances of the pigeonhole
principle, and that Bollobás’ Theorem is provable in I∆0 + ∆0-Php.

We extend these results to general t. Theorem 9 states that, for any fixed
value of t, Frankl’s Theorem has polynomial size Frege proofs. In fact, for a
fixed value of t, Frankl’s Theorem has polynomial size AC0-Frege proofs from the
∆0-Php formulas. Likewise, for fixed values of t, Frankl’s Theorem is provable
in I∆0 + ∆0-Php.

Our proof methods substantially extend the constructions of [7, 2]. Like the
original proof of Frankl [7], we reduce from the general case of Frankl’s Theorem
to the case where the matrix is hereditary. However, the direct transformation
to a hereditary matrix as described by Frankl does not yield quasi-polynomial
size propositional formulas. Thus, we need to use a different, more complicated
construction that builds a hereditary matrix that is AC1-definable. This con-
struction can be translated into quasi-polynomial size Frege proofs and is the
main new contribution of the present paper. The prior constuction of [7, 2]
could only be translated to polynomial size extended Frege proofs, but required
exponential size Frege proofs. Surprisingly, our more complicated construction
produces the same hereditary matrix as the prior construction, at least if the
Frankl construction is carried out column by column.

Once the general case of Frankl’s Theorem has been reduced to the case of
hereditary matrices, the remainder of the proof of Frankl’s Theorem is carried out
by using the Kruskal-Katona Theorem [12, 15] in the same way as was done by
both Frankl and Bonet-Buss-Pitassi. Additional work is need for the case of con-
stant t, where we show that Frankl’s theorem has AC0-Frege + Php proofs. For
this, we use a sharpened “functional” form (Theorem 7) of the Kruskal-Katona
Theorem, which is based on AC0-definable bijections. For constant values of t,
we show that the functional form of the Kruskal-Katona Theorem has polynomial
size AC0-Frege proofs, and this allows us to construct the needed AC0 reduction
to the pigeonhole principle.

1.1. Frankl’s Theorem and the Kruskal-Katona Theorem. Through-
out the paper, A is an m × n 0/1 matrix with m distinct rows. We identify
rows r of A with strings in {0, 1}n.

Theorem 1. (Frankl [7]) Let t be a positive integer and m ≤ n 2t−1
t . Then

for any m× n 0/1 matrix with distinct rows, there is a column such that if this
column is deleted, the resulting m× (n− 1) matrix will contain fewer than 2t−1

pairs of equal rows.

We can rephrase this theorem using the following terminology.

Definition 2. Let r1 and r2 be two rows of A, and j ∈ {0, . . . , n−1}. Row r1
is equivalent modulo column j to row r2 if r1 and r2 differ in exactly column j.
We define Pj to be the set of rows r1 for which there exists such a row r2.
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Note that j ∈ {0, . . . , n−1}; columns are numbered from left to right, starting
with j = 0. Since the rows of A are distinct, there can be at most one row
equivalent to r1 modulo column j; thus, |Pj | is even. When column j is deleted,
there are |Pj |/2 pairs of equal rows in the resulting m× (n− 1) matrix. Frankl’s
Theorem can be rephrased as follows.

Theorem 3. Let t be a positive integer, and let m ≤ n 2t−1
t . Then for any

m× n 0/1 matrix with distinct rows, there is a j such that |Pj | < 2t.

Theorem 3 is trivial if m < 2t since |Pj | ≤ m. Also, if m ≤ n, we can take
t = 1 and then Theorem 3 follows from Bondy’s Theorem; and we already know
Bondy’s theorem has polynomial size Frege proofs. Thus we may assume that
m ≥ 2t and m > n.

Our proof, like the usual proof of Frankl’s Theorem, goes through hereditary
matrices and the Kruskal-Katona Theorem.

Definition 4. Let F = {S1, . . . , Sm} be a family of subsets of {0, . . . , n− 1}.
The incidence matrix for F is an m×n 0/1 matrix with matrix element ai,j = 1
iff j ∈ Si. The family F is hereditary if X ⊂ Y ∈ F implies X ∈ F . A 0/1 matrix
is hereditary if it is the incidence matrix of some hereditary family.

Equivalently, a 0/1 matrix A is hereditary provided that, for any row r, changing
any entry 1 in r to 0 yields another row of A.

Definition 5. If r ∈ {0, 1}n, we write |r|1 to denote the number of ones in r.
If A is an m× n 0/1 matrix and k ≥ 0, we write |A≤k| to denote the number of
rows r of A such that |r|1 ≤ k.

For r ∈ N, we let |r|1 denote the number of 1’s in the binary representation
of r. For X a set of natural numbers, we write |X≤k| to denote the number of
r ∈ X such that |r|1 ≤ k.

We next state the Kruskal-Katona Theorem needed for the proof of Frankl’s
theorem. This is actually only a corollary to the Kruskal-Katona Theorem,
see [7, 2], but we henceforth refer to it as the “Kruskal-Katona Theorem”.

Theorem 6. Let A be an m×n 0/1 hereditary matrix with distinct rows, and
k ≥ 0. Then

|A≤k| ≥ |{0, 1, 2, . . . ,m− 1}≤k|.(1)

Theorem 6 was shown to have polynomial size Frege proofs by [2]. When dis-
cussing AC0-Frege proofs of Frankl’s Theorem, we need the following functional
form of the Kruskal-Katona Theorem.

Theorem 7. Let A be an m × n 0/1 hereditary matrix with distinct rows.
Then there is a bijection f from {0, 1, 2, . . . ,m−1} onto the rows of A such that
for every i, |i|1 ≥ |f(i)|1.

Theorem 7 is an immediate consequence of Theorem 6. Its advantage is that,
for constant values of m, the bijection f can be defined with a constant depth
formula.
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1.2. Frege, extended Frege, and the main theorems. Frege proof sys-
tems are implicationally sound and complete propositional proof systems formal-
ized with a finite set of schematic axioms and the inference rule modus ponens
using, without loss of generality, the connectives ¬, ∧, ∨, and →. The length of
a Frege proof is defined to be the total number of symbols in the proof. Extended
Frege systems can be defined to be the same as Frege systems, but with proof
length equal to the number of formulas (lines) in the proof instead of the number
of symbols. An AC0-Frege proof is a Frege proof in which all lines have alter-
nation depth O(1). For more information on Frege and extended Frege systems,
see [6] or [2, 3, 14].

Frankl’s Theorem, in the form of Theorem 3, is formalized as an infinite family
of propositional tautologies as follows. Fix positive values n, m and t such that
m ≤ n · (2t − 1)/t. For 0 ≤ i < m and 0 ≤ j < n, let pi,j be a propositional
variable with the intended interpretation that pi,j is true iff the (i, j) entry of A
is equal to 1. For i ̸= i′, the formula Eq(i, i′, j) expresses that rows i and i′ differ
only in column j as

Eq(i, i′, j) :=
∧
j′ ̸=j

(pi,j′ ↔ pi′,j′).

By [3], there are polynomial size formulas expressing counting which allow poly-
nomial size Frege proofs to reason about sizes of sets. This enables us to define
the cardinality of Pj as

CardP(j) :=
∣∣{i : 0 ≤ i < m and

∨
i′ ̸=i

Eq(i, i′, j)
}∣∣.

The size of CardP(j) is polynomially bounded by the total size of the m many
formulas

∨
i′ Eq(i, i′, j); hence polynomially bounded by m and n. Letting

DistinctRows be the formula
∧

i ̸=i′
∨

j(¬pi,j ↔ pi′,j), Frankl’s Theorem (for

these values of m,n, t) can be expressed by the polynomial size propositional
formula

DistinctRows →
∨
j

(CardP(j) < 2t).

This formula has size polynomially bounded by m, n and t. We next state our
two main results precisely. A proof is said to be quasi-polynomially bounded if it
is quasi-polynomially bounded by the size of the formula that is proved.

Theorem 8. There are quasi-polynomial size Frege proofs Pm,n,t of the propo-
sitional translations of Frankl’s Theorem.

As already remarked, Theorem 8 is trivial if m < 2t, and is known (via Bondy’s
Theorem) for m ≤ n. In other cases, the Frege proof Pm,n,t will have quasi-
polynomially (in m) many steps, and each formula in Pm,n,t will be equivalent to

an AC1-circuit. Namely, each formula will have only polynomially many distinct
subformulas, and will have only O(logm) many alternations of ∧’s and ∨’s.

For the next theorem, we assume t is constant. In this case, there are polyno-
mial size formulas with O(1) alternations of ∧’s and ∨’s (that is, AC0-circuits)
that express the condition “CardP(j) < 2t”. To see this, note that its nega-
tion “CardP(j) ≥ 2t” can be expressed as the disjunction over all 2t-tuples
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i1 < i2 < · · · < i2t of the assertions that every iℓ ∈ Pj . Thus, for a constant
value for t, the propositional translations of Frankl’s Theorem can be expressed
as constant depth, polynomial size formulas.

As is customary (cf. [5]), we let AC0-Frege+Php denote the Frege proof system
augmented with all substitution instances of the n+1 into n pigeonhole principle
for all n ≥ 1, and restricted so that all formulas have alternation depth O(1).

Theorem 9. Fix t > 0. There are AC0-Frege+Php proofs P t
m,n of the propo-

sitional translations of Frankl’s Theorem which have polynomial size (in m,n)
and in which all formulas have alternation depth O(t) = O(1).

The outline of the paper is as follows. Sections 2.1 through 2.3 give our new
reduction to the hereditary case of Frankl’s Theorem. The general strategy of
the proof is as follows. Given a 0/1 matrix A, we let T be the prefix tree for the
rows of A. The nodes of T are sets of rows of A that share a common prefix, and
the ancestor relation for T is set inclusion. We define a function χ that takes
as input a node of T and a list of column indices, and produces another node
in T . This χ function is used to define another m × n 0/1 matrix A′, which is
hereditary. Furthermore, if A violates the conditions of Frankl’s Thoerem, then
so does A′, From here, we are in the situation for the usual proof of Frankl’s
Theorem, and we conclude our proof by using the Kruskal-Katona Theorem.
Section 2.4 describes the functional form of the Kruskal-Katona Theorem which
will be needed for polynomial size Frege proofs of the constant t case.

Section 3.1 discusses how to formalize this proof of Frankl’s Theorem in propo-
sitional logic. The key point is that (the graph of) the χ function can be defined
with AC1-circuits, and that the properties of the χ function can be established
with quasi-polynomial size Frege proofs. Section 3.2 discusses the formalization
of the constant t case of Frankl’s Theorem with AC0-Frege + Php proofs. The
key new tool is that the bijective form of the Kruskal-Katona Theorem can be
formulated and proved in AC0-Frege.

Section 4 shows that the matrix A′ is identical to the hereditary counterex-
ample produced in the usual proof of Frankl’s Theorem when the reduction to a
hereditary matrix is carried out column by column.

§2. Proof of Frankl’s Theorem. This section gives our reduction from the
general case of Frankl’s Theorem to the hereditary case. We define the reduction
and prove its correctness in detail, so that it will be clear in Section 3 that the
arguments can be formalized with quasi-polynomial size Frege proofs. Section 2.1
builds the prefix tree for the rows of A, Section 2.2 defines the χ function and
establishes its properties. Section 2.3 uses the χ function to construct hereditary
matrix, culminating with Theorem 25. Section 2.4 proves the bijective version of
the Kruskal-Katona Theorem as will be needed for the AC0-Frege +Php proofs.
We assume henceforth that A is an m × n 0/1 matrix with distinct rows and

m ≤ n 2t−1
t .

2.1. The prefix tree for A. Recall that a row r is identified with a string
in {0, 1}n. A binary string x is a prefix of r when r equals the concatenation xy
for some y.


