
Large Numbers, Busy Beavers,
Noncomputability and Incompleteness

Food For Thought
November 1, 2007

Sam Buss
Department of Mathematics

U.C. San Diego

PART I

Large Numbers, Busy Beavers, and Undecidability

1

The “name the larger integer” game.

In this two player game, each player has a blank 3 × 5 card and writes out
a description of an integer. They reveal their descriptions, and the player
with the larger integer wins.

Rules:

• There are restrictions on fonts, font size, etc. that limit how much can
be written on a card.

• The description must unambiguously describe a unique integer.

• The player with the larger integer wins.

2

Joe and Anna try the game:

Joe’s card: Anna’s card:

10101010
1010

1000100010001000
1000

WHO WINS?

3

Joe and Anna try the game:

Joe’s card: Anna’s card:

10101010
1010

1000100010001000
1000

WHO WINS?
Joe wins. X

4

Joe and Anna try a second round:

Joe’s card: Anna’s card:

Let f0(x) = 10x.
Let fk+1(x) = fk(f(x)).

Then: f100000(100000).

5

Joe and Anna try a second round:

Joe’s card: Anna’s card:

Let f0(x) = 10x.
Let fk+1(x) = fk(f(x)).

Then: f100000(100000).

The value on Joe’s card,
plus one.

6

Joe and Anna try a second round:

Joe’s card: Anna’s card:

Let f0(x) = 10x.
Let fk+1(x) = fk(f(x)).

Then: f100000(100000).

The value on Joe’s card,
plus one.

Joe wins. X

Judges rule that Anna cheated
since her answer takes advantage
of the space available on Joe’s
card, and thus she is not using
only her own 3 × 5 card.

7

Joe and Anna try a third round:

Joe’s card: Anna’s card:

For all h, let h(0)(x) = x
and hk+1(x) = h(h(k)(x)).
Let f0(x) = 10x.

Let fk+1(x) = f
(x)
k (x).

Then: f100000(100000).

8

Joe and Anna try a third round:

Joe’s card: Anna’s card:

For all h, let h(0)(x) = x
and hk+1(x) = h(h(k)(x)).
Let f0(x) = 10x.

Let fk+1(x) = f
(x)
k (x).

Then: f100000(100000).

(The largest value that
can be specified on a 3× 5
card according to the
rules of the game) + 1.

9

Joe and Anna try a third round:

Joe’s card: Anna’s card:

For all h, let h(0)(x) = x
and hk+1(x) = h(h(k)(x)).
Let f0(x) = 10x.

Let fk+1(x) = f
(x)
k (x).

Then: f100000(100000).

(The largest value that
can be specified on a 3× 5
card according to the
rules of the game) + 1.

Anna argues that the font
restrictions mean that there are
only finitely many possible valid
ways to fill out a 3 × 5 card, and
thus the quantity in parentheses
is well-specified.

10

Problem: Anna’s card has revealed a paradoxical situation similar to Berry’s
paradox.

Berry’s Paradox:
“The smallest postive integer not definable with under eleven words.”

Clearly, Anna’s description cannot be a valid entry under the rules of
the game (since it is larger than any valid entry), but why is it not valid?

11

Problem: Anna’s card has revealed a paradoxical situation similar to Berry’s
paradox.

Berry’s Paradox:
“The least integer not nameable in fewer than nineteen syllables.”

Clearly, Anna’s description cannot be a valid entry under the rules of
the game (since it is larger than any valid entry), but why is it not valid?

The judges decide the problem is that the rules about what counts as
a description are too open ended in allowing arbitrary natural language
descriptions of integers. (Side remark: Tarksi’s theorem that truth is
undefinable.). So they decide to change the rules by using a Turing machine
model for specifying integers.

[B. Russell, 1908 – extending a suggestion of G. Berry.]

12

Turing machines

A Turing machine is a simple computational
model based on a finite state control working
with an infinite tape memory. The Turing
machine has a single tape head that can read
and write only one tape square at a time.

A Turing machine is specified by a finite set of rules (5-tuples) that
specify a function

f : Q × {0, 1} → Q × {0, 1} × {R, L}.
Here, f(q, a) = (q′, b, X) means “If in state q, reading symbol a, then

overwrite a with b, move one square in the direction X (Left/Right), and
go to state q′.”

13

Church-Turing Thesis

Church-Turing Thesis: Any computable function can be computed by a
Turing machine.

Church’s thesis was originally stated by Church for the lambda calculus.
Turing independently made the same point much more effectively for “Turing
machines”. Turing machines are as powerful as ordinary computers, except
without finite limits on memory.

[A. Church, 1936; A. Turing, 1936.]

14

New rules for the “large integer” game

The judges decide that the new rules for the game are that the card must
contain a Turing machine specified explicitly as a set of 5-tuples, over the
alphabet {0,1}, with any number of states. (As before, the number of
5-tuples is limited by the size of the card, but fairly sophisticated programs
can fit on a single card.)

The integer value specified by a Turing machine M is as follows: M is
started with a tape containing all 0’s.

• If M eventually halts, then the number of 1’s left on the tape is the
specified integer.

• If M never halts, then M does not specify any integer.

15

Anna’s new card

(An encoding of) a Turing machine M that implements the
following algorithm:

1. Enumerate all sets S of 5-tuples which fit on a 3 × 5
card and which code some Turing machine NS.

2. For each such NS, determine if it halts.
If not, proceed to the next NS.

3. Otherwise simulate NS until it halts and count the
number of 1’s left on the tape when NS halts.
Remember the maximum number of 1’s obtained so far.

4. Once all such NS have been considered, write a string
of 1’s that is 1 longer than the maximum found, and
halt.

16

Anna’s new card

(An encoding of) a Turing machine M that implements the
following algorithm:

1. Enumerate all sets S of 5-tuples which fit on a 3 × 5
card and which code some Turing machine NS.

2. For each such NS, determine if it halts.
If not, proceed to the next NS.

3. Otherwise simulate NS until it halts and count the
number of 1’s left on the tape when NS halts.
Remember the maximum number of 1’s obtained so far.

4. Once all such NS have been considered, write a string
of 1’s that is 1 longer than the maximum found, and
halt.

17

We have now shown:

Theorem (Turing, 1936). The halting problem is undecidable.

18

Small Turing machines can be very powerful

Define the Busy Beaver function by: [T. Radó, 1962]

BB(n) = the largest integer output by halting n-state Turing machine
blank, 2-symbol tape.

Then BB(1) = 1, BB(2) = 4, BB(3) = 6, BB(4) = 13, BB(5) >= 498,
BB(6) >= 1.2 · 10865.

A $25,000 Wolfram prize was recently won by A. Smith [2007] who showed
there is a 2-state, 3-symbol universal Turing machine (a machine which has
the power to simulate any Turing machine when stared with appropriate
initial tape contents).

19

PART II

Computability, Number Theory, and Incompleteness

20

Terminology

Def’n A function which can be computed by an algorithm, is called
“recursive”, or “computable”.

Def’n A decision problem that can has an algorithmic solution is called
“decidable” or “recursive”.

Def’n A decision problem (such as the Halting problem) that can be
expressed in the form

A(x) ⇔ ∃y ∈ N(B(x, y)),

where B(x, y) is decidable, is called “recursively enumerable (r.e)” or
“computably enumerable (c.e.)”.

21

Defn A Diophantine equation is an equation involving polynomials with
integer coeffients, in which the variables are allowed to take on (non-
negative) integer values only.

Example Pell’s equation for fixed n >= 0 is x2 − ny2 = 1.

Thm [Matijasevich-Robinson-Davis-Putnam, 1959,1960,1970]. There is a
many-one reduction from the Halting problem to Diophantine solvability.
That is to say, there is a computable f such that for any Turing machine M ,
f(M) is (the encoding of) a Diophantine equation pM(~x) = qM(~x), and
such that M halts after starting with a blank tape iff pM(~x) = qM(~x) has
a solution.

Corollary There is no algorithm the decides whether Diophantive
equations have solutions.

This resolved Hilbert’s 10th problem, by proving there is no algorithm
for solving Diophantine equations.

22

Formal theory

Consider a formal theory, with a formal axiomatization and fully specified
rules of inference. Examples include

1. Peano arithmetic (PA): A formal proof system for the non-negative
integers, with axioms for +, · and induction.

2. Set theory (ZFC): A formal proof systems for sets, that is powerful
enough to formalize all(!) of mathematics.

For the purposes of this talk: The more powerful theory you think of, the
better.

23

At the least, such a theory T

• Is expressive enough to make statements about integers and (particular)
polynomials and the solvability of any particular Diophantine equation.

• Is powerful enough to prove many basic properties of integers and
polynomials.

• Has a mathematically defined notion of “valid proof”, and there are
algorithmic methods for recognizing, parsing, and manipulating valid
proofs.

• The proofs in T can be encoded by strings of symbols over a finite
alphabet.

24

For a given solvable Diophantine equation p = q, the theory T can prove

∃~x(p(~x) = q(~x)).

The proof consists of exhibiting one solution.

Defn T is said to be complete if for every sentence (statement) φ in the
language of T , T proves either φ or ¬φ.

If T is complete, then for any unsolvable Diophantine equation p(~x) = q(~x),
T proves

¬∃~x(p(~x) = q(~x)).

Gödel’s 1st Incompleteness Theorem. [1931] There is no consistent
complete, axiomatizable theory for the integers (over +, ·, ...).

25

To sketch the proof: Suppose T is complete. Then the following would be
an algorithm for deciding solvability of Diophantine equations, contradicting
the undecidability of the set of solvable Diophantine equations.

Input: A Diophantine equation p = q.

Algorithm:
• Enumerate all valid T -proofs, by enumerating all strings of symbols that

may encode a T -proof.

• As the proofs are enumerated, check each to see if it a valid proof of
∃~x(p(~x) = q(~x)) or of ¬∃~x(p(~x) = q(~x)).

• If so, halt and output “solvable” or “unsolvable”, respectively.

• If not, continue to the next T -proof.

Since T is complete, this algorithm is guaranteed to halt.

26

Gödel’s 2nd Incompleteness Theorem

One might object to the philosophical importance of the 1st
Incompleteness Theorem by pointing out that its proof showed only
that some rather contrived statements about unsolvability of Diophantine
equations are not provable in T .

However, the 2nd Incompleteness Theorem resolves this issue by stating:

Gödel’s 2nd Incompleteness Theorem. [1931] Let T be consistent and
axiomatizable (and strong enough to prove sufficiently many properties of
+ and · on N). Then T does not prove the (encoding of the) statement

“T is consistent”.

27

the end

28

