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Talk overview

A. Bounded arithmetic theories are weak subtheories of Peano
arithmetic with close connections to

Feasible complexity classes, e.g. P and NC
1.

Propositional proof complexity, via the Paris-Wilkie and the
Cook translations.

Moral: A proof in bounded arithmetic corresponds to a
uniform family of propositional proofs.

B. Monotone propositional logic (MLK) is the propositional
sequent calculus with no use of negation (¬) permitted.
LK is the usual propositional sequent calculus.
Main theorem: MLK polynomially simulates LK.

C. This talk describes how to formalize, in VNC
1 — a theory of

bounded arithmetic corresponding to NC
1, the construction of

expander graphs. Using prior work [Arai; Cook-Morioka;
Atserias-Galesi-Pudlák; Jěrábek], this proves the main
theorem.
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The first Bounded Arithmetic theories (I∆0, [Parikh’71, ...])
and (S i

2, T
1
2 , U

1
2 , V

1
2 [B’85]) were for alternating linear time

and for polynomial time (P), the polynomial hierarchy (PH),
polynomial space and exponential time.

Takeuti [90]: the RSUV isomorphism translates theories such
as U1

2 into theories for feasible classes below P.

Clote-Takeuti [1992] achieved this for such several theories,
including for alternating logarithmic time (Alogtime, or
uniform NC

1), log space (L) and nondeterministic log space
(NL). Especially, they defined the bounded arithmetic theory
TNC for Alogtime.

Arai [2000] developed an improved theory AID similar to
TNC: he showed in addition that the theory AID has the
Cook correspondence with propositional LK proofs.

Cook-Morioka [’05], Cook-Nguyen[’10] give newer versions,
esp. VNC1.
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Def’n: The propositional sequent calculus (LK) is a
propositional proof system whose proofs consist of sequents, with a
finite set of valid inference forms, for example

Γ→∆,A Γ→∆,B∧:right
Γ→∆,A ∧ B

Γ→∆,A A, Γ→∆
Cut

Γ→∆

Def’n: The monotone sequent calculus (MLK) is LK restricted
to allow only monotone formulas to appear in sequents.

MLK proofs are allowed to be dag-like.

Main Theorem: LK proofs of monotone sequents can be
simulated by polynomial size MLK proofs.
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Technical talk outline

I. Combinatorial construction of expander graphs, avoiding
algebraic concepts such as eigenvalues even in proofs of
correctness.

II. This construction can be carried out in NC
1 (logarithmic

depth Boolean circuits).

III. Combinatorial constructions are provably correct in the weak
first-order theory VNC

1 corresponding to NC
1.

IV. Application: Monotone propositional logic (MLK)
polynomially simulates non-monotone propositional logic (LK)
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I. Construction of Expanders

Expander Graphs:

Undirected graphs, allowing self-loops and multiple edges.

Expander graphs are both sparse (usually constant degree)
and well connected.

A random walk on an expander graphs converges quickly

Are used for pseudorandomness, e.g., for one-way functions,
error-correcting codes, derandomization, etc.

Are widely used in complexity theory, e.g.,

Reingold; Rozenman-Vadhan. USTCON in Logspace
Dinur: Combinatorial proof of PCP theorem
Ajtai-Komlós-Szemerédi: AKS sorting networks.
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Definition of expander graph G = (V ,E ),
of constant degree d

For U,U a proper partition of the vertices V , let

edge-expG (U) :=
|E (U,U)|

d ·min(|U|, |U |)
.

E (U,U) is the set edges between E and E .
The edge expansion of G is minU(edge-expG (U)).

G is an expander graph if it has Ω(1) edge expansion.

—
Edge expansion can be lower bounded in terms of the spectral gap
(second largest eigenvalue λ2) of the adjacency matrix.
—
Our work requires instead combinatorial constructions and proofs.
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Classical (non)construction: [Pinkser’73]
A randomly chosen degree d graph is an expander.

Iterative Constructions:
Start with finite size expander graph(s). Then iteratively use:

Powering (to increase expansion).

Zig-zag product or replacement product (to reduce the
degree).

Tensoring (to increase the size of the graph).

Adding self-loops (helps maintain edge expansion).

Original construction [Reingold-Vadhan-Wigderson’02]

Used Zig-zag product, proof based on spectral gap.

[Alon, Schwartz, Shapira’08] used Replacement product with combinatorial
argument.

Our arguments for powering will use also Mihail’s combinatorial proof of mixing times

from edge expansion [1989].
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The explicit construction: (Similar to the prior constructions)
Starts with constants c , d and two “small” (fixed) graphs
- a 2d -regular G0 with edge expansion ≥ ǫ = 1/1296
- a d -regular H on (2(4d)2)c vertices with edge expansion ≥ 1/3.

Iterate: Gi+1 = [©((©Gi )⊗ (©Gi ))]
c ◦ H.

Add self-loops (©) to double the degree

Tensor (⊗) with itself

Add self-loops

Power to constant c

Replace each vertex with H (replacement product, ◦)

Theorem: Each Gi is degree 2d and has edge expansion ≥ ǫ.
The size of Gi+1 is greater than (size of Gi)

2, (size squares)

|Gi | = (|G0|D0)
2i /D0 > 22

i
, where D0 = (2(4d)2)c .
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Graph operations in more detail: G = (V ,E ) of degree D.

Adding self-loops: ©G .

Add D self-loops to every vertex.

Vertex set remains the same. Degree doubles to 2D.

Tensoring with itself: G ⊗ G .

“Crossproduct of G with itself”.

Vertex set is V × V .

Degree squares to become D2.

Raise to power c: G c .

Paths of length c in G are edges of G c .
Vertex set is unchanged. Degree becomes Dc .
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Graph operations in more detail: G = (V ,E ) of degree D

and H = (V ′,E ′) of size |V ′| = D and degree d .

Replacement product: G ◦ H.

Replace each G -vertex v ∈ V with a copy Hv of H.

Thus vertex set is V × V ′.

An edge e = (v1, v2) in G becomes

d parallel edges between vertices of Hv1 and Hv2.

If v2 is i -th-neighbor of v1 in G , it uses i -th vertex of Hv1 .

Degree becomes 2d .

Rotation map: For the replacement product, it is necessary to
order the edges reaching each vertex. The rotation map of a
graph G computes from v ∈ V and i < D: the i -th neighbor w
of v , and the index j such that v is the j-th neighbor of w .
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II. Algorithmic Complexity of the Construction

Main Theorem 1: The rotation map of Gi is uniformly
computable from i , j , v in

Polynomial time.

Alternating linear time.

Proof (a) Straightforward unwinding of construction gives the
polynomial time algorithm.
(b) Alternating linear time: Gi+1’s rotation map is computed from
Gi ’s rotation map in constant alternation linear time.
Only a single recursive call to Gi is needed.
E.g. for powering, nondeterministically guess the path of length c .
Then universally verify correctness of each step in the path.
Since the size of Gi+1 is > square of size Gi , the “linear time” is
decreasing by factor of two with each recursive call. So the overall
running time is linear (but not constant alternation). .
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Since the graph Gi is exponentially bigger than the size of the
inputs to the rotation map function, we get:

Corollary As a function of Gi , there is an alternating logarithmic
time algorithm (an NC

1 algorithm) to compute the edge relation
on Gi .
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Key constructive justification of edge-expansion:

Lemma If U is a set of vertices of Gi+1 with edge-expGi+1
(U) < ǫ,

then there exists a set U ′ of vertices of Gi such that
edge-expGi

(U ′) < ǫ.

Proof idea: There is an NC
1 algorithm to compute membership

in U ′ in terms of U. The correctness is provable by purely
combinatorial means without recourse to algebraic concepts such
as eigenvalues.

Technical tools needed:

Representing graphs and rotation maps.

Definition of the expansion of a set U (as a rational).

Summing sequences of rationals (common denominator).

Arithmetic manipulations of these sequences.

Cauchy-Schwartz inequality.

All of these can be done in the bounded arithmetic theory VNC
1...
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III. Formalizability in bounded arithmetic VNC
1.

Notation: VNC1 is a second-order theory of bounded arithmetic
[Cook-Morioka’05], [Cook-Nguyen’10]; the first versions were
defined by [Clote-Takeuti’92], [Arai’00].

VNC
1 corresponds in proof-theoretic strength to NC

1.

Its provably total functions are precisely the NC
1-functions.

VNC
1 First-order objects code (small) integers.

Second-order objects code strings, graphs, sequences, etc.
ΣB
0 is the set of formulas with no second order quantifiers.

Axioms of VNC1 include: BASIC axioms (purely universal).

ΣB
0 -Comprehension (and hence ΣB

0 -induction).

ΣB
0 -Tree Recursion axiom: The value of a balanced Boolean

formula (a tree) with ΣB
0 functions for gates is well-defined, and

defines a function encoded by a second order object.
The depth of the tree is given by a first-order object.
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The proofs of edge expansion for Gi are based on combinatorial
constructions, counting, and summations of series. VNC1 can
formalize all these arguments and can also prove the correctness of
the NC

1 algorithm for the graphs Gi .

Main Theorem 2: The theory VNC
1 can prove the existence of

the expander graphs Gi , as encoded by second-order objects, and
can prove their expansion properties by using the constructions of
Main Theorem 1, and the above Lemma.
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More details on formalization in VNC
1.

First-order objects (integers, pairs of integers, etc.) encode small
numbers, e.g., indices of vertices or edges.

Second-order objects encode sets, e.g., sets of vertices, or sets of
edges (i.e., graphs).

edge-expG (U) is definable in VNC
1 using counting, which is

known to be definable in VNC
1.

Theorem:

VNC
1 ⊢ ∀i ∃G=(V ,E ), |G |=i &∀U⊂V edge-expG (U)>1/1296.

Proof uses the “parameter-free ΠB
1 -LLIND”, a new

logarithmic-length induction principle for ΣB
1 (NP) properties,

which is justified by the “squaring” growth rate of the expander
construction.
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VNC
1 proves parameter-free ΠB

1 -LLIND:

Theorem: Suppose θ(X ) is a ΣB
0 -formula containing only X free.

and let ψ(a) be (∃X≤a)θ(X ). Also suppose VNC
1 proves

(∀a)(ψ(a) → ψ(
√
a)). (1)

Then VNC
1 proves ψ(a) → ψ(1), and thus also proves

θ(Y ) → (∃X≤ 1)θ(X )).

Application: The hypothesis (∀a)(ψ(a) → ψ(
√
a)) will express a

version of

(∃U⊂Gi)edge-expU ≤ 1/1296 → (∃U⊂Gi−1)edge-expU ≤ 1/1296.

The conclusion ψ(a) → ψ(1) will express a version of

(∀U⊂Gi)edge-expU > 1/1296.
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IV. Monotone propositional logic (sequent calculus)

Monotone Boolean Function: Let 0 < 1, i.e. “False” <“True”.
A Boolean function f (~x) is monotone provided that whenever
~x ≤ ~y , we have f (~x) ≤ f (~y).

Monotone Boolean Formula: A propositional formula over the
basis ∧ and ∨.
Sequent: A1, . . . ,Ak → B1, . . . ,Bℓ means

A1 ∧ A2 ∧ · · · ∧ Ak → B1 ∨ B2 ∨ · · · ∨ Bℓ

Example: Pigeonhole principle tautologies: PHPn

n∧

i=0

n−1∨

j=0

xi ,j →
∨

0≤i1<i2≤n

n−1∨

j=0

(xi1,j ∧ xi2,j).
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Def’n: The propositional sequent calculus (LK) is a
propositional proof system whose proofs consist of sequents, with a
finite set of valid inference forms, for example

Γ→∆,A Γ→∆,B∧:right
Γ→∆,A ∧ B

Γ→∆,A A, Γ→∆
Cut

Γ→∆

Def’n: The monotone sequent calculus (MLK) is LK restricted
to allow only monotone formulas to appear in sequents.

MLK proofs are allowed to be dag-like.
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Theorem: [Atserias-Galesi-Galvalda’01; Aterias-Galesi-Pudlák’02]
For monotone sequent tautologies, MLK quasipolynomially
simulates LK.

Proof idea: Restrict to “slices” where a fixed number of inputs
are true. Then simulate ¬x using threshold formulas.
The properties of the threshold formulas must be proved; and the
natural recursively-defined threshold formulas that admit such
proofs are quasipolynomial size.

Theorem: [B ’86] The PHPn tautologies have polynomial size LK
proofs.

Corollary: MLK has quasipolynomial size proofs of the pigeonhole
tautologies PHPn.
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Theorem: [Jěrábek ’11] If VNC1 can prove the existence of
expander graphs, then MLK polynomially simulates LK.

Proof idea: Working in a slightly stronger system VNC
1
∗, the AKS

sorting networks can be constructed from expander graphs, and
their correctness proved. VNC1

∗ corresponds to logspace uniform
NC

1-computability, so the AKS sorting networks can serve as
logspace uniform polynomial size threshold circuits. Thus, MLK
polynomially simulates LK (logspace uniformly).

As a corollary:

Main Theorem 3: MLK polynomially simulates LK.

Corollary. (Example) MLK has polynomial size proofs of the
PHPn tautologies.

Corollary. Propositional LJ (intuitionistic logic) polynomially
simulates LK w.r.t. monotone sequents. ([Jěrábek ’09])
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Open Questions

Can expanders be formalized also in VTC
0, the system of

bounded arithmetic corresponding to TC
0?

“TC0” = “constant depth threshold circuits.”

Are there UE∗-uniform sorting networks? Can this be done
with a modification of the AKS construction with our
NC

1-expanders?.

Can tree-like MLK polynomially simulate MLK (equivalently,
simulate LK on monotone sequents)?

Can USTCON∈LogSpace [Reingold’08] be formalized in VL or
VLV, systems of bounded arithmetic corresponding to
LogSpace?
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Thank You!
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