
Expander Construction in VNC1

(Extended Abstract)
Sam Buss1, Valentine Kabanets2, Antonina Kolokolova3, and
Michal Koucký4

1 Department of Mathematics, University of California San Diego, La Jolla, CA,
USA, ∗ sbuss@ucsd.edu

2 School of Computing Science, Simon Fraser University, Burnaby, BC, Canada,
† kabanets@cs.sfu.ca

3 Department of Computer Science, Memorial University of Newfoundland, St.
John’s, NL, Canada, ‡ kol@cs.mun.ca

4 Computer Science Institute, Charles University, Prague, Czech Republic, §

koucky@iuuk.mff.cuni.cz

Abstract
We give a combinatorial analysis (using edge expansion) of a variant of the iterative expander
construction due to Reingold, Vadhan, and Wigderson [38], and show that this analysis can be
formalized in the bounded arithmetic system VNC1 (corresponding to the “NC1 reasoning”). As a
corollary, we prove the assumption made by Jeřábek [24] that a construction of certain bipartite
expander graphs can be formalized in VNC1. This in turn implies that every proof in Gentzen’s
sequent calculus LK of a monotone sequent can be simulated in the monotone version of LK
(MLK) with only polynomial blowup in proof size, strengthening the quasipolynomial simulation
result of Atserias, Galesi, and Pudlák [7].

1998 ACM Subject Classification F.4.1 Mathematical Logic, F.2.1 Numerical Algorithms and
Problems, F.1.3 Complexity Measures and Classes

Keywords and phrases expander graphs, bounded arithmetic, alternating log time, sequent cal-
culus, monotone propositional logic

Digital Object Identifier 10.4230/LIPIcs...

1 Introduction

Expander graphs have become one of the most useful combinatorial objects in theoretical
computer science, with many beautiful applications in computer science and mathematics [19],
and responsible for several breakthroughs in computational complexity [37, 17]. These
graphs have seemingly contradictory properties: sparseness and high connectivity. The high
connectivity can be measured in a number of different, but essentially equivalent ways: vertex
expansion (every small subset of vertices “expands”, i.e., has a larger neighborhood), edge
expansion (every small subset of vertices has many edges leaving the set), or fast mixing time

∗ Supported in part by NSF grant CCF-1213151. Part of the work on VNC1 was done while Buss was
visiting the Chebychev Laboratory, St.Petersburg State University in Spring 2016, supported in part by
Skolkovo Institute of Science and Technology.

† Supported in part by an NSERC Discovery grant. Part of the work was done while visiting UCSD.
‡ Supported in part by an NSERC Discovery grant. Part of the work was done while visiting UCSD.
§ The research leading to these results has received funding from the European Research Council under the

European Unions Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement n. 616787.

© Sam Buss, Valentine Kabanets, Antonina Kolokolova and Michal Koucký;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs...
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

XX:2 Expander Construction in VNC1 (Extended Abstract)

(a random walk on a regular expander graph quickly converges to the uniform distribution
on vertices).

The existence of expander graphs of constant degree can be argued nonconstructively
using a simple probabilistic argument: for any constant d ≥ 3, a random d-regular graph
is almost surely an expander [33]. Constructing such graphs efficiently deterministically is
much more difficult. The first explicit constructions were given by Margulis [27] and Gabber
and Galil [18]. Lubotzky, Phillips, and Sarnak [25] gave a construction of expanders with
particularly interesting properties, called Ramanujan graphs. All of these constructions
are algebraic in nature: a graph is defined using a certain algebraic object (e.g., a group).
Moreover, the analysis of correctness of the constructions is also algebraic. It relies on
the algebraic notion of high connectivity called the eigenvalue gap and defined as follows.
Consider the adjacency matrix of a given undirected d-regular graph, compute its eigenvalues,
and order them according to the absolute value. It can be easily checked that d is the largest
value. The difference between d and (the absolute value of) the second largest eigenvalue is
the eigenvalue gap. The bigger this eigenvalue gap, the more connected the graph is. From
this point of view, a d-regular expander is a graph with the eigenvalue gap at least Ω(d), i.e.,
the second largest eigenvalue should be at most some constant fraction of the degree.

A simpler, fully combinatorial construction of constant-degree expanders was given by
Reingold, Vadhan, and Wigderson [38]. They started with constant-size expander graphs
(which can found by brute-force search), and iteratively applied certain graph operations
that increase the size of the graph while preserving its expansion property. This way, one
can quickly construct an expander graph of any given size. While the construction of [38] is
combinatorial, its analysis is still algebraic and is based on estimating the eigenvalue gap.
Alon, Schwartz, and Shapira [4] gave a different construction of expanders, which combines
algebraically constructed expanders of Alon and Roichman [3] with only two applications
of a certain graph operation (replacement product), to obtain a constant-degree expander
of arbitrary size. They also gave a fully combinatorial analysis of the replacement product
operation they used in the second stage of the construction. Their full analysis, however, is
still algebraic, as it relies on the algebraic construction and the eigenvalue gap analysis of [3].
In this respect, the situation in [4] is similar to that in [38] where the analysis of a related
graph operation (zig-zag product) can be done in terms of min-entropy, while the analysis of
the complete construction is still based on eigenvalues.

The focus of our paper is to give a construction of expanders with a simple (non-algebraic)
analysis, where simplicity is measured in terms of the power of a system of bounded arithmetic
needed to formalize the analysis. Informally, systems of bounded arithmetic are obtained by
restricting the power of the standard first-order theory of Peano arithmetic. It is possible to
devise systems of bounded arithmetic that correspond to systems of reasoning using only
concepts from a given complexity class, e.g., P or NC1. A natural question is: what is the
weakest complexity class so that the existence of expander graphs can be proved using only
the concepts of that complexity class?

The known expander constructions mentioned above can be formalized within a system
of polytime reasoning, intuitively because eigenvalues and matrix determinants are known
to be computable in polytime. Our main result is a construction of expanders that can be
formalized within a system of NC1 reasoning, VNC1 (see below for a formal definition). As
NC1 algorithms are not known to compute the eigenvalues or determinant of a given matrix,
any such formalization of an expander construction in VNC1 must necessarily avoid the use
of eigenvalues, and hence be “combinatorial” in that sense.

As expanders are used in a number of complexity-theoretic results, formalizing the

Sam Buss, Valentine Kabanets, Antonina Kolokolova, and Michal Koucký XX:3

expander construction within a weak system of bounded arithmetic is an important step
in formalizing these complexity-theoretic results within the bounded arithmetic framework,
which in turn may have other implications. For example, in proof complexity, we can use
our expander construction to argue that any Gentzen’s sequent calculus LK proof (of a
monotone sequent) can be simulated by a monotone LK (MLK) proof, with only polynomial
blowup in proof size, improving upon the quasipolynomial simulation shown by Atserias,
Galesi and Pudlák [7], and answering a question of Pudlák and Buss [36]. This simulation
result follows by the work of Jeřábek [24] who proved the result under the assumption that a
certain expander graph family can be proved to exist within a system of NC1 reasoning. Our
paper proves a strengthening of the assumption needed by Jeřábek.

1.1 Our results
Our main contribution is the analysis of one of the iterative expander constructions from [38],
which we show to be formalizable in the bounded arithmetic system VNC1 (of NC1 reasoning).
As in [38], the expander construction is fully explicit in the sense that that there is a
deterministic polynomial-time algorithm that, given a vertex name v in binary and a number
i, outputs the value of the rotation map Rot(v, i) = (w, j), where w is the name of the
ith neighbor of v in the graph, and j is the number such that v is the jth neighbor of w.
Moreover, we show that there is an alternating linear-time algorithm that accepts exactly
the triples of the form 〈v, i, Rot(v, i)〉; this kind of explicitness is what we will use to argue
that the expander construction is formalizable in VNC1.

I Theorem 1 (Main result: Informal version). The existence of an expander graph family can
be proved using NC1 reasoning only (within the system VNC1).

As our main application, building on Jeřábek [24] and Atserias, Galesi and Pudlák [7],
we show that every proof in Gentzen’s sequent calculus LK of a monotone sequent can be
simulated by a monotone LK (MLK) proof (a sequent calculus proof in which all formulas
are positive) with only polynomial blowup in size. This answers a question of Pudlák and
Buss [36]. Previously, [7] showed such simulation with quasipolynomial blowup in proof size.

I Theorem 2 (Main application). MLK polynomially simulates LK on monotone sequents.

It is easy to show that the intuitionistic propositional sequent calculus LJ polynomially
simulates MLK (see Pudlák [34] and Bilková [8]); thus we get as an immediate corollary
that propositional LJ polynomially simulates LK on monotone sequents, re-proving the
result of Jeřábek [22, Theorem 3.9]. Many of the principles that have been considered in
propositional proof complexity are expressed as monotone sequents, notably the pigeonhole
principle and the clique-coloring tautologies. As these principles have polynomial size LK
proofs [11], Theorem 2 implies that they also have polynomial size proofs in MLK as well
as in propositional LJ. The prior best known results for the pigeonhole principle were the
quasipolynomial size MLK proofs of Atserias, Galesi and Gavaldà [6].

It remains an open problem whether tree-like MLK can polynomially simulate MLK,
equivalently whether tree-like MLK can polynomially simulate LK on monotone sequents.
Note that [7] gives a quasipolynomial simulation.

Intuitively, to simulate an LK proof within MLK, one needs to construct (and prove
correctness of) a monotone formula for the majority function. Such monotone formulas can
be built using the classical AKS sorting networks [1]. Jeřábek [24] shows that the analysis of
AKS sorting networks can be formalized within a certain system of NC1 reasoning (slightly
more powerful than VNC1), under the assumption that the existence of expander graphs,

XX:4 Expander Construction in VNC1 (Extended Abstract)

with certain parameters, is also formalizable within the same system. Our Theorem 1 proves
the assumption needed by Jeřábek (actually a slightly stronger version, as our proof of the
existence of expanders is in the weaker system VNC1), and so Theorem 2 immediately follows.

1.2 Relation to previous work
1.2.1 Expander constructions
The expander graph construction that we analyze is a variant of the iterative construction of
expanders given in [38]. The idea is to start with a constant-size expander graph (found,
say, by exhaustive search), and iteratively increase the size of the graph while keeping its
expansion larger than some universal constant. The notion of expansion used by [38] is in
terms of the eigenvalue gap. To analyze the expansion of the final graph, Reingold, Vadhan,
and Wigderson [38] bound the effect of the graph operations they used (graph powering,
graph tensoring, and zig-zag product) on the second largest eigenvalue of the adjacency
matrix of the resulting graph. The analysis of graph powering (where an edge of the kth
power of a graph G is a walk of length k in G) and graph tensoring (where an edge of
the tensor product of G and H consists of a pair of edges, one from G and one from H)
is immediate from the basic linear algebra. The analysis of the zig-zag product (a way to
compose a graph G with a graph H so that the new graph has the degree of H) is technically
the most difficult part of the algebraic analysis of the expander construction in [38].

In [4], a graph replacement product (closely related to the zig-zag product) is analyzed
in terms of edge expansion, avoiding any mention of the eigenvalue gap. Since replacement
product can be used instead of zig-zag product in an iterative expander construction along
the lines of [38], this gives a combinatorial analysis of the part of the expander construction.
In order to make the entire analysis combinatorial, it suffices to analyze graph powering and
graph tensoring also in terms of edge expansion. This is exactly what we do in the present
paper.

Our combinatorial analysis of graph tensoring, though subtle, is not very difficult. For
the analysis to go through, it turns out necessary to work with graphs that have sufficiently
many self-loops around every vertex (at least half the degree). On the other hand, graph
powering is much more difficult to analyze combinatorially. Fortunately, here we were able to
use the result of Mihail [28] who gave a combinatorial analysis of the mixing time of random
walks on expanders in terms of edge expansion. (Interestingly, for her proof, she also had to
work with graphs that have many self-loops around every vertex.) Finally, using Mihail’s
bounds, we are able to conclude the analysis of graph powering in terms of edge expansion,
borrowing some ideas from [2].

1.2.2 Bounded arithmetic
There is a long history of formalizing complexity results in bounded arithmetic; indeed, this
was one of the main motivations for the definitions of bounded arithmetic. First, bounded
arithmetic theories can capture a range of complexity classes, from uniform AC0 and uniform
NC1, to polynomial time, polynomial space and exponential time (see [10, 14]). Second,
via the Paris-Wilkie or Cook translations, proofs in bounded arithmetic can be viewed as
uniform families of propositional proofs. For this reason, a proof in bounded arithmetic can
sometimes yield new propositional proofs.

There has been considerable progress in formalizing advanced results from computational
complexity in weak theories of bounded arithmetic; these include approximate counting,
randomized computations, and Arthur-Merlin games [20, 21], Toda’s theorem [12], and the

Sam Buss, Valentine Kabanets, Antonina Kolokolova, and Michal Koucký XX:5

PCP theorem [32]. The present paper continues this tradition by formalizing the construction
of expander graphs in the weak fragment VNC1 which corresponds to NC1 computation.

There are a number of prior works which use bounded arithmetic to obtain upper bounds
in proof complexity. A big advantage of using bounded arithmetic is that the proofs can
be considerably simplified. A classic example is the work by Paris and Wilkie [29] who
showed that the proofs of the weak pigeonhole principle in I∆0 constructed by [30] yield
constant-depth, polynomial-size Frege proofs of the propositional translations of the weak
pigeonhole principle (via the “Paris-Wilkie translation”). Lower-depth, quasipolynomial-size
Frege proofs were later given by [26] via a proof of the weak pigeonhole principle in a
different fragment of bounded arithmetic. Similarly, [35] gave proofs of Ramsey’s theorem
in S2, and these translate into quasipolynomial-size, constant-depth Frege proofs. Recently,
[12] used formalization of Toda’s theorem in bounded arithmetic with modular counting
quantifiers to show that constant-depth AC0(p)-proofs, for p a prime, can be translated
into quasipolynomial size, depth-three propositional proofs, with formulas being Boolean
combinations of mod p gates of small conjunctions. Another classic example is Cook’s
theorem that extended Frege proofs have polynomial size proofs of their partial consistency
statements, which was established via provability in PV [15].

The present paper establishes a new result of this type via a Cook-style translation:
together with earlier work of Jeřábek [23], our formalization of expander graphs in VNC1

implies that the monotone propositional proof system MLK polynomially simulates the
proof system LK. We will use the system VNC1 defined by Cook and Morioka [16]. We
conservatively extend VNC1 to facilitate reasoning about the compositions of NC1 functions,
which allows us to simplify the formalization of our recursive expander construction.

1.2.2.1 Remainder of the paper

Section 2 contains basic definitions. Our expander construction is defined in Section 3. In
Section 4, we present a construction of bipartite expanders needed by Jeřábek [24]. In
Section 5, we show that the existence of our expander graphs is provable in VNC1, thereby
proving a formal version of Theorem 1. We derive Theorem 2 in Section 6. Section 7 contains
concluding remarks. For space considerations, some proofs are only sketched and other proofs
are omitted from this conference version; for the full version (with all missing proofs), please
see [9].

2 Preliminaries

2.1 Notation
We consider undirected graphs, possibly with parallel edges and self-loops. For an undirected
graph G = (V,E) on n nodes, we usually associate the vertex set V with the set [n] =
{1, 2, . . . , n}, and denote an edge i ∼ j between nodes i and j as {i, j} ∈ E. In this notation,
we also allow self-loops {i, i} ∈ E.

The adjacencies of a d-regular graph G are given via its rotation map RotG so that, for
vertex v of G and an index i ∈ [d], we have RotG(v, i) = (w, j) if w is the ith neighbor
of v, and v is the jth neighbor of w; so, in particular, the rotation map induces some fixed
numbering of neighbors of a given vertex.

For an n-vertex graph G, its adjacency matrix is an n× n matrix A′ whose (i, j)th entry
contains the number of edges between vertices i and j in G. For d-regular graphs G, it will
be more convenient for us to consider the normalized adjacency matrix defined as 1

d · A
′.

XX:6 Expander Construction in VNC1 (Extended Abstract)

Note that the normalized adjacency matrix A of G is the probability transition matrix for
a random walk on G. That is, if π is a probability distribution on vertices of G, then Aπ
is the probability distribution induced by one step of a random walk on G starting from a
vertex distributed according to π. It is also easy to see that Ak is the normalized adjacency
matrix of the graph Gk.

2.2 Expanders
For a graph G = (V,E) and a subset U ⊆ V of vertices, we denote by U the set V \ U , and
by E(U,U) the set of edges between U and U . The edge expansion of a d-regular graph
G = (V,E) on n vertices is defined as

min
∅6=U⊂V, |U |≤n/2

|E(U,U)|
d · |U |

= min
∅6=U⊂V

|E(U,U)|
d ·min{|U |, |U |}

. (1)

For a graph G = (V,E) and a subset U ⊆ V of vertices, we denote by ΓG(U) the set of
all neighbors of U in G, i.e.,

ΓG(U) = {v ∈ V | ∃u ∈ U, {u, v} ∈ E}.

We drop the subscript G if the graph G is understood from the context. We denote by Γ+(U)
the set Γ(U) \ U of new neighbors of U . The vertex expansion of a graph G = (V,E) on n
vertices is defined as

min
∅6=U⊂V,|U |≤n/2

|Γ+(U)|
|U |

.

2.3 Bounded arithmetic theory VNC1

A number of bounded arithmetic theories have been proposed for uniform NC1: these include
the theory Alog of Clote and Takeuti [13], the theory AID of Arai [5], the theory VNC1

of Cook and Morioka [16], and a reformulated version of VNC1 by Cook and Nguyen [14].
Jeřábek [23] describes a theory VNC1

∗ for NC1 under a relaxed notion of uniformity for
logarithmic depth circuits.

Cook and Morioka [16] define VNC1 using tree recursion (TreeRec). Cook and Nguyen [14]
give an equivalent definition of VNC1 using the Boolean formula value problem. It is easier to
formalize the expander graph construction with tree recursion, so we work with the version
of VNC1 as defined by Cook and Morioka [16].

The bounded arithmetic theory VNC1 is an extension of the theory V0 of bounded
arithmetic; V0 corresponds in power to AC0. V0 is a second-order (two-sorted) system of
arithmetic, with two sorts of numbers (first-order objects) and strings (second order objects).
Strings are viewed as members of {0, 1}∗. The notation X(i), where X is a string and i ≥ 0
is a natural number, means the Boolean value of the ith entry in string X. Sometimes i∈X
is written instead of X(i). The constants 0 and 1 are number terms, and addition and
multiplication are number functions. Another term of type number is string length |X|,
defined to be the value of the largest element in X when viewed as a set plus 1. Addition
and multiplication are defined for numbers only, and equality is defined both for numbers
and strings. The axioms of V0 consist of a finite set of “BASIC” open axioms defining simple
properties of the constants, relation symbols and function symbols, plus ΣB0 -Comprehension
axioms

ΣB0 -COMP: ∃X≤y ∀z<y (X(z)↔ ϕ(z))

Sam Buss, Valentine Kabanets, Antonina Kolokolova, and Michal Koucký XX:7

for any formula ϕ in ∆B
0 not containing X as a free variable, but possibly containing free

variables other than z. A ∆B
0 formula is one in which all quantifiers are bounded and which

contains no second-order quantifiers. We write (∃X≤y)ψ for ∃X((|X|≤y) ∧ ψ).
Let ϕ(i, ~x, ~X)[p, q] and ψ(i, ~x, ~X) be ΣB0 -formulas. The notation “[p, q]” indicates that p

and q are propositional variables that may occur as atomic subformulas in ϕ. The ΣB0 -TreeRec
property [16] is defined by the formula Bϕ,ψ(a, ~x, ~X,Z):

(∀i<a)[(Z(a+i)↔ ψ(i)) ∧ (Z(i)↔ ϕ(i, ~x, ~X)[Z(2i+1), Z(2i+2)])].

For i < a, this states that Z(i) is a Boolean function of the two values Z(2i+1) and Z(2i+2).
Thus Z(i) is computed by a circuit which is a formed as a binary tree with gate types specified
by ϕ and input values specified by ψ. We can always assume w.l.o.g. that a = 2|a|−1; we call
this the “depth condition” and it means the binary tree is exactly balanced and of depth |a|.
This tree is of course a fanin two Boolean circuit. The type of the i-th gate is determined by
ϕ(i, ~x, ~X) and thus is a ΣB0 -property of i and the inputs ~x and ~X.

The theory VNC1 is defined as V0 plus the ΣB0 -TreeRec axioms (∃Z≤2a)Bϕ,ψ(a, ~x, ~X,Z)
for all ϕ and ψ in ΣB

0 . The language of VNC1 can be extended by adding a new relation
symbol Rϕ,ψ(i, a, ~x, ~X) for every formula Bϕ,ψ. The defining axioms for Rϕ,ψ are

Bϕ,ψ(a, ~x, ~X,Rϕ,ψ) and i≥2a→ ¬Rϕ,ψ(i, a, ~x, ~X).

Note that the defining axioms uniquely specify all the values of Rϕ,ψ, provably in VNC1.
Adding the predicate symbols Rϕ,ψ and their defining axioms to VNC1 yields the theory
VNC1(TreeRec).1 As an extension by definitions, this theory is conservative over VNC1.
This means that VNC1 and VNC1(TreeRec) can be used interchangeably. Indeed, any
∀ΣB

1 (TreeRec)-formula which is provable in VNC1(TreeRec) can be translated naturally to
an equivalent ∀ΣB

1 -formula which is VNC1-provable. Thus, in Section 5, we may work in
VNC1 but still use the full power of VNC1(TreeRec).

A key property of VNC1 is that it can ΣB1 -define precisely the (uniform) NC1 functions;
this is discussed in Section 5.1.

2.4 LK and MLK proof systems
The system MLK of monotone reasoning in [7] is a variant of Gentzen’s sequent calcu-
lus LK in which all formulas are positive. An LK proof is a list of sequents of the form
ϕ1, . . . , ϕn→ ψ1, . . . ψm, interpreted as

∧n
i=1 ϕi →

∨m
j=1 ψj . The axioms are ϕ→ ϕ, Γ→ 1,

and 0→ Γ, for an arbitrary list of formulas Γ. Let ϕ,ψ denote formulas and Γ,∆ lists of
formulas. The main derivation rules of LK are as follows.

Left derivation: ϕ,ψ,Γ→∆
(ϕ ∧ ψ),Γ→∆

ϕ,Γ→∆ ψ,Γ′→∆′

(ϕ ∨ ψ),Γ,Γ′→∆,∆′
Γ→ ϕ,∆
¬ϕ,Γ→∆

Right derivation: Γ→∆, ϕ, ψ
Γ→∆, (ϕ ∨ ψ)

Γ→∆, ϕ Γ′→∆′, ψ
Γ,Γ′→∆,∆′, (ϕ ∧ ψ)

ϕ,Γ→∆
Γ→∆,¬ϕ

Cut rule: Γ→∆, ϕ ϕ,Γ′→∆′

Γ,Γ′→∆,∆′

1 Cook and Morika [16] call this theory VNC1(LTreeRec).

XX:8 Expander Construction in VNC1 (Extended Abstract)

Additionally, LK includes structural rules on both sides of a sequent such as weakening,
contraction of duplicate formulas, and changing order of formulas on the same side. LK is
equivalent in power to Frege systems, and tree-like LK is equivalent to LK, thus VNC1 proofs
translate into polynomial-size LK proofs [5, 16, 14].

In Monotone LK (MLK), all formulas in the proof are over the ∧,∨ basis with no ¬.

3 Constructing edge expanders

Here we define an iterative construction of a constant-degree edge expander family, and argue
its edge expansion properties using simple combinatorial tools. The simplicity of the analysis
will allow us (in Section 5) to formalize it within the system VNC1. The construction is a
variant of the iterative construction given by Reingold, Vadhan, and Wigderson [38], using
the graph operations described next.

3.1 Graph operations

We define the graph operations that we will use to construct expanders.
[Powering] For a graph G = (V,E) and an integer k ≥ 1, the kth power Gk is the graph
on vertices V where for each walk of length k from a vertex u to a vertex v in G there is
an edge u ∼ v in Gk.
If RotG is the rotation map of G, then the rotation map of Gk is

RotGk (v, (i1, . . . , ik)) = (w, (jk, . . . , j1)),

where w is the vertex reached from v in G by edges i1, . . . , ik using the rotation map RotG,
and (jk, . . . , j1) describes the same sequence of edges in reverse order from w’s point of
view. For instance, RotG(v, i1) = (v′, j1) for some v′ ∈ V , then RotG(v′, i2) = (v′′, j2) for
some v′′, etc.
[Tensor product] For graphs G1 = (V1, E1) and G2 = (V2, E2), their tensor product
G1 ⊗G2 is the graph on vertices V1 × V2, where for every pair of edges u ∼ u′ in G1 and
v ∼ v′ in G2 there is an edge (u, v) ∼ (u′, v′) in G1 ⊗G2.
If RotG1 and RotG2 are the rotation maps of G1 and G2, respectively, then the rotation
map of G1 ⊗G2 is

RotG1⊗G2((v, w), (i, j)) = ((v′, w′), (i′, j′)),

where RotG1(v, i) = (v′, i′) and RotG2(w, j) = (w′, j′).
[Replacement product] For a D-regular graph G = (V,E) on n vertices and a d-
regular graph H = (V ′, E′) on D vertices, the replacement product G ◦H is a 2d-regular
graph on nD vertices {(v, i) | v ∈ V, 1 ≤ i ≤ D}. The graph G ◦ H has the edges
{(v, i) ∼ (v, j) | v ∈ V, i ∼ j ∈ E′} as well as, for every edge v ∼ w in G such that w is
the ith neighbor of v, and v is the jth neighbor of w (i.e., RotG(v, i) = (w, j)), G ◦H
has d parallel edges between (v, i) and (w, j).
If RotG and RotH are the rotation maps of G and H, respectively, then the rotation map
of the G ◦H is

RotG◦H((v, i), j) =
{

((v, i′), j′) for RotH(i, j) = (i′, j′) if j ≤ d
((w, i′), j) for RotG(v, i) = (w, i′) if j > d.

Sam Buss, Valentine Kabanets, Antonina Kolokolova, and Michal Koucký XX:9

[Adding self-loops] For a d-regular graph G = (V,E), the graph ©G is the 2d-regular
graph obtained from G by adding d parallel self-loops around every vertex of G; note
that we count every self-loop around vertex v as one edge v ∼ v.
If RotG is the rotation map of G, then the rotation map of ©G is

Rot©G(v, i) =
{
RotG(v, i) if i ≤ d
(v, i) if i > d.

3.2 Effect of graph operations on edge expansion
For the operation of adding self-loops, the following lemma is obvious.

I Lemma 3 (Self-loops). If G is a d-regular graph with edge expansion ε, then the graph
©G is 2d-regular with edge expansion ε/2.

I Lemma 4 (Powering). Let G be a d-regular graph with edge expansion ε. For every integer
k ≥ 1, the powered graph (©G)k has edge expansion at least

1
2 ·
(

1−
(

1− ε2

4

)k/2)
.

Proof Sketch. Our analysis is done in two stages. First, we use the result of Mihail [28]
showing that a random k-step walk on an edge expander ©G quickly converges to the
uniform distribution over the vertices of ©G. Then we show that such convergence to the
uniform distribution implies good edge expansion of (©G)k, using some ideas from [2].

Mihail [28] gave a combinatorial proof of the following result showing the exponentially
fast convergence of a random walk on a regular graph to the uniform distribution.
I Claim 5 ([28]). Let G be a d-regular graph with edge expansion ε. Let A be the normalized
adjacency matrix of G′ =©G. Let π be any initial distribution on vertices of G′, and let u
be the uniform distribution on vertices of G′. Then

‖Akπ − u‖2 ≤ (1− (ε2/4))k · ‖π − u‖2.

Let G′ = ©G, and let G′′ = (G′)k. Next we relate the edge expansion of G′′ to the
mixing time of a k-step random walk on G′. Let u denote the uniform distribution on the
vertices of G′′. For a subset U of vertices of G′′, we denote by uU the probability distribution
that is uniform over U , i.e., every vertex in U gets weight 1/|U |, and every vertex outside of
U gets weight 0. We denote by χU the characteristic vector of the set U (whose ith entry is
1 if i ∈ U , and is 0 otherwise). The following claim can be proved along the lines of [2].
I Claim 6. Suppose G′′ = (V,E) is a regular graph on n vertices, with normalized adjacency
matrix A such that for some δ > 0 the following holds: for every subset U ⊂ V of size at
most |V |/2,

‖AuU − u‖2 ≤ δ · ‖uU − u‖2.

Then G′′ has edge expansion at least (1−
√
δ)/2.

Now, by Claim 5, we get for the normalized adjacency matrix A of the graph ©G and
for every subset U ⊂ V that

‖AkuU − u‖2 ≤ (1− (ε2/4))k · ‖uU − u‖2.

Applying Claim 6 concludes the proof of Lemma 4. J

XX:10 Expander Construction in VNC1 (Extended Abstract)

I Lemma 7 (Tensoring). Let G = (VG, EG) be a dG-regular graph with dG/2 self-loops at
every vertex and H = (VH , EH) be a dH-regular graph with dH/2 self-loops at every vertex.
If G has edge expansion εG and H has edge expansion εH , then the tensor product graph
G⊗H has edge expansion at least min{εG, εH}/50.

Proof Sketch. First, we give some intuition. Suppose G is a dG-regular graph on nG vertices,
and H is dH -regular graph on nH vertices. As a “warm-up”, consider the special case of a
subset of vertices S of the tensor product G⊗H such that S = A×B. Moreover, assume
that |B| < nH/2. Then at least εHdH |B| edges are leaving the set B in graph H. Each of
these edges paired up with an edge from A will be an edge leaving A×B in G⊗H, yielding
a total of at least εHdH |B|dG|A| edges leaving A × B. After normalization (division by
dGdH |A||B|), this yields edge expansion εH from the set S. In the case, B is larger than
nH/2, but A is smaller than nG/2, we can use the edge expansion of A, to obtain the edge
expansion at least εG from S.

For general sets S of vertices in G⊗H, we consider the characteristic matrix of S, which
is an nG × nH 0-1 matrix with (i, j)th entry being 1 iff (i, j) ∈ S. We then argue that it is
possible to remove some rows or some columns of this matrix so that the resulting matrix
has a constant fraction of 1’s of the original matrix (i.e., we removed only a constant fraction
of vertices from S), and either every row or every column has at most some constant fraction
of 1’s.

Suppose we have the former case (the other case is treated similarly). That is, we removed
some rows of the characteristic matrix of S to obtain a new subset S′ that has the form
{a1} × B1 ∪ · · · ∪ {ak} × Bk, where ai ∈ VG and Bi ⊂ VH , and moreover, each |Bi| is at
most some constant fraction of nH . Then for each Bi, we can use edge expansion of H to
argue that εH fraction of edges from Bi are leaving Bi. Ideally, we would like then to argue
that each such edge, when paired up with any edge from vertex ai, will leave S′. This may
not be true, however, as such an edge may go to some vertex in {aj} ×Bj . To circumvent
this problem, we use the assumption that both of our graphs G and H have many self-loops
around every vertex (say, half of the degree). In that case, it is easy to argue that each edge
leaving Bi in H, when paired up with any self-loop around ai, yields an edge of G⊗H that
leaves S. Since the number of self-loops around ai is at least half the degree of G, this yields
edge expansion at least εH/2 from each set {ai} ×Bi. Since S′ is the union of the pairwise
disjoint such sets, we get the edge expansion at least εH/2 from S′. Finally, since S′ contains
a constant fraction of vertices from S, we conclude that the edge expansion from S is at least
Ω(εH). J

I Lemma 8 (Replacement [4]). Let G = (VG, EG) be a D-regular graph on n vertices, and
let H = (VH , EH) be a d-regular graph on D vertices. If G has edge expansion εG and H has
edge expansion εH , then G ◦H has edge expansion at least ε2GεH/48.

Proof Sketch. The proof idea is to partition a given subset S of vertices of G ◦H into n
clusters ({a1}×B1)∪ · · · ∪ ({an}×Bn), where each ai ∈ VG and Bi ⊆ VH . View the clusters
where |Bi| is at most some fraction of |VH | as light, and the remaining clusters as heavy.
For every light cluster, one can use the expansion of H to lower-bound the expansion of Bi
(within the copy of H associated with vertex ai of G). If there are many vertices in light
clusters, we get a good lower bound on the edge expansion of S. Otherwise, there are many
vertices in heavy clusters. Using the expansion properties of G, one can argue in this case
that there will be many edges between the set of vertices in heavy clusters and the vertices
outside S. J

Sam Buss, Valentine Kabanets, Antonina Kolokolova, and Michal Koucký XX:11

3.3 Construction
With the analysis of graph operations in hand, we can now present our iterative construction
of edge expanders that will be shown formalizable in VNC1. Let G0 be a (2d)-regular graph
of constant size, where d is some constant. Let ε0 be the edge expansion of G0 such that
ε0 ≥ 1/1296. Such a graph G0 exists (by a counting argument) and can be found in constant
time, using exhaustive search. Given G0, we will define a bigger graph G1 that is also
(2d)-regular and has edge expansion at least 1/1296. In general, given a (2d)-regular graph
Gi with edge expansion at least 1/1296, we define Gi+1 as follows:

Gi+1 = ((©((©Gi)⊗ (©Gi)))c) ◦H, (2)

where c is some constant to be specified later, and H is a d-regular expander graph on
(2(4d)2)c vertices, with edge expansion at least 1/3. Again, such a graph can be found using
exhaustive search.

I Theorem 9. There is a constant c such that the graph Gi+1 = (Vi+1, Ei+1) defined from
Gi = (Vi, Ei) as above has the following parameters:
|Vi+1| = |Vi|2 ·D, where D = (2(4d)2)c,
the degree of Gi+1 is 2d,
the edge expansion of Gi+1 is at least 1/1296.

Proof. The bounds on the size and the degree of Gi+1 follow easily from the definitions of
the graph operations used to define Gi+1 from Gi. Let ε ≥ 1/1296 be the edge expansion of
Gi. First, by Lemma 3, the edge expansion of ©Gi is at least ε/2. By Lemma 7, the edge
expansion of G′ = (©Gi)⊗ (©Gi) is at least ε′ = ε/100. By Lemma 4, the kth power of the
graph ©G′ has edge expansion at least

1
2 ·
(

1−
(

1− ε2

40000

)k/2)
.

Choose k to be a sufficiently large constant c so that the edge expansion of the cth power of
our graph, as given by the formula above, is at least 1/3. Finally, by Lemma 8, the edge
expansion of the graph Gi+1 is at least (1/3)3/48 = 1/1296. This completes the proof. J

We give also a modified construction of expanders that allows explicit constructions of
edge expanders G̃i = (Ṽi, Ẽi) with |Ṽi| = 2i, and more generally of edge expanders on exactly
M vertices for arbitrary M ≥ 1.

Let c be a constant. Choose the constant d to be a sufficiently large power of two, d = 2`,
so that there is a d-regular graph H on (2(4d)2)c vertices with edge expansion at least 1/3 and
so that for all i ≤ c`+ 7, there are 2d-regular graphs G̃i on 2i vertices with edge expansion
at least 1/1296. These graphs H and G̃i can be found by exhaustive search. We construct
expander graphs G̃i with edge expansion ≥ 1/1296. For i > 2c`+ 7, let i′ = b(i−2c`−5)/2c
and i′′ = d(i−2c`−5)/2e, so i = i′ + i′′ + 2c`+ 5. Define

G̃i = ((©((©G̃i′)⊗ (©G̃i′′)))c) ◦H. (3)

I Theorem 10. There is a constant c such that the graph G̃i = (Ṽi, Ẽi) defined as above has
the following parameters:
|Ṽi| = 2i,
the degree of G̃i is 2d,
the edge expansion of G̃i is at least 1/1296.

XX:12 Expander Construction in VNC1 (Extended Abstract)

Now that we have constructed edge expanders of sizes 2i, it is easy to obtain an edge
expander G̃ of a given arbitrary size M . For this, choose i so that 2i−1 < M ≤ 2i. Partition
the vertices of G̃i intoM disjoint subsets each of size 1 or 2. Define the graph G̃ by collapsing
each of these subsets of vertices of G̃i into a single vertex of G̃, and inheriting the edges from
the all of the nodes in the subset. It is easy to see the degree of G̃ is at most 4d; by adding
extra self-loops, we get a new graph that is 4d-regular. It is also easy to show that this new
graph has expansion at least ε/2 where ε = 1/1296.

We get the following.

I Theorem 11. Fix constants c and d as above. There is a family of 4d-regular expanders
G̃ on M nodes, for any M ≥ 1, with edge expansion at least 1/2592.

Moreover, there is a deterministic polynomial-time algorithm that, given the name of a
vertex v (in binary) of G̃ and an index i ∈ [2d], outputs the value RotG̃(v, i). Furthermore,
there is an alternating linear time algorithm which accepts the graph of G̃; namely, it accepts
exactly the triples of the form 〈v, i, RotG̃(v, i)〉.

It may be unexpected that we discuss alternating linear time, but the point is that this is
what we need for the formalization of our arguments in the bounded arithmetic theory VNC1

in Section 5. For that, the important thing is the computational complexity of RotGk
as a

function of the size |Vk| of the graph, whereas Theorem 11 expresses runtimes in terms of
the size of the name of the vertex. But, the alternating linear time algorithm of Theorem 11
will be viewed as an alternating logarithmic time algorithm for purposes of formalization in
VNC1. (In the same setting, the polynomial time algorithm would be a polylogarithmic time
algorithm, and it is open whether such algorithms can in general be formalized in VNC1.)

4 Constructing bipartite vertex expanders

Jeřábek [24] needs the existence of certain bipartite vertex expanders to formalize the AKS
sorting networks in VNC1

∗. We define these graphs next. Recall that, for a set S of nodes in
a graph G, Γ(S) denotes the set of all neighbors of vertices in S.

Given constants α ∈ (0, 1) and A > 1, a bipartite (α,A) vertex expander is a bipartite
graph G = (L ∪R,E), where |L| = |R| = m, such that
1. the degree of G is at most A, and
2. for all ` ≤ m, every set S ⊆ [m] of vertices in either partition with |S| ≥ α` has
|Γ(S)| ≥ (1− α)`.

That is, for every set of vertices of size at least α` in one partition, there are at least (1−α)`
neighbors in the other partition.

The assumption required by [24] is:

For α = 1/600, there exist a constant A and a parameter-free NC1
∗ function G(m)

such that VNC1
∗ proves “∀m ∈ N, G(m) is an (α,A) bipartite vertex expander on

m+m vertices”.

We will argue that such bipartite vertex expanders can be efficiently obtained from our
edge expanders defined above.

I Theorem 12. For any constant 0 < α < 1, there exist a constant A ≥ 1 and an efficient
(uniform NC1) algorithm that, for every m ∈ N, computes the rotation map of an (α,A)
bipartite vertex expander on m+m vertices.

Sam Buss, Valentine Kabanets, Antonina Kolokolova, and Michal Koucký XX:13

Proof. We use the edge expander G̃ constructed in Theorem 11 withM = m. The graph G̃ =
(Ṽ , Ẽ) has |V | = m, degree 4d, and expansion at least ε/2, where ε = 1/1296. Starting with
G̃, we will
1. Convert the edge expander G̃ into a vertex expander, and
2. Turn the latter vertex expander into a bipartite (α,A) vertex expander on m+m vertices.

1. Getting a vertex expander from an edge expander: Let G = (V,E) be the
graph G̃ on m nodes constructed above, but with a self-loop added to every node. So G has
constant degree 4d+ 1.

We have for every set S ⊆ V of size |S| ≤ m/2 that at least ε(2d)|S| edges are leaving S
in G̃. As the degree of G̃ is 4d, we conclude that the neighborhood Γ(S) of S in G contains
at least ε · (2d) · |S|/(4d) = ε′ · |S| distinct nodes from S, where ε′ = ε/2. As G has self-loops
around every node, we get

|Γ(S)| ≥ (1 + ε′) · |S|, (4)

for every subset S of G with |S| ≤ m/2.
Consider the power graph Gi, for any i ≥ 1. Applying Eq. (4) inductively, we get for

every subset S of Gi with |S| ≤ m/2, and for every i ≥ 1 that

|ΓGi(S)| ≥ min{m/2, (1 + ε′)i · |S|}. (5)

Now let S be a subset of V of size |S| ≥ m/2. We have |Γ+(S)| ≥ ε′ · |S|, where
Γ+(S) = Γ(S) ∩ S is the set of new neighbors of S. It follows that

|Γ(S)| ≤ (1− ε′) · |S|. (6)

Applying Eq. (6) inductively, we get for every i ≥ 1, and for every subset S of V of size
|S| ≥ m/2 that

|ΓGi(S)| ≤ (1− ε′)i · |S|. (7)

I Claim 13. There exists a constant t′ = t′(α, ε′) such that, for every ` ≤ m and every set S
of Gt′ with |S| ≥ α`, we have |ΓGt′ (S)| ≥ (1− α)`.

Proof of Claim 13. Consider two cases: ` ≤ m/2, and ` > m/2. If ` ≤ m/2, then by Eq. (5)
we get for t1 = dlog1+ε′(1/α)e that

|ΓGt1 (S)| ≥ min{m/2, (1 + ε′)t1 · α`} ≥ min{m/2, `} = `.

If ` > m/2, then |S| ≤ m− α` < (1− (α/2)) ·m < m. For t2 = d(log 1/α)/(log 1/(1− ε′))e,
we get

|ΓGt2 (S)| ≤ (1− ε′)t2 ·m ≤ α ·m,

and hence, |ΓGt2 (S)| ≥ (1−α)m ≥ (1−α)`. Taking t′ = max{t1, t2} concludes the proof. J

2. Getting a bipartite vertex expander: Let Gt′ be the vertex expander defined
above. Observe that it has m nodes, and has constant degree A = (4d+ 1)t′ . We turn this
graph into a bipartite graph by taking two copies of the vertices of Gt′ , denoted by L and R,
connecting nodes i ∈ L and j ∈ R by an edge iff {i, j} is an edge of Gt′ . Claim 13 implies
that the resulting graph is an (α,A) vertex expander.

Finally, the explicitness of this construction of (α,A) vertex expanders can be argued
similarly to the case of the edge expanders of Theorem 11: we trace the construction of Gt′ to
get an efficient (uniform NC1) algorithm for computing the rotation map of the corresponding
bipartite (α,A) expander on m+m vertices. J

XX:14 Expander Construction in VNC1 (Extended Abstract)

5 Formalizing the construction in bounded arithmetic

This section discusses the formalization of the expander graph construction in the theory
VNC1 of bounded arithmetic. A high-level description of how we formalize the expander
graph construction in VNC1 is as follows:
1. The first step is to establish (in Section 5.4) that VNC1 can define the operations of graph

powering, replacement product, and tensoring. From this it follows that VNC1 can carry
out the definition of Gi+1 from Gi, for the graphs Gi defined in Section 3. Similarly,
VNC1 can carry out the construction of G̃i from G̃i′ and G̃i′′ as in (3).

2. For the second step, we wish to use induction on t to prove the existence of the graph Gt
for suitable t. However, since VNC1 does not support induction on ΣB

1 -formulas, we
cannot use the usual induction axioms for VNC1. Instead, we exploit the fact that the
graph Gi+1 has size quadratic in the size of Gi, namely |Gi+1| = Θ(|Gi|2). This large
growth rate allows us to use ΣB

1 -induction to prove the existence of Gt for arbitrary
(first-order) integers t. For this, Theorems 16 and 17 of Section 5.3 prove that the needed
induction principle is provable in VNC1. The intuition is that the computational content
of the induction axioms corresponds to composing logarithmic depth circuits, and that
since the Gi’s are growing quadratically, arbitrary composition of logarithmic depth
circuits for the Gi’s yields a circuit which is still of only logarithmic depth.
The same ΣB1 -induction will also be used to prove the existence of the graphs G̃i, exploiting
the fact that the size of G̃i is quadratic in the sizes of G̃i′ and G̃i′′ .

3. Theorems 16 and 17 give the needed induction principle for handling compositions of
circuits, but more work is needed for VNC1 to formalize the iterated composition of
circuits. What we mean by “iterated composition” of circuits is that there are multiple
circuits (about |(|t|)| many circuits) which are arranged with the outputs of one circuit
feeding into the inputs of the next circuit. To formalize this circuit composition in VNC1,
we need to modify Cook and Morioka’s definition [16] of TreeRec tree recursion in VNC1.
The problem with the TreeRec form of tree recursion is that the second order inputs to a
circuit defined by tree recursion are not used at the input gates of the circuit, but rather
are used throughout the circuit, indeed potentially at every gate in the circuit. To fix
this, Section 5.2 introduces a modified version of tree recursion, called TreeRec′, which
allows the use of second order inputs X0(i) only as input values. This allows composition
of circuits using the inputs X0 for the iteratively computed values. The TreeRec′ tree
recursion and the new induction principle of Section 5.3 then suffice to define Gt by using
recursively the definition of Gi+1 from Gi.

4. The fourth step is to prove the expansion properties of Gi+1 follow from those of Gi. Or,
more precisely, proving that if Gi+1 does not have the desired edge expansion then Gi
also does not.

5. The fifth step is to use induction on t to prove the expansion properties for Gt. This
is done in Theorem 21; its proof again utilizes the induction principle introduced in
Section 5.3. This shows that VNC1 can prove the existence of expander graphs.

6. The sixth, and final step, is to note that the proof of Theorem 12 can be carried out in
VNC1, so VNC1 proves the existence of bipartite vertex expanders.

This proof is given below. We start by proving some useful properties of VNC1 in
Sections 5.1–5.3. We show in Section 5.4 that VNC1 can express relevant graph properties.
Section 5.5 shows that the edge expansion properties of our graph operations can be proved
within VNC1.

Sam Buss, Valentine Kabanets, Antonina Kolokolova, and Michal Koucký XX:15

5.1 Defining NC1 functions within VNC1

Cook and Morioka [16, Lemma 13] show that VNC1(TreeRec) can prove the ΣB
0 (TreeRec)-

COMP axioms. They then define the FNC1 functions F by using ΣB
0 (TreeRec)-formulas

ϕ(i, ~x, ~X) and terms t(~x, ~X) and defining the string F (~x, ~X) by2

F (~x, ~X)(j) ↔ j<t(~x, ~X) ∧ ϕ(j, ~x, ~X). (8)

They also show that the ΣB
1 -definable functions of VNC1 are precisely the FNC1 functions

[16, Theorem 17]. Recall that a ΣB
1 -definition is given by VNC1 proof of (∃!Y)ϕ(~x, ~X, Y)

where ϕ ∈ ΣB1 ; this serves as a definition of the string function ~x, ~X 7→ Y .
The definition of FNC1 functions using (8) is equivalent to the usual definition of the

FNC1 functions as the functions whose bit graphs are computable in UE∗-uniform NC1, or
equivalently are computable in ALogTime . Those functions are computed by a family {Cn}n
of fanin ≤ 2 Boolean circuits, taking inputs of length n and having depth O(logn). The
UE∗-uniformity condition was defined by Ruzzo [40] and means that the circuits Cn are
described by two functions g(i, n) and p(i, w, n) which are computable in the linear time
hierarchy (equivalently, they have ΣB

0 graphs). The first function g(i, n) returns the type
of gate i in Cn. The second function p(i, w, n) takes as input also a w ∈ {0, 1}∗: the bits
of w describe a path in the circuit starting at gate i and following successively the first or
second input to gates according to the bits of w. The value of p(i, w, n) is the index of the
gate reached by following this path specified by w starting from gate i in Cn. The functions
g and p are in the linear time hierarchy; however, since they have inputs of length O(logn),
they run in time O(logn) using a constant number of alternations. For more details, see [40].

We will need to carefully analyze the effect of composing FNC1 functions; for this reason
it is important that the existence of U∗E-uniform NC1 circuits for FNC1 functions can be
proved by the theory VNC1. This follows from Theorem 15 below.

5.2 A modified tree recursion
TreeRec acts like a fanin two, Boolean circuit where the internal gate types are given
by ϕ = ϕ(i, ~x, ~X). A disadvantage of this definition of TreeRec is that the side parameters
~X can be used unrestrictedly by the ΣB0 -formulas ϕ and ψ. The formula ϕ(i, ~x, ~X) defines
the type of gate number i when the circuit has ~x, ~X as inputs. Likewise, ψ(i, ~x, ~X) defines
the True/False value of the i-th input. This differs from the usual conventions of having a
circuit have fixed gate types, and having the inputs affect only the values of input gates. It
also makes it difficult to define the notion of composing circuits, with the outputs of one
family of circuits serving as the inputs to another circuit.

We define a new formulation of tree recursion called TreeRec′ to address this problem.
In a TreeRec′ definition, one of the second order inputs, X0, will serve as an “ordinary”
input to the circuit, with the values X0(j) specifying the True/False values on inputs to the
circuit. The other second order inputs, ~X ′, can be used to define gate types similarly as is
done by TreeRec. This allows recursive computations on the value X0 to be formalized with
composition of circuits.

We assume X0 is one of the side string parameters ~X, so ~X is X0, ~X
′. We modify the

definition of TreeRec so that the values X0(i) are used only as inputs to the TreeRec circuit,

2 This definition of FNC1 is same as what Cook and Morioka [16] call “the function symbols in
VNC1(FNC1)”. We use just “FNC1” to keep the notation less cumbersome.

XX:16 Expander Construction in VNC1 (Extended Abstract)

and are not used to determine the gate types; in particular, X0 is not used by ϕ. The basic
construction for the definition of TreeRec′ is that a single gate in a TreeRec circuit, of gate
type ϕ[−,−]:

ϕ[−,−]

p q (9)

is replaced by a small tree of binary gates

∨

∨

∧

∧

p p

∧

q ϕTT

∧

∧

p p

←

q ϕTF

∨

←

∧

p p

∧

q ϕFT

←

∧

p p

←

q ϕFF (10)

Here the binary gate r←s is ¬r∧s; and the values ϕpq are the truth values of ϕ(i, a, ~x, ~X)[p, q].
By inspection, the circuit is depth four and fanin two: the top ∨ gate branches on the value
of p; the next two ∨ gates branch on q. The last two levels select the correct value of ϕpq,
for p = T,F and q = T,F based on the values of p and q. In other words, the circuit (10)
implements a “lookup table”, using the values p and q to select the appropriate value ϕpq.
Assuming that the four values of ϕpq are correctly computed, the effect of replacing the
binary gates (9) with the circuits (10) gives a circuit of depth 4|a| computing the same result
as the original TreeRec circuit of depth |a|.

We wish to replace the four leaf nodes of (10) labelled ϕpq with Boolean circuits which
have as inputs only the values X0(i). Since ϕ is ΣB

0 -formula, such circuits can easily be
described by a polynomial time function of i, ~x, ~X ′. These circuits are formed by applying
the Paris-Wilkie transformation to ϕ, namely by replacing bounded quantifiers in ϕ with
conjunctions and disjunctions, and hardcoding the values of ~x and ~X ′ (but not X0) as
constants. The result is that each leaf ϕpq of the circuit (10) can be replaced by a fanin
two circuit which (a) has as inputs only X0(j)’s and constants, (b) is size ≤ q(|a|, |~x|) and
depth ≤ |q(|a|, |~x|)| for some polynomial q, and (c) there is a ΣB0 -definable number function
f(p, q, i, a, ~x, ~X) of VNC1 which outputs a succinct description of the circuit. VNC1 is able
to straightforwardly define f and prove all these properties.

With this construction in hand, we define a modified version of tree recursion:

I Definition 14. Let ϕ(i, a, ~x, y0, ~X
′)[p, q] be a ΣB

0 -formula and let k(i, a, ~x, y0, ~y
′) be a

ΣB0 -definable number function. The ΣB0 -TreeRec′ property for ϕ and k is given by:

Bϕ,k(a, ~x,X0, ~X
′, Z) = (∀i<a)[(Z(i)↔ ϕ(i, a, ~x, |X0|, ~X ′)[Z(2i+1), Z(2i+2)])

∧ (Z(a+ i)↔ X0(k(i, a, ~x, |X0|, | ~X ′|)))].

The defining axioms for the predicate symbols Rϕ,k(i, a, ~x,X0, ~X
′) are the formulas

Bϕ,k(a, ~x,X0, ~X
′, Rϕ,k) and i≥2a→ ¬Rϕ,k(i, a, ~x,X0, ~X

′). (11)

Sam Buss, Valentine Kabanets, Antonina Kolokolova, and Michal Koucký XX:17

Note that the gate type depends only on |X0|, not on the values of X0(·). VNC1 proves that
(11) uniquely specifies all values of Rϕ,k. Furthermore, it is not hard to see that VNC1 proves
the existence of string objects satisfying the conditions of (11). Thus, we may conservatively
extend VNC1(TreeRec) by adding all these predicate symbols along with their defining axioms.
The resulting theory is called VNC1(TreeRec,TreeRec′).

The main advantage of TreeRec′ definitions is that they can explicitly give UE∗ -uniform
log-depth circuits. For this, we assume that X0 is the only second-order input (so ~X ′ is
missing). We also assume that a = s(~x, |X0|) for some V 0-term s. It is usually convenient
to assume in addition that each xi < |X0|O(1), so that we can think of |X0| as the size of
the input (up to a polynomial); in fact, often ~x is missing, so the only first-order input
is |X0|. The other condition needed for UE∗-uniformity is that there must be a linear time
hierarchy algorithm (i.e., a ΣB0 formula) determining the extended connection language for
the connectivity of gates in the circuit. Since the circuit is formed as a binary tree, with a
natural numbering system for gates, the extended connection language of the circuit is trivial.
Specifically, suppose w ∈ {0, 1} is a string of bits and i is a gate. Interpret bits “0” and “1”
as selecting the first or second input to a gate, and let w specify a path starting at gate i, and
traversing inputs according to the bits of w. The gate at the end of this path is gate i′ where
i′ has binary representation obtained by concatenating the binary representation of i and the
string w. The type of gate i can be defined with a ΣB0 -formula using the ΣB0 -formula ϕ and
the ΣB0 -defined function k. Thus, with the assumptions stated above, a TreeRec′ definition
defines a UE∗ -uniform circuit.

The next theorem states that every ΣB
0 (TreeRec)-property has log-depth, fanin two,

Boolean circuits in the form used by TreeRec′.

I Theorem 15. Let χ(~x,X0, ~X
′) be a ΣB0 (TreeRec)-formula. Then there are a ΣB0 -formula

ϕ(i, a, ~x, y0, ~X
′), a ΣB

0 -defined function k(i, a, ~x, y0, |~y ′|), and a V 0-term s(~x, |X0|, | ~X ′|) so
that VNC1(TreeRec,TreeRec′) proves

χ(~x,X0, ~X
′) ↔ Rϕ,k(0, s(~x, |X0|, | ~X ′|), ~x,X0, ~X

′).

ΣB0 (TreeRec)-properties may involve composing multiple TreeRec predicates with built-in
function symbols, then combining them with Boolean operations and first-order quantifiers.
Theorem 15 states that any such property χ may expressed as a TreeRec′: the advantage is
that this gives an explicit NC1 representation of χ; namely in terms of logarithmic depth
Boolean circuits. “Logarithmic” means as a function of the values ~x and of the sizes |X0|, | ~X ′|
of the second order inputs X0, X

′.

5.3 A conservation result
We prove the closure of VNC1 under a rule of inference based on a “telescoping” iteration.
This turns out to be exactly what is needed for the formalization of the expander graph
construction inside VNC1. We write

√
a for the greatest integer at most

√
a.

I Theorem 16. Suppose χ(X) is a ΣB
0 -formula containing only X free, and let ψ(a) be

(∃X≤a)χ(X). Also suppose VNC1 proves

(∀a)(ψ(a)→ ψ(
√
a)). (12)

Then VNC1 proves ψ(a)→ ψ(1), and thus also proves χ(Y)→ (∃X≤ 1)χ(X)).

Theorem 16 used a descending induction; a similar theorem holds also for ascending
induction:

XX:18 Expander Construction in VNC1 (Extended Abstract)

I Theorem 17. Suppose ϕ(X) is a ΣB0 -formula containing only X free. Also suppose VNC1

proves

ϕ(Y)→ (∃X)(|X| ≥ |Y |2 ∧ ϕ(Y)).

Then VNC1 proves (∃Y)ϕ(Y)→ (∀x)(∃X)(|X| > x ∧ ϕ(X)).

5.4 Expressing expander graph properties in VNC1

We now discuss how VNC1 can express properties about graphs, adjacency matrices, expansion
properties, and graph constructions such as powering, tensor product and replacement product.
A graph G on n vertices will be encoded in VNC1 as a string object (a second order object).
Here n is a number (a first-order object), and the intent is to represent G in terms of its
adjacency matrix. The (i, j)-th entry of the adjacency matrix is the number of edges between
vertices i and j. It is represented by a three-place second order predicate A(i, j, k) where
A(i, j, k) is true when there are exactly k edges between i and j. (Strictly speaking, we
should write A(〈i, j, k〉), but we suppress this notation.) Each i, j, k is a number (a first order
object); it will be important that we always have k < p(n) for some fixed polynomial p, since
then k is ΣB0 -definable from A, i, j, and we can write k = A(i, j) for the value of k.

Row vectors and column vectors (containing numbers) are likewise representable by
strings, with A(i, k) meaning that the i-th entry of the vector is equal to k.

With these conventions it is easy for VNC1 to ΣB0 - or ΣB1 -define many properties of the
graph G encoded as above. We illustrate this with several examples.

For u < n, the set of edges containing vertex u can be defined as the set

E({u}) = {〈u, v, k〉 : (∃k′≤p(n))(k < k′ ∧A(u, v, k′)).

Note this allows for multiedges. The degree of v is |E({v})| and can be ΣB0 -defined with
the Numones function. G has degree d if each u ∈ [n] has degree d. There will always be
a polynomial upper bound p(n) on the degree.

• For U ⊂ [n], the set E(U,U) is defined similarly as

E(U,U) = {〈i, j, k〉 : i∈U ∧ j /∈U ∧ (∃k′≤p(n))(k < k′ ∧A(i, j, k′)).

Rational numbers p/q are represented by pairs of integers (p, q) (not necessarily in reduced
form). The usual ordering p/q < p′/q′ is of course definable by pq′ < p′q, where q, q′ > 0.
Pairs of rational numbers may be added or multiplied or divided as usual.
The proof of the Cauchy-Schwarz theorem, and more generally our proofs of expansion
properties, argue about sums of vectors of rational numbers. VNC1 can define summations
of vectors of integers [14], but it is not clear whether it can define summations of vectors
of arbitrary rational numbers. This will be handled in our VNC1 proofs by clearing
the denominators so that we can argue about summations of integers instead of about
summations of rational numbers. In our applications, the least common multiple of the
denominators will be easily computed, making it easy to clear the denominators.
The edge expansion of a degree d graph G can thus be defined by as in equation (1)
with V = [n]. This, however, is not a ΣB1 -definition, since it requires minimizing over all
subsets U ⊂ [n]. Instead we can define the property “G has edge expansion > p/q” as

(∀U<n)
(

0 < |U | ≤ n

2 →
|E(U,U)|
d · |U |

>
p

q

)
.

This is a ΠB
1 -condition. Recall that “(∀U<n)” is quantifying over all subsets of [n].

Sam Buss, Valentine Kabanets, Antonina Kolokolova, and Michal Koucký XX:19

A rotation map is encoded by a second order object Rot(u, i, v, j) with the meaning that
the i-th edge of u is the same as the j-th edge of v. We can relate the rotation map Rot
and the adjacency matrix A by letting the i-th edge from u to v be the edge 〈u, v, k〉
such that

|{〈u, i′, v, j〉 : Rot(u, i′, v, j) ∧ i′ < i}| = k

Furthermore, the adjacency matrix A is ΣB1 -definable in terms of Rot, since A(u, v) = k

holds exactly when there are exactly k values 〈i, j〉 such that Rot(u, i, v, j). Since v, j are
uniquely determined by u, i, we also use the notation Rot(u, i) = (v, j).
It is also possible to ΣB1 -define a canonical rotation map as a function of the adjacency
matrix.

Graph operations are also readily defined by VNC1:
To add self-loops to convert a d-regular G to a 2d-regular G′, define the adjacency
matrix A′(u, v, k) as

(u 6= v ∧A(u, v, k)) ∨ (u = v ∧ (∃k′ ≤ d)(A(u, v, k′) ∧ (k = k′ + d))).

(Graph Powering.) Let k > 1 be fixed. VNC1 can ΣB1 -define the graph power Gk from G

as follows. We write 〈i1, . . . , ik〉 for an efficient sequence coding so that each 〈i1, . . . , ik〉
is represented by an integer < dk. Then Rot(u, 〈i1, . . . , ik〉) = (v, 〈j1, . . . , jk〉) holds iff

(∃〈u0, . . . , uk〉)[u0=u ∧ uk=v ∧
∧k

s=1
(Rot(us−1, is) = (us, jk−s+1))].

Since k is fixed and each ui < n, the quantifier is a bounded number quantifier.
Similar arguments give ΣB1 -definitions of Tensor Product and Replacement Product. The
constructions are straightforward and we leave the details to the reader.

These constructions, along with Theorem 17, allow VNC1 to prove the existence of the
graphs Gi as defined by (2). Fix constants d and c, and fix a (2d)-regular G0 with edge
expansion ε0. Also, fix a rotation map Rot0 = RotG0 for G0. Given Gi and Roti, for
i ≥ 0, VNC1 can prove the existence of Gi+1 satisfying (2) along with the existence of Roti+1.
Furthermore, by Theorem 17, VNC1 can prove the existence of a second-order object encoding
a sequence of graphs and rotation maps

(G0,Rot0), (G1,Rot1), (G2,Rot2), . . . , (G|a|,Rot|a|), (13)

so eachGi+1 and associated rotation map Roti+1 is obtained fromGi and Roti by Equation (2).
Letting the constant D = 2(4d)2)c as before, each Gi has (|V0| · 4D)2i

/D many vertices,
provably in VNC1. (See Theorem 9.) The size of Gi+1 is greater than the square of the size
of Gi; indeed, |Vi+1| = D · |Vi|2. Therefore, Theorem 17 applies, to show that VNC1 can
ΣB

1 -define the sequence (13) as function of a, and hence can ΣB
1 -define G|a| and Rot|a| as

functions of a.
Similar, only slightly more complicated, arguments allow VNC1 to prove the existence

of the graphs G̃i as defined by (3). Now i can be an arbitrary first-order (integer) value
i = a, not just a length |a|. Fix appropriate constants d = 2` and c, and for i ≤ 2c`+8, fix
graphs G̃i with edge expansion ≥ 1/1296 and their rotation maps Roti. Using induction
on ΣB

0 -formulas, VNC1 proves the existence of a sequence of values k0, . . . , ks such that
k0 = a and each ki+1 = b(ki−2c`−5)/2c, and such that s is the first value where ks < 2c`+7.
Given both G̃ki+1 and G̃ki+1+1 and their rotation maps Rotki+1 and Rotki+1+1, and using

XX:20 Expander Construction in VNC1 (Extended Abstract)

the definition (3), VNC1 can prove the existence of both G̃ki
and G̃ki+1 and their rotation

maps. Furthermore, the sizes of G̃ki and G̃ki+1 are both greater than the square of the size
of G̃ki+1+1. Therefore, by Theorem 17 again, VNC1 can prove the existence of a second-order
object encoding a sequence of pairs of graphs and rotation maps:

(G̃ks
,Rotks

, G̃ks+1,Rotks+1), (G̃ks−1 ,Rotks−1 ,G̃ks−1+1,Rotks−1+1), . . .
(G̃k0 ,Rotk0 , G̃k0+1,Rotk0+1), (14)

with successive pairs of expander graphs obtained via (3). Since k0 = a, this shows that
VNC1 can ΣB1 -define G̃a and Rota as functions of a.

It is immediate from the definition of Gi, using induction on i, that VNC1 proves that
each Gi has degree 2d (for the appropriate value of d). Likewise VNC1 proves that each
G̃i has degree 2d. It is more difficult to prove that VNC1 proves Gi and G̃i have the edge
expansion properties of Theorems 9 and 10. This is discussed in the next sections.

5.5 Formalizing edge expansion properties in VNC1

We prove that the graph operations can be analyzed in VNC1. For ∅ 6= U (V , we denote by
edge-expG(U) the edge expansion ratio defined as follows:

edge-expG(U) = |E(U,U)|
d ·min{|U |, |U |}

.

I Lemma 18. Let k be even. VNC1 proves the following: Suppose Gk is the graph power of
G as defined in Section 5.4, and V is the common vertex set of G and Gk. Then

(∃U)[U ⊂ V ∧edge-exp(©Gk)(U) < [1
2
(
1−

(
1− ε2

4
)k/2)]→ (∃U)[U ⊂ V ∧edge-expG(U) < ε].

I Lemma 19. VNC1 proves the following: Let G = (VG, EG) be a dG-regular graph with
dG/2 self-loops at every vertex and H = (VH , EH) be a dH-regular graph with dH/2 self-loops
at every vertex. Let ε = min{εG, εH}. Then,

(∃U)[U ⊂ (VG ⊗ VH) ∧ edge-expG⊗H(U) < ε/50]
→ (∃U)[U ⊂ VG ∧ edge-expG(U) < εG] ∨ (∃U)[U ⊂ VH ∧ edge-expH(U) < εH].

I Lemma 20. VNC1 proves the following: Let G = (VG, EG) be a D-regular graph on n

vertices, and let H = (VH , EH) be a d-regular graph on D vertices. Let ε = ε2GεH/48, and let
VG◦H denote the vertices of G ◦H. Then,

(∃U)[U ⊂ VG◦H ∧ edge-expG◦H(U) < ε]
→ (∃U)[U ⊂ VG ∧ edge-expG(U) < εG] ∨ (∃U)[U ⊂ VH ∧ edge-expH(U) < εH].

Finally, the arguments in Section 3.3 also formalize in VNC1 to combine Lemmas 18-20 to
prove the existence of expander graphs. For this, we need to formulate the arguments so as
to apply Theorem 16. We first how how to prove the existence of the edge expanders Gi in
VNC1. To talk about the edge expansion of Gi, we encode a subset U of Vi using a string Y
of length exactly |Vi|+ 1 = (|V0| · 4D)2i

/D + 1, by letting Y = U ∪ {|Vi|}. It follows from
the discussion at the end of Section 5.4 that VNC1 can ΣB

1 -define Gi as a function of |Vi|,
hence as a function of Y .

Sam Buss, Valentine Kabanets, Antonina Kolokolova, and Michal Koucký XX:21

Let A(Y) express the conditions that (a) |Y | = |Vi|+ 1 for some i, and (b) Y encodes a
subset U of Vi such that edge-expGi

(U) < 1/1296. The (contrapositive of the) argument in
Section 3.3, formalized in VNC1, shows that the following is VNC1 provable:

(∃Y≤a)A(Y)→ (∃Y≤
√
a)A(Y). (15)

For i = 0, this uses the fact that G0 has edge expansion ≥ 1/1296, and since G0 is a constant
graph, this can be checked by a enumerating all of the finitely many subsets.

Applying Theorem 16 to (15) gives that VNC1 proves

(∃Y≤a)A(Y)→ (∃Y≤1)A(Y).

There are only four possible Y ’s with |Y | ≤ 1. The righthand side, (∃Y≤1)A(Y), is a false
ΣB0 -formula asserting a finite property. Hence, VNC1 can trivially disprove (∃Y≤1)A(Y) by
direct evaluation. Therefore, VNC1 proves ¬(∃Y)A(Y), i.e., can prove that any Vi must be
an expander. This completes the proof of the following.

I Theorem 21. There is a constant d so that VNC1 proves the existence of arbitrarily large,
degree 2d graphs with edge expansion ≥ 1/1296. Namely, VNC1 proves

(∀a)(∃V,E)[|V | ≥ a ∧ (V,E) is a degree 2d graph
∧(∀U)(U ⊆ V → edge-exp(V,E)(U) ≥ 1/1296)].

In fact, there is a ΣB1 -definable function G of VNC1 so that that VNC1 proves

(∀a)[G(a) is a degree 2d graph G(a) = (V,E) with |V | ≥ a
∧(∀U)(U ⊆ V → edge-exp(V,E)(U) ≥ 1/1296)].

VNC1 can also prove the existence of edge expander graphs of aribitrary size.

I Theorem 22. There is a constant d = 2` and a ΣB1 -definable function G of VNC1 so that
VNC1 proves

(∀a)[G(a) is a 4d-regular graph G(a) = (V (a), E(a)) with |V | = a

∧(∀U)(U ⊆ V → edge-exp(V,E)(U) ≥ 1/(2 · 1296))].

Proof. Pick appropriate constant values for d and c. VNC1 starts by proving the existence of
G̃i for the least i such that 2i ≥ a. VNC1 can prove the existence of the sequence k0, . . . , ks
with k0 = i, and each ki+1 = b(ki−2c`−5)c and s the first value with ks < 2c`+7. In
addition, by Section 5.4, VNC1 can prove the existence of second-order objects encoding
edge expanders G̃j = (Ṽj , Ẽj) for every value j = ki or j = ki + 1 with i ≤ s. Recall that
|Ṽj | = 2j . Let A(Y) express the condition that for some i ≤ s, either (a) |Y | = 2ki + 1 and
Y encodes a subset U of Ṽki such that edge-expG̃ki

(U) < 1/1296, or (b) |Y | = 2ki+1 + 1 and
Y encodes a subset U of Ṽki+1 such that edge-expG̃ki+1

(U) < 1/1296. The (contrapositive)
of the argument in Section 3.3, now shows that

(∃Y≤a)A(Y)→ (∃Y≤
√
a)A(Y).

is VNC1-provable. Applying Theorem 16 gives that VNC1 proves

(∃Y≤a)A(Y)→ (∃Y≤1)A(Y).

Therefore, VNC1 proves ¬(∃Y≤a)A(Y), i.e., it proves the edge expansion properties for
arbitrary Y , and hence the edge expansion properties of G̃i. J

XX:22 Expander Construction in VNC1 (Extended Abstract)

Finally, VNC1 can also formalize the argument given in Section 4 to construct bipartite
vertex expanders. The only new proof ingredient is the use of logarithms to define t1 and
t2 in the proof of Claim 13. VNC1 can define rational approximations to logarithms; here
we need only integers t1 and t2 such that (1 + ε′)t1 ≥ 1/α and (1 − ε′)t2 ≤ α. Since ε′ is
small, these values can be estimated as |d1/αe|/ε′. Actually, in the argument for Section 4,
we have α = 1/600 and ε′ = ε/D′ are fixed constants; hence t1 and t2 are constants as well.
Finally, at the very end of the proof of Theorem 12, we have A = (D′(2d) + 1)max{t1,t2},
where t′ = max{t1, t2}. Thus A is also a constant. Here it is important that t′ is constant,
or at least is not too large, so that t′ can be used as an exponent.

Thus we have proved the following theorem.

I Theorem 23. VNC1 proves Theorem 12 for any constant α. Namely, for any fixed rational
0 < α < 1, there exists an A > 0 and a ΣB

1 -defined function F (m) of VNC1 so that the
following holds: VNC1 proves that for all m, F (m) equals the rotation map RotG of an (α,A)
bipartite vertex expander graph G on m+m vertices.

As VNC1 is a subtheory of VNC1
∗, Theorem 23 is stronger than the assumption needed by

Jeřábek [23].

6 Application to monotone sequent calculus

In [36], Pudlák and Buss introduced a proof system for reasoning with monotone formulas,
motivated by strong lower bounds results for monotone circuits, and posed the question
whether similar difference in complexity holds in the propositional proof system setting. More
specifically, they formulated monotone sequent calculus and asked whether any non-monotone
proof of a monotone sequent can be replaced by a monotone proof at most polynomially
larger. In [34], Pudlák further investigated this question, focusing in particular on the
pigeonhole principle. There, he discussed the need to formalize properties of monotone
counting formulas such as AKS sorting networks of [1], and asked whether there are small
proofs of basic properties of counting formulas.

The pigeonhole principle was shown to have polynomial-size monotone sequent calculus
proofs by Atserias, Galesi and Gavaldá in [6]; this paper was the first to use the name MLK
for this system. The same paper also gave quasipolynomial-size proofs of basic counting
principles. Building upon the latter result, Atserias, Galesi and Pudlák [7] show that, in
contrast to monotone circuit classes, monotone proof systems are nearly as powerful as
non-monotone ones: polynomial-size non-monotone proofs can be simulated by monotone
ones of quasipolynomial size. The quasipolynomial blowup is introduced in the [6] proofs of
certain properties of threshold formulas.

To prove that every LK proof can be converted into an MLK proof of quasipolynomial
size, [7] use monotone threshold formulas to eliminate negated variables. A threshold formula
THnk (x1, . . . , xn) asserts that at least k variables xi are 1. The standard inductive definition
builds THnk as a disjunction of THn/2

i (x1, . . . , xn/2) ∧ THn/2
j (xn/2+1, . . . , xn) for all pairs

i, j ≤ n/2 such that i+ j ≥ k. This definition yields quasipolynomial size formulas THnk , and
thus gives only quasipolynomial size LK proofs of properties of THnk . If LK is polynomially
bounded, then so is MLK (as in this case properties of threshold functions would have
polynomial-size LK proofs). More generally, they use the following lemma based on results
from [6]:

I Lemma 24 ([7, Lemma 6]). Let THnk be a polynomial-size monotone threshold formula.

Sam Buss, Valentine Kabanets, Antonina Kolokolova, and Michal Koucký XX:23

Then MLK polynomially simulates LK on monotone sequents, provided there are polynomial-
size LK proofs of the following sequents:
1. THnk (x1, . . . , xn)→ and →THn0 (x1, . . . , xn) for every n and k > n.
2. THnk (x1, . . . , xi/0, . . . , xn)→THnk+1(x1, . . . , xi/1, . . . , xn) for all n, k and i such that

0 ≤ k, i ≤ n.

Such polynomial-size monotone threshold formulas can be built using the classic construc-
tion of monotone log-depth sorting networks by Ajtai, Komlós and Szemerédi [1], known
as AKS sorting networks. A sorting network can be thought of as a circuit with n outputs
gates, which contain the values of the input gates in sorted order. That is, the kth output
of a sorting network is 0 iff there are at least k 0s among inputs to the network. The
construction of AKS sorting networks is fairly involved; see [31, 41] for expositions. At the
end of the paper, Atserias et al. note that replacing their threshold formulas with monotone
NC1 sorting networks of Ajtai, Komlós and Szemerédi would remove the blowup and allow
for polynomial-size simulation, provided the relevant properties can be proven with NC1

reasoning (not necessarily monotone).
Jeřábek [24] has shown just that, under the assumption that bipartite expanders graphs

with appropriate parameters can be constructed, and their properties proven in NC1 reasoning.
More precisely, Jeřábek [24] has shown that AKS sorting networks (Paterson’s [31] variant)
are indeed formalizable in a theory VNC1

∗ of NC1 reasoning, under the assumption of the
existence of a family of bipartite expanders provable in VNC1

∗ (with parameters as in Claim 13).
The theory VNC1

∗ is somewhat stronger than VNC1 that we use, in that it can evaluate
and reason about less uniform families of log-depth circuits; however, proofs in VNC1

∗ still
translate into polynomial-size LK proofs [23]. Thus, Jeřábek obtains the following result:

I Theorem 25 ([24, Theorem 5.5]). Suppose that there exists a constant D and a parameter-
free NC1

∗ function G(m) such that VNC1
∗ proves that for all numbers m, G(m) is a 〈1/600, D〉

bipartite m+m expander. Then MLK polynomially simulates LK on monotone sequents.

The construction in Theorem 12 gives expanders with the appropriate parameters, and
Theorem 23 shows that it can be done in VNC1 (and thus VNC1

∗). As this proves the
assumption of Theorem 25, we immediately get the following corollary.

I Theorem 26 (Main application). MLK polynomially simulates LK on monotone sequents.

7 Conclusions and open problems

From the point of view of bounded reverse mathematics, the area that tries to pinpoint the
minimal reasoning power needed to prove mathematical theorems, it is very interesting to
understand what is the complexity of reasoning required to prove properties of expander
graphs, and thus what is the complexity of reasoning in expander-based proofs such as the
known proofs of SL = L [37, 39]. This paper makes a step in this direction by showing that
an expander construction can be formalized within the system VNC1.

A number of open questions remain. Can we formalize expanders in a weaker theory
than VNC1, e.g., the system of TC0 reasoning? Can Reingold’s result that undirected graph
connectivity is in deterministic logspace [37] be formalized in the system of logspace reasoning?
The analysis of graph powering given in this paper and the analysis of replacement product
given in [4] are not strong enough to achieve that goal.

Finally, as was already asked by [24], can the AKS construction of expanders be modified
to yield UE∗ -uniform sorting networks?

XX:24 Expander Construction in VNC1 (Extended Abstract)

Acknowledgements

We want to thank Denis Thérien and Pascal Tesson for inviting V.K., A.K., and M.K. to
the 2007 McGill Complexity Workshop in Barbados, where this paper was initiated. V.K.
and A.K. also wish to thank Josh Buresh-Oppenheim, Shlomo Hoory, and Rahul Santhanam
for our many discussions on expander graphs. V.K. and A.K. are particularly thankful to
Russell Impagliazzo for inviting them to spend a semester at UCSD in the spring of 2016,
where this work was finally completed. S.B. thanks Amir Akbar Tabatabai and Raheleh
Jalali for useful discussions on VNC1, and Rosalie Iemhoff and Anupam Das for discussions
on intuitionistic logic. We also thank Anupam Das for his comments on our paper, and
Albert Atserias for clarifying to us the history of the MLK proof system. We are especially
grateful to Emil Jeřábek for carefully reading our manuscript and pointing out some errors
in the early versions.

References

1 Miklós Ajtai, Janós Komlós, and Endre Szemerédi. An O(n logn) sorting network. In
Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing, pages 1–9.
Association for Computing Machinery, 1983.

2 Noga Alon and Fan R.K. Chung. Explicit construction of linear sized tolerant networks.
Discrete Mathematics, 72:15–19, 1988.

3 Noga Alon and Yuval Roichman. Random Cayley graphs and expanders. Random Struc-
tures and Algorithms, 5:271–284, 1994.

4 Noga Alon, Oded Schwartz, and Asaf Shapira. An elementary construction of constant-
degree expanders. Comb. Probab. Comput., 17(3):319–327, May 2008. URL: http://dx.
doi.org/10.1017/S0963548307008851, doi:10.1017/S0963548307008851.

5 Toshiyasu Arai. A bounded arithmetic AID for Frege systems. Annals of Pure and Applied
Logic, 103:155–199, 2000.

6 Albert Atserias, Nicola Galesi, and Ricard Gavaldá. Monotone proofs of the pigeon hole
principle. Mathematical Logic Quarterly, 47(4):461–474, 2001.

7 Albert Atserias, Nicola Galesi, and Pavel Pudlák. Monotone simulations of non-monotone
proofs. Journal of Computer and System Sciences, 65(4):626–638, 2002. doi:10.1016/
S0022-0000(02)00020-X.

8 Marta Bílková. Monotone sequent calculus and resolution. Commentationes Mathematicae
Universitatis Carolinae, 42:575–582, 2001.

9 Sam Buss, Valentine Kabanets, Antonina Kolokolova, and Michal Koucký. Expander con-
struction in VNC1. Electronic Colloquium on Computational Complexity (ECCC), TR16-
144, 2016. URL: http://eccc.hpi-web.de/report/2016/144/.

10 Samuel R. Buss. Bounded Arithmetic. Bibliopolis, 1986. Revision of 1985 Princeton
University Ph.D. thesis.

11 Samuel R. Buss. Polynomial size proofs of the propositional pigeonhole principle. Journal
of Symbolic Logic, 52:916–927, 1987.

12 Samuel R. Buss, Leszek Aleksander Kołodziejczyk, and Konrad Zdanowski. Collapsing
modular counting in bounded arithmetic and constant depth propositional proofs. Trans-
actions of the AMS, 367:7517–7563, 2015.

13 Peter Clote and Gaisi Takeuti. Bounded arithmetics for NC, ALOGTIME, L and NL.
Annals of Pure and Applied Logic, 56:73–117, 1992.

14 Stephen Cook and Phuong Nguyen. Logical Foundations of Proof Complexity. Cambridge
University Press, New York, NY, USA, 1st edition, 2010.

http://dx.doi.org/10.1017/S0963548307008851
http://dx.doi.org/10.1017/S0963548307008851
http://dx.doi.org/10.1017/S0963548307008851
http://dx.doi.org/10.1016/S0022-0000(02)00020-X
http://dx.doi.org/10.1016/S0022-0000(02)00020-X
http://eccc.hpi-web.de/report/2016/144/

Sam Buss, Valentine Kabanets, Antonina Kolokolova, and Michal Koucký XX:25

15 Stephen A. Cook. Feasibly constructive proofs and the propositional calculus. In Pro-
ceedings of the Seventh Annual ACM Symposium on Theory of Computing, pages 83–97,
1975.

16 Stephen A. Cook and Tsuyoshi Morioka. Quantified propositional calculus and a second-
order theory for NC1. Archive for Mathematical Logic, 44:711–749, 2005.

17 Irit Dinur. The PCP theorem by gap amplification. J. ACM, 54(3), June 2007. URL:
http://doi.acm.org/10.1145/1236457.1236459, doi:10.1145/1236457.1236459.

18 Ofer Gabber and Zvi Galil. Explicit construction of linear sized superconcentrators. Journal
of Computer and System Sciences, 22:407–420, 1981.

19 Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their applications.
Bulletin of the American Mathematical Society, 43(4):439–561, 2006.

20 Emil Jeřábek. Approximate counting in bounded arithmetic. Journal of Symbolic Logic,
72(3):959–993, 2007.

21 Emil Jeřábek. Approximate counting by hashing in bounded arithmetic. Journal of Sym-
bolic Logic, 74(3):829–860, 2009.

22 Emil Jeřábek. Substitution frege and extended frege proof systems in non-classical logics.
Annals of Pure and Applied Logic, 159(1):1 – 48, 2009. URL: http://www.sciencedirect.
com/science/article/pii/S0168007208001784, doi:http://dx.doi.org/10.1016/j.
apal.2008.10.005.

23 Emil Jeřábek. On theories of bounded arithmetic for NC1. Annals of Pure and Applied
Logic, 162(4):322–340, 2011.

24 Emil Jeřábek. A sorting network in bounded arithmetic. Annals of Pure and Applied Logic,
162(4):341–355, 2011.

25 Alexander Lubotzky, Ralph Phillips, and Peter Sarnak. Ramanujan graphs. Combinatorica,
8(3):261–277, 1988.

26 Alexis Maciel, Toniann Pitassi, and Alan R. Woods. A new proof of the weak pigeonhole
principle. Journal of Computer and System Sciences, 64(4):843–872, 2002.

27 Grigory Margulis. Explicit constructions of expanders. Problems of Information Transmis-
sion, pages 71–80, 1973.

28 Milena Mihail. Conductance and convergence of Markov chains: A combinatorial treatment
of expanders. In Proceedings of the Thirtieth Annual IEEE Symposium on Foundations of
Computer Science, pages 526–531, 1989.

29 Jeff B. Paris and Alex J. Wilkie. ∆0 sets and induction. In W. Guzicki, W. Marek, A. Pelc,
and C. Rauszer, editors, Open Days in Model Theory and Set Theory, pages 237–248, 1981.

30 Jeff B. Paris, Alex J. Wilkie, and A. R. Woods. Provability of the pigeonhole principle and
the existence of infinitely many primes. Journal of Symbolic Logic, 53:1235–1244, 1988.

31 M. S. Paterson. Improved sorting networks with O(log N) depth. Algorithmica, 5(1-4):75–92,
1990. URL: http://www.springerlink.com/index/10.1007/BF01840378, doi:10.1007/
BF01840378.

32 Jan Pich. Logical strength of complexity theory and a formalization of the PCP theorem
in bounded arithmetic. Logical Methods in Computer Science, 11(2:8):1–38, 2015.

33 Mark Pinsker. On the complexity of a concentrator. In Proceedings of the Seventh Annual
Teletraffic Conference, pages 1–4, 1973.

34 P. Pudlak. On the complexity of the propositional calculus. In S. Barry Cooper and
John K.Editors Truss, editors, Sets and Proofs:, London Mathematical Society Lecture
Note Series, page 197–218. Cambridge University Press, Jun 1999.

35 Pavel Pudlák. Ramsey’s theorem in bounded arithmetic. In Computer Science Logic,
Lecture Notes in Computer Science #553, pages 308–312. Springer-Verlag, 1992.

http://doi.acm.org/10.1145/1236457.1236459
http://dx.doi.org/10.1145/1236457.1236459
http://www.sciencedirect.com/science/article/pii/S0168007208001784
http://www.sciencedirect.com/science/article/pii/S0168007208001784
http://dx.doi.org/http://dx.doi.org/10.1016/j.apal.2008.10.005
http://dx.doi.org/http://dx.doi.org/10.1016/j.apal.2008.10.005
http://www.springerlink.com/index/10.1007/BF01840378
http://dx.doi.org/10.1007/BF01840378
http://dx.doi.org/10.1007/BF01840378

XX:26 Expander Construction in VNC1 (Extended Abstract)

36 Pavel Pudlák and Samuel R Buss. How to lie without being (easily) convicted and the
lengths of proofs in propositional calculus. In International Workshop on Computer Science
Logic, pages 151–162. Springer, 1994.

37 Omer Reingold. Undirected connectivity in log-space. J. ACM, 55(4):17:1–17:24, September
2008. URL: http://doi.acm.org/10.1145/1391289.1391291, doi:10.1145/1391289.
1391291.

38 Omer Reingold, Salil Vadhan, and Avi Wigderson. Entropy waves, the zig-zag graph prod-
uct, and new constant-degree expanders. Annals of Mathematics, 155(1):157–187, 2002.

39 Eyal Rozenman and Salil P. Vadhan. Derandomized squaring of graphs. In Approximation,
Randomization and Combinatorial Optimization, Algorithms and Techniques, 8th Interna-
tional Workshop on Approximation Algorithms for Combinatorial Optimization Problems,
APPROX 2005 and 9th InternationalWorkshop on Randomization and Computation, RAN-
DOM 2005, Berkeley, CA, USA, August 22-24, 2005, Proceedings, pages 436–447, 2005.

40 Walter L. Ruzzo. On uniform circuit complexity. Journal of Computer and System Sciences,
22:365–383, 1981.

41 Joel Seiferas. Sorting networks of logarithmic depth, further simplified. Algorithmica (New
York), 53(3):374–384, 2009. doi:10.1007/s00453-007-9025-6.

http://doi.acm.org/10.1145/1391289.1391291
http://dx.doi.org/10.1145/1391289.1391291
http://dx.doi.org/10.1145/1391289.1391291
http://dx.doi.org/10.1007/s00453-007-9025-6

	Introduction
	Our results
	Relation to previous work
	Expander constructions
	Bounded arithmetic

	Preliminaries
	Notation
	Expanders
	Bounded arithmetic theory VNC1
	LK and MLK proof systems

	Constructing edge expanders
	Graph operations
	Effect of graph operations on edge expansion
	Construction

	Constructing bipartite vertex expanders
	Formalizing the construction in bounded arithmetic
	Defining NC1 functions within VNC1
	A modified tree recursion
	A conservation result
	Expressing expander graph properties in VNC1
	Formalizing edge expansion properties in VNC1

	Application to monotone sequent calculus
	Conclusions and open problems

