
FmlaChain: Tautologies based on Iterated
Equivalences or Implications of Boolean Formulas.

Sam Buss
Department of Mathematics

University of California, San Diego
San Diego, California, USA

sbuss@ucsd.edu

Abstract—We describe a software package that generates in-
stances of the Boolean formula implication chain and equivalence
chain principles expressed as sets of unsatisfiable CNFs.

Index Terms—Boolean formulas, formula chains, iterated
equivalence, iterated implication, satisfiability, CNF, software

I. INTRODUCTION

The Boolean formula equivalence chain tautologies
(FmlaEquivChain) and the Boolean formula implication
chain tautologies (FmlaImplyChain) were described by Buss
and Ramyaa [1]. These tautologies, based on a suggestion of
Krajı́ček [2], are of interest as potentially giving an exponential
separation between depth d and depth d+1 Frege proofs.
Surprisingly, [1] showed that if the depth d is held fixed,
then the equivalence chain tautologies (expressed as unsatisfi-
able CNFs) have polynomial size resolution refutations. This
remains open for the formula implication chain tautologies,
however.

A Boolean formula chain means a sequence T1, T2, . . . , Tn

of Boolean formulas. Each formula Ti has constant depth d;
the root node (the principal connective) is an ∨ gate; each
gate has fanin f ; and gates alternate between ∨ and ∧. The
inputs to the formula Ti are represented by variables xi,p, with
xi,p giving the value of the p-th input to Ti. The formula T1

will be “obviously true”; see Figure 1. Likewise, Tn will be
“obviously false”; see Figure 2.

Each Ti+1 is obtained by interchanging inputs to gates in Ti.
Figure 3 shows one such interchange, also called a “swap”.
The interchange is accomplished by interchanging the values
of the inputs to Ti to obtain the values of the inputs Ti+1. In
the “equivalence chain” formulation, called FmlaEquivChain,
the interchanged input values have the same true/false value
in Ti+1 as in Ti. In the “implication chain” formulation, called
FmlaImplyChain, we have only that the interchanged input
values of Ti+1 are implied by their source input value in Ti.

In both the implication and equivalence chain setting, if Ti

evaulates to true, then so does Ti+1. It is impossible for this
to hold for all i, since T0 evaluates to true and Tn evaluates
to false.

The construction of the principles FmlaEquivChain and
FmlaImplyChain is based directly on [1]. However, it differs
in allowing many swaps to be carried out during the transition

Supported in part by Simons Foundation grant 578919.

1 1 x x 1 1 x x xxxxxxxx

∨

∧ ∧

∨ ∨ ∨ ∨

∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧

Fig. 1. This is an “obviously” true Boolean formula. The four inputs of 1
(True) are enough to force the formula to have value true. They cause two of
the bottom-most AND gates to have value true; this induces the first two OR
gates at the third level to have value true. That further causes the first AND
gate at the second level have value true, and that induces the value true for
the OR at the root of the formula. The general property is that any path from
the root gate to the leaves that always selects the leftmost child of any OR
gate always reaches an input value of 1. The “x” input values “don’t care”
values.

For space reasons, the formula is shown with all gates as having fanin
f = 2. However, it is permitted that the fanin f is any constant ≥ 2.

0 x 0 x x x x x xxxxx0x0

∨

∧ ∧

∨ ∨ ∨ ∨

∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧

Fig. 2. The obviously false formula is constructed dually to the obviously
true formula of Figure 1. Any path from the root of the formula to a leaf that
always selects the leftmost child of AND gates reaches a leaf labelled with 0
(False).

from Ti to Ti+1. (Unlike [1], who allowed only one swap at a
time.) Every input to every gate in Ti potentially gets swapped
when forming Ti+1. For this, the swaps are applied in phases.
In each phase, the swaps are applied to gates at a fixed depth
d′ < d below the root, starting with depth d′ = d−1 and
ending with d′ = 0.

II. VARIABLES AND CLAUSES

The FmlaEquivChain and FmlaImplyChain principles are
specified with parameters d, f and n, representing the depth of



y1 y2 y3 y4 y5 y6 y7 y8 y16y15y14y13y12y11y10y9

∨

∧ ∧

∨ ∨ ∨ ∨

∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧

Ti

z1 z2 z3 z4 z5 z6 z7 z8 z16z15z14z13z12z11z10z9

∨

∧ ∧

∨ ∨ ∨ ∨

∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧

Ti+1

Fig. 3. The formula Ti+1 is obtained from Ti by swapping the two subformulas as shown. This swap is accomplished by moving the values of variables.
A swap variable g := si,G,`,k indicates the swapping of the `-th and k-th input to the gate G in Ti when forming Ti+1, (Pictured with ` = 1 and k = 2.)
In this case, the FmlaImplyChain CNF includes the clauses g ∧ yp → zq where yp and yq are the k-th inputs in Ti to the to swapped subformulas (so zq
is the input in Ti+1 in the same position as yq). The FmlaEquivChain CNF, for the equivalence chain tautology, also contains the clause g ∧ zq → yp.

This figure is overly simplified, showing a single swap. In actuality, there are d rounds of swaps needed to transition from Ti to Ti+1, with many swaps
at possible at a single level. Since the figure shows a swap at level v = 2, the variables yp should actually be xi,1,p and the variables zp should actually
be xi,2,p.

formulas Ti, the uniform fanin of the gates in the Ti’s, and the
number of formulas Ti. There are fd many inputs to each Ti,
the propositional variables xi,p, for p ≤ fd, give the values of
the inputs. Each Ti+1 is obtained by performing d rounds of
swaps, starting at the bottom level s = 1 (the level closest to
the inputs), and ending at the root gate of Ti with s = d. The
inputs to Ti after s rounds of swaps (at the bottom s levels of
the formula) are denoted xi,s,p. We identify the variables xi,p

and xi,0,p; these are the input values before any swaps have
occurred. We also identify the variables xi,d,p and xi+1,p; that
is, the values of the inputs to Ti+1 are same as the values of
the inputs that are the result of carrying out all d levels of
swaps on Ti.

In addition to the variables xi,p and xi,s,p, there are vari-
ables si,G,`,k where i < n, G is a gate in the formula Ti, and
` ≤ k ≤ f denote the `-th and k-inputs to G. If this variable
is true, it indicates the `-th and k-th inputs to G in Ti are to
be swapped. It is permitted that ` = k, in which case, that
input is not subject to a swap. The CNF will contain clauses
that ensure that, for any i, G, `, there is exactly one k such
that gi,G,`,k or gi,G,k,` holds.

The clauses in the formula chain CNFs are:
(a) For each x0,p an input to T0 that is in the leftmost child

of each of its ∨ ancestors, the unit clause x0,p. These
ensure that T0 evaluates to true.

(b) (Optional.) For all other x0,p’s (don’t care inputs to T0),
the unit clause x0,p.

(c) For each xn,p an input to Tn that is in the leftmost child
of each of its ∧ ancestors, the unit clause xn,p. These
ensure that Tn evaluates to false.

(d) (Optional.) For all other xn,p’s (don’t care inputs to Tn),
the unit clause xn,p.

(e) For each i < n, each gate G in Ti, and each i ≤ f ,
clauses that ensure that there is exactly only value k ≤ f
such that si,G,`,k or si,G,k,` (the latter if k < `) holds.

(f) If i < n, G is a gate at level s in Ti, ` ≤ k ≤ f , and

xi,s−1,p and xi,s−1,q are the `-th and k-th inputs to the
subformula below G, the clause

si,G,`,k ∧ xi,s−1,p → xi,s,q.

(g) For the equivalence chain principle only, under the same
conditions as (f), the clause

si,G,`,k ∧ xi,s,q → xi,s−1,p.

III. USAGE

The program FmlaChain is run with the following param-
eters:
% FmlaChain <d> <f> <n> [-equiv] [-imply]

[-dontcares] [-no-dontcares]
[-dontcares-init] [-no-dontcares-init]
[-dontcares-end] [-no-dontcares-end]

The integer values <d>, <f>, and <n> specify the formulas’
depth, the common gate fanin, and the number of formulas.

Exactly one of the arguments “-equiv” or “-imply”
must be specified. The most common usage is:

% FmlaChain <d> <f> <n> -equiv

or
% FmlaChain <d> <f> <n> -imply

The options “-dontcares” and “-no-dontcares”
specify whether or not to include the unit clauses setting the
values of the don’t-care inputs to T0 and Tn. The “-equiv”
option by default includes the don’t-care unit clauses, whereas
the ‘-imply” option by default does not include these unit
clauses. The “-init” and “-end” versions of these options
select the settings separately for the don’t care inputs of T0

and Tn.

IV. ACKNOWLEDGEMENTS

Thanks to Armin Biere and Marijn Heule for encouragement
and feedback, and to Armin Biere for a bug report.



REFERENCES

[1] S. Buss and R. Ramyaa, “Short refutations for the equivalence-chain
principle for constant-depth formulas,” Mathematical Logic Quarterly,
vol. 64, no. 6, pp. 503–513, 2018.

[2] J. Krajı́ček, “A form of feasible interpolation for constant depth Frege
systems,” Journal of Symbolic Logic, vol. 72, no. 2, pp. 774–784, 2010.


