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ABSTRACT

We introduce new features for the broad phase algorithm sweep and
prune that increase scalability for large virtual reality environments
and allow for efficient AABB insertion and removal to support dy-
namic object creation and destruction. We introduce a novel seg-
mented interval list structure that allows AABB insertion and re-
moval without requiring a full sort of the axes. This algorithm is
well-suited to large environments in which many objects are not
moving at once. We analyze and test implementations of sweep and
prune that include subdivision, batch insertion and removal, and
segmented interval lists. Our tests show these techniques provide
higher performance than previous sweep and prune methods, and
perform better than octrees in temporally coherent environments.

Index Terms: I.3.6 [Computer Graphics]: Methodology and
Techniques—Graphics data structures and data types; I.3.7 [Com-
puter Graphics]: Three-Dimensional Graphics and Realism—
Virtual Reality;

1 INTRODUCTION

Collision detection has broad applications including virtual reality
systems, computer games, robot motion planning, physical model-
ing, and training simulators. Modern systems are capable of de-
tecting physical interference between thousands of objects, each of
which is composed of thousands of polygons, in real time. Many
collision detection subsystems are composed of two primary stages,
called the ‘broad phase’ and ‘narrow phase’. The broad phase takes
as input all objects in the environment and produces a list of pairs
of objects that are sufficiently near that they could possibly inter-
sect. The narrow phase takes this list as input and processes each
object pair to determine collision status, identifying portions of the
geometry which interfere. The present paper discusses improved
broad phase algorithms based on extensions to sweep and prune
and on spatial subdivision. These new algorithms are particularly
useful for environments with many unmoving objects and for envi-
ronments where objects can be created and destroyed.

Bounding volumes are typically used in the broad phase, usually
spheres or axis-aligned bounding boxes (AABBs). Many systems
utilize spatial subdivision for the broad phase [3, 18, 12, 28, 15, 2,
27, 19, 11]. Spatial subdivision algorithms only check for intersec-
tion among shapes occupying the same spatial regions. Sweep and
prune is an alternative technique that sorts the projected extents of
AABBs onto each cartesian axis and incrementally sorts them [1] to
determine AABB overlap. Non-incremental sorting methods have
also been used in the broad phase [16, 14, 22].

The incremental sweep and prune technique, hereafter referred
to as sweep and prune, was first published by Baraff [1]. An im-
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plementation by Cohen et al. as part of iCollide [6] used a local
sort mechanism, useful for environments with few moving objects.
Coming and Staadt [7] adapted sweep and prune to an event-driven
broad phase approach for environments whose objects follow sim-
ple known paths by pre-computing and scheduling swap events.
They also have work with sweep and prune that eliminates tem-
poral aliasing to support continuous collision detection [8]. More
details on sweep and prune extensions are provided in Section 2.

Some systems employ pre-computed hierarchies of bounding
volumes over static geometry [13, 23, 29]. This paper differs from
these works in that we focus upon “object-level” pruning, where it
is assumed that each object is moving independently and a stable
hierarchy cannot be formed.

This paper reviews several augmentations to sweep and prune
presently in use but not represented in the literature. First, we dis-
cuss the utility of using multiple sweep and prune instances in a
subdivided environment to reduce swapping behavior, accelerate
AABB insertion and removal, and allow parallelization. Excess
swapping behavior directly impacts the scalability of sweep and
prune, and this method can accelerate the algorithm by an order of
magnitude or more in large environments. Second, we present batch
methods that reduce the overhead of AABB insertion and removal
events. Third, we advocate an event-based output interface that no-
tifies clients of changes in collision status, and discuss applications
for which this increases efficiency.

In addition, we present a novel technique to accelerate AABB
insertion and removal using segmented interval lists. This method
imposes a hierarchy over the interval lists for searching and allows
insertions and erases of extrema without consulting or modifying
the entire list. This technique performs better than batch insertion
and removal in large environments with many objects at rest and
small numbers of insertions and removals. We discuss implemen-
tation and show experimental results for all of these techniques.

2 SWEEP AND PRUNE METHODS

Sweeping plane is a broad phase algorithm that finds overlaps be-
tween AABBs by sorting the projected extents of boxes on a carte-
sian axis. The overlaps between boxes on that axis can be deter-
mined by a second pass over this list. During this pass, two data
structures are maintained: a set E of objects whose minimum has
been encountered but whose maximum has not, and a set O of ob-
ject pairs which accumulates overlaps. At each node, if we en-
counter the minimum for some object c, we add c to E, or we re-
move c from E if a maximum. In addition, at every maximum for
an object c, we add to O every object in E paired with c. This pro-
cessing is usually performed on a single axis, and object pairs in the
set O are checked for overlap in other dimensions.

Sweep and prune, developed by Baraff [1] and implemented by
Cohen et al. [6], improves upon sweeping plane by exploiting tem-
poral coherence. Because object positions often change little each
cycle, the projected sort order on each axis and the output remain
similar between cycles. By retaining the sorted interval lists and
results, and performing incremental changes for movement, perfor-
mance is dramatically improved. An insertion sort [17] is used,



which has an expected linear running time on nearly sorted se-
quences. Swaps occur between adjacent elements, during which
AABB overlap tests are triggered.

There are three primary data structures in a sweep and prune
implementation. A sorted list of intervals for each axis contains
one minimum and one maximum for each object. In addition, a
node exists for each object which contains references to the object’s
minima and maxima in the sorted lists, six references in all, called
the ‘AABB list’. When an object must update its AABB due to
movement, it updates the values through these references. Finally,
the ‘candidate set’ is the set of object pairs that overlap in all three
dimensions. An example of the data structures is shown in Figure 1.

Figure 1: Sweep and Prune Data Structures

The operation of sweep and prune proceeds as follows. Be-
tween each processing cycle, objects undergoing motion update
their AABB extents, writing them into the interval lists, which
will now be unsorted. To resort each list, an insertion sort is per-
formed. During this sort pass, swap events may occur between ad-
jacent objects, causing their AABBs to be compared for full three-
dimensional overlap. Swaps that change overlap status cause the
candidate set to be updated by adding or removing object pairs. In
this way, the amount of work performed for a coherent environment
is simply a pass over the interval lists plus some amount of work for
each swap.

The sweep and prune method outlined above is as originally de-
tailed by Baraff [1]. The iCollide [6] implementation uses a tri-
angular bit matrix to keep track of overlap status for each dimen-
sion rather than perform AABB comparisons on each swap. This
requires O(n2) space but reduces the work required during swaps.
More significantly, iCollide optionally uses a local sort mechanism,
which sorts each extrema as they are updated. This eliminates the
need to sort the lists from beginning to end (a global sort), and
improves performance when few objects move.

Coming and Staadt describe a kinetic sweep and prune [7]. For
environments in which object paths follow a closed-form function,
swap times are pre-computed for each adjacent pair, eliminating
the need to sample positions each simulation cycle. Coming and
Staadt also use sweep and prune for continuous collision detection
by eliminating temporal aliasing [8], while addressing the high-
velocity problem with extended bounding boxes. The present work
differs from these papers in that we do not assume any knowledge
of object paths and our algorithm is insensitive to changes in veloc-
ity; however, it would be possible to use extended bounding boxes
to eliminate temporal aliasing with the algorithms presented in Sec-
tion 3.

2.1 Analysis of Sweep and Prune

Baraff [1] indicated that sweep and prune has complexity O(n+ s),
where n is the number of objects and s is the number of swaps
performed. Considering swaps that do not produce a change in the
candidate set to be negligible, he concluded that running time was
effectively O(n+o), where o is the number of overlapping pairs.

This time bound does not reflect the cost of swap events in a
large simulation, however. It also does not allow for insertion and
removal of AABBs during simulation, and the overhead of main-
taining the candidate set is not considered. We analyze local-sort
based sweep and prune in k-dimensional space taking these factors
into account. More importantly, we show that the s term increases
super-linearly with object count.

Symbol Meaning

n total AABBs
k dimensions (typically 2 or 3)
m migrations (insertions + removals)
u updates (moving AABBs)
s swaps
o AABB pairs overlapping
e changes in o

Table 1: Definition of terms for analysis

The total complexity of sweep and prune is

O(uk + sk + e+mnk +o),

where u represents position updates, e is the number of AABB pairs
that transitioned to or from an overlapping state on this processing
cycle, o is the total number of overlapping object pairs, and m is
the sum of inserted and removed AABBs. The uk term represents
movement updates, which write a value for the k dimensions of
all u updated objects. The term sk is work for swaps caused by
movement: for each swap, k dimensions are compared for overlap.
For e object pairs changing collision status, e work is required to
maintain a hashing structure. For each of the m insertions and re-
movals of AABBs, O(n) expected swaps occur in each of k dimen-
sions to place them, yielding mnk. AABB tests are only required
for swaps in one of these dimensions during insertion and removal.
The o term represents communicating the candidate set to the client.

The expected number of swaps s can be further analyzed based
upon the density (extrema per unit axis length) of the interval lists
and average velocities. When k > 1, sweep and prune increases ex-
traneous swap behavior super-linearly with respect to AABB count.
To quantify how the number s of swap events increases with AABB
count, we assume that a set of AABBs are uniformly distributed
in a k-dimensional hypercube. The volume of the hypercube is in-
creased with the number of AABBs so as to maintain a constant ob-
ject density. Let E be a k-dimensional hypercube environment with
n AABBs and a total volumetric density of V . Let lE be the length
of each side of E. Let the hypercube E ′ have the same volumetric
(object) density V as E, but with f n AABBs, where f > 1. The
total number of intervals in E is 2n on each of the k axes, whereas
for E ′ it is 2 f n. Letting c be the mean volume per AABB, we have

V = nc/lk
E = f nc/lk

E ′ .

Thus, the ratio of lE ′ to lE is k
√

f .
To summarize, E ′ has a factor f times as many extrema per axis

and only k
√

f times the length for each axis. This means that when
the number of objects increases by a factor f , the number s of swaps
on the axes can be estimated to increase by a factor

f / k
√

f = f 1−1/k.

Therefore, s can be estimated as ukn1−1/k under the assumptions of
constant average object velocity and constant density of uniformly
distributed objects. When all objects are moving, u = n, so the
runtime for the traditional sweep and prune becomes

O(k2n2−1/k +mnk + e+o).



This analysis is supported by the simulations shown in Figure
2. These measurements were taken with cubical objects all moving
in a uniform environment and no insertion or removal events. All
cubes are the same size, have the same velocity magnitude in ran-
dom directions, and bounce off the environment’s boundaries. The
otherwise necessary tracking and reporting features were disabled,
as they disturb measurement of swap behavior. Curve-fitting these
data points using least squares fitting produces an estimated power

of 1.76, close to the n5/3 being claimed.
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Figure 2: Measured SAP Growth Characteristic

To summarize, we’ve identified several weaknesses of the tradi-
tional sweep and prune algorithm. First, the algorithm does not
scale linearly due to increased swap behavior for each extrema
when object count increases. Secondly, it does not efficiently han-
dle object insertion and deletion.

3 ENHANCEMENTS TO SWEEP AND PRUNE

We present enhancements to sweep and prune that address the per-
formance weaknesses analyzed above. Section 3.1 describes a
now common hybrid algorithm with both subdivision and sweep

and prune[25]. This reduces swap behavior from O(uk2n1−1/k) to

O(uk2) by limiting axial density. In traditional sweep and prune,
the extraneous swap behavior is the majority of the running time of
the algorithm in large environments. This method directly reduces
the number of swaps to linear in the number of updates by prevent-
ing distant objects from polluting interval lists. It also accelerates
AABB insertion and removal by reducing swaps to cell populations
and allows the algorithm to be parallelized easily.

Section 3.2 discusses two methods for improving AABB inser-
tion and removal performance. The first method, batch insertion
and removal, is well suited to environments in which most objects
are moving or large numbers of insertion and removal events will
occur every simulation cycle. The second method, segmented inter-
val lists, is novel to this paper and yields better performance when
fewer objects are moving and small numbers of insertions and re-
movals occur due to object creation and deletion or moving objects
migrating between cells. This method is well-suited to the subdi-
vision plus sweep and prune scheme, which continuously causes
small numbers of migrations.

In addition, an event-based output interface is described in Sec-
tion 3.3 that allows the client to process only relevant subsets of
overlaps, which can reduce the O(o) term of complexity from
sweep and prune to O(e).

3.1 Subdivision

A hybrid method using both spatial subdivision and sweep and
prune can give large performance improvements. The hybrid
method uses a ‘superstructure’ based on a spatial subdivision
method, typically a simple grid, in which each cell is actually an
instance of sweep and prune operating over a portion of space.
Bounding volumes which overlap more than one cell are duplicated

into those cells, so care must be taken to eliminate duplicates from
output caused by object pairs overlapping in multiple cells. The su-
perstructure retains a mapping from AABBs to the set of cells they
reside within for relaying updates and performing erases, and han-
dles migrations between cells caused by movement. Each object
has associated with it an integer key for each cell it resides in, as
well as a key tracked by the superstructure, which correlates them
with client data.

Figure 3: Superstructure of subdivision plus sweep and prune

As compared to a single instance of sweep and prune that covers
a large environment, the interval lists of each cell are consequently
“thinned” of extrema from distant objects. See Figure 4 for a visual
of this effect. If we reduce the object count per cell to a constant, we

reduce the expected number of swaps from ukn2/3 to uk, as interval
density doesn’t increase with object count.

Figure 4: Thinning effect of subdivision

The performance of AABB insertion and removal is also im-
proved by subdivision, reduced from O(kmn) to O(km) if the num-
ber of objects per cell can be reduced to a constant. Insertion pro-
ceeds through two phases: the superstructure performs cell place-
ment, and then the bounding volume information is swapped into
sorted order within each cell. Erases must similarly be swapped out
of interval lists. If the number of objects in each cell is bounded,
the swapping behavior is bounded by this constant rather than in-
cluding the whole environment.

This hybrid method lends itself well to being parallelized. In
support of thread-parallel execution, movement updates and inser-
tion and removal events buffer all call data within cells. When col-
lisions are queried, the cells are assigned to one of t threads, and
each performs sorting in parallel.

Ponamgi et al. [21] developed a hybrid subdivision and sweep
and prune algorithm for the narrow phase. That work differs from
our discussion in that they intersect cells of two hierarchies and
maintain interval lists for each pair of intersecting cells at multiple
levels of the hierarchy in order to reduce primitive tests between
two models, while we discuss a single structure where sweep and



prune is performed only at the leaves, and is a broad phase algo-
rithm motivated primarily by reducing swaps from distant objects.

In our experiments, the best performance is achieved with large
cells and an incremental sort. We achieve optimum performance
with about three hundred objects in each cell in a uniformly dis-
tributed environment. Further, although adaptive subdivision struc-
tures can be used with sweep and prune leaf nodes, a simple grid
is typically favored for low overhead in checking cell placement on
object position updates. This means that non-uniform object dis-
tributions could result in some cells with many objects. This does
not pose a serious problem for sorting, but AABB insertion and re-
moval overhead grows linearly with AABB population. This prob-
lem is exacerbated by the tendency for more AABB insertion and
removal events to occur in largely populated cells, both due to mi-
grations between cells and object creation and deletion. It is clear
that additional effort should be made to accelerate object insertion
and removal in each cell.

3.2 Insertion and Removal

The primary obstacle to efficient insertion of a new object into the
middle of an interval list is that the object may intersect with ar-
bitrarily large AABBs whose extrema can be anywhere within the
list. In addition, insertion into or removal from an array-based list
requires moving in memory a number of elements proportional to
the size of the list. Finally, the placement of extrema must be found
efficiently. We discuss two separate techniques to accelerate inser-
tion and removal. The first, batch insertion and removal, has been
used in practice but not discussed in the literature[10]. It is effi-
cient when there are many insertions and removals to process and
when most objects are moving, as it requires traversal of the inter-
val arrays. The second, which is presented for the first time in this
paper, is segmented interval lists. Our technique efficiently pro-
cesses a small number of insertions and removals when few objects
are moving, and limits the number of swaps during insertion or re-
moval regardless of the interval array size. This method is better
suited to large virtual environments with many objects at rest.

3.2.1 Batch Insertion and Removal

Instead of individually swapping each inserted object into place,
batch insertion techniques consolidate this work by presorting in-
sertion extrema to the order they will be processed in the interval
array so that they can be integrated in a single pass. Extrema to
be removed can also be eliminated from the interval array in batch.
This is an efficient solution when a large percentage of objects are
moving or when the number of insertions and removals is large.

The implementation we describe here uses a single pass (apart
from swaps) over the interval arrays to perform the global sort and
integrate all insertion and removal events simultaneously into the
same buffer. This optimizes use of the memory hierarchy and is
more ideal than multi-pass methods when parallelized due to lim-
ited shared memory bandwidth.

Each insertion event generates 2k extrema records to insert
into k interval lists with coordinate data provided by the client.
Rather than performing the insertion immediately, these records
are buffered separately for each dimension into lists Ii∈[1,k], a min-

imum and a maximum in each buffer per insertion. Removals are
buffered similarly in lists Ri∈[1,k]. When collisions are reported,

for each dimension i, buffers Ii and Ri are sorted. A single pass
is then performed over Ii, Ri, and the retained interval list Li to
integrate the population changes, perform the insertion sort, and
produce changes in the candidate set. Records to remove are en-
countered in the interval list Li in the same order as in Ri. Inser-
tions are processed in the order that their extrema are encountered
in Ii. The O(mnk) term of sweep and prune’s complexity is reduced
to O(k(m log m + n)). A single-space implementation is used to
increase cache performance, with the new interval lists replacing

the old incrementally within the same array. This is accomplished
by “floating” the array of intervals within a slightly larger alloca-
tion whose size is bounded by the number of elements plus twice
the number of additions on some previous cycle, and performing
the algorithm’s pass alternatively backward or forward depending
upon conditions (See Figures 5 and 6). If a sufficiently large gap
exists to accommodate all insertions, a forward pass is performed
and the gap is closed. Otherwise, the array is grown by enough ele-
ments to accommodate all insertions and a backward pass increases
the gap size.

Figure 5: Sorting Backwards

Figure 6: Sorting Forwards

This process produces a valid interval list, but more is required to
maintain the candidate set. Inserted objects must be tested for colli-
sions with both retained objects and other inserted objects, and ob-
jects being removed must have collisions involving them removed.
In order to accomplish this, the inner loop has elements of the
non-incremental sweeping plane algorithm. In the inner loop, we
maintain three sets to track the identiies of objects intersecting the
sweeping lines of the interval list, the insertions list, and the re-
movals list, named SL, SI , and SR, respectively. When an object’s
first entry is fetched (a minima if going forward), the object’s iden-
tifier is added to the appropriate set, and it is removed from the
set when the second entry is fetched. The set SL does not include
elements being deleted.

When a removed extrema is passed or an insertion is placed into
the interval list, the sets provide the context necessary to limit over-
lap checking to AABBs overlapping this AABB in the dimension
being processed. Since objects must overlap in every dimension to
affect the candidate set, this processing can be limited to a single
axis, with overlap checks occurring for the other axes. The method
we use detects all overlap configurations and produces no dupli-
cates in the output. When an object’s second entry is copied into
the interval list from the insertions list, checks for overlaps between
that object and all objects in SL and SI are performed, with results
added to the candidate set. When the second entry of an item to
be removed is passed in the interval list, it is checked for overlap
with all objects in SL and SR, with results removed from the candi-
date set. In addition, when the second entry of an object is sorted
from the interval list into the same list (i.e., due to movement), it is
checked against objects in SI to add to the candidate set and objects



in SR to remove from it. Pseudo-code for the inner loop is given in
Table 2.

subfunction process sets ( set Maintain, set CollideWith, ...

... extrema Point, set of pairs Events )
if Point is minima

add Point to Maintain

else

remove Point from Maintain

add to Events all {Point, items in CollideWith}

while( not done )

if L[ f romL] = R[ f romR]
if first axis

process sets ( SR, SL ∪SR, L[ f romL], uncollideEvents )
increment f romL & f romR

else if I[ f romI ] < L[ f romL]
write I[ f romI ] to L[toL]
if last axis

process sets ( SI , SL ∪SI , I[ f romI ], collideEvents )
increment f romI & toL

else

if first axis

process sets ( SL, SR , L[ f romL], uncollideEvents )
else if last axis

process sets ( SL, SI , L[ f romL], collideEvents )
insertion sort L[ f romL] into L[toL]
increment f romL & toL

end

Table 2: Batch Insertion and Removal: Forward Pass

The critical difference between the performance of batch inser-
tion and removal and that of sweeping plane is that a general sort
algorithm is not performed on retained data, but only on records of
insertion and removal events. This yields performance similar to
sweep and prune when few insertion and removal events occur, and
smoothly degenerates to sweeping plane performance when large
numbers of events occur.

3.2.2 Segmented Interval Lists

We now discuss a new approach named segmented interval lists.
Traditional sweep and prune uses either linked lists or arrays to
store sorted extrema. Segmented interval lists instead use a linked
list of small arrays. Another array of pointers allows direct access
to each small array and can be binary searched. Since the small
arrays may be only partially filled, objects can be inserted and re-
moved without requiring swaps along the entire length of the axis.
Segmented interval lists allow small numbers of insertions and re-
movals to occur efficiently by limiting the number of swaps for each
event to a constant.

The segmented interval list method works well with a local-sort
sweep and prune for large virtual environments in which many ob-
jects are at rest, and efficiently handles the smaller number of inter-
cell migration events caused by objects moving in a subdivided
environment. This method has lower asymptotic complexity than
batch insertion and removal when few objects are moving, and the
same complexity when all objects are moving (O(k(m log n)) for
segmented interval lists vs O(k(m log m + n)) for batch insertion
and removal).

In place of lists or arrays, we utilize a hybrid data structure which
acts as an unrolled linked list [24] with respect to traversal, and a
hierarchical structure with respect to insertion. More importantly,
it has features that eliminate the need to scan the list beyond the
current array segment for overlapping extrema. Refer to Figure 7.

The structure contains a linked list of chunks, which are also

Extrema

Checkpoints

Extrema

Checkpoints

Array

Chunk Chunk

Figure 7: Structure of Segmented Interval List

referred to by an array of pointers. Each chunk has space for a con-
stant number of extrema, but chunks are not necessarily fully pop-
ulated. The ‘checkpoints’ set contains the set of object id’s which
overlap with the ‘trailing edge’ of the chunk (AABBs whose min-
ima is within this chunk or one to the left, but whose maxima is in
a chunk to the right). This yields local information regarding ex-
trema that are arbitrarily far away in the list. This information is
only maintained for a single dimension.

Insertion of an extrema involves a binary search on the array to
find the earliest chunk with a greater extrema. The new extrema is
placed in the last position and insertion-sorted into position within
the chunk. After all 2k extrema are inserted, the candidate set is
maintained by comparing for full-dimension overlap against the set
of objects that overlap in the first dimension. This set includes ob-
jects with extrema within the same chunk or within the checkpoint
set of the chunk occupied by one of the extrema. If the minima and
maxima of the inserted object are placed in separate chunks in this
dimension, objects in all the chunks between them are compared as
well.

Erases involve first performing these full-dimension overlap tests
to determine the set of overlaps that exist involving the erased object
for removal from the candidate set. The object’s extrema are then
swapped out of the chunk. This limits the number of swaps for each
event to the size of a chunk.

The AABB list contains not only pointers for each of 2k extrema,
but also a pointer to a chunk for each such extrema, necessary for
maintaining them during local sort. During the insertion sort caused
by movement updates, each time an extrema swaps the pointer must
be updated in the AABB list. In addition, swaps that occur across
chunk boundaries cause both the extrema pointer and associated
chunk pointer to be updated in the AABB list.

Some work is required to maintain the checkpoints sets. Swaps
that occur across chunk boundaries during sort, insertions across
multiple chunks, and removal of extrema pairs in separate chunks
all invoke changes to the checkpoints. This work is only done for
one dimension, and the checkpoints sets in other dimensions can
always remain empty.

During sort, a minima swapping leftward into a chunk causes
that object id to be added to the checkpoints set, as does a maxima
swapping to the right out of a chunk. A minima swapping to the
right out of a chunk or a maxima swapping to the left into a chunk
causes the object id to be removed from the checkpoints set.

A special case occurs to handle fast-moving objects that may
cause their minima and maxima to swap out of relative place tem-
porarily (maxima then minima) and cross a chunk boundary. This
would normally cause us to first attempt to remove the object id
from the checkpoints set when it is not present and then later add it
when the opposing extrema crosses the boundary. To compensate
for this problem, when we attempt to remove an object id that is
not present in the checkpoints set, we add it to a set R. Whenever
an object id is to be added to the checkpoints set, we first check
if it is in R and if so, remove it from R instead of adding it to the
checkpoints set.

When an object is inserted and its minima and maxima do not
map to the same chunk, every chunk from the minima inclusive to



the maxima exclusive adds the object to its checkpoints set. Main-
taining a checkpoints set during removals is similar to that for in-
sertions, save that a remove from the set is triggered.

When a chunk must be split due to insertion into a full chunk, a
new chunk is allocated and placed next in the list. Approximately
half the elements from the end of the full chunk are copied into the
new chunk, and the new chunk inherits the old chunk’s checkpoints
set. The checkpoints set for the old chunk is computed by starting
with the original set and modifying this set while traversing the new
chunk. Beginning with the end and traversing backwards, when a
maxima is encountered, its object id is added to the checkpoints.
When a minima is encountered, its object id is removed.

When extrema are erased from a chunk, there is opportunity to
potentially merge two neighboring chunks to reduce fragmentation.
If the chunk being erased from can be merged with a neighbor and
result in population below a threshold, it does so. The resulting
chunk inherits the checkpoints set of the chunk further right in the
list.

Our tests show that a chunk size of approximately 25 gives op-
timal performance for insertion and removal, while sorting perfor-
mance benefits somewhat from slightly larger chunk sizes. This is
expected to be architecture and implementation dependent, how-
ever. There are some simple methods for keeping the chunks un-
fragmented, primarily by choice of chunk size and insertion and
erase policies. Specifically, when an object is erased, it could be
swapped backward and across to the previous chunk first, eliminat-
ing an element from the previous chunk instead of its own. This
decision could be based upon the population of the chunks and the
proximity of the element to each side.

Previous systems related to segmented interval lists have used
stabbing counters [26] or markers [9] to accelerate AABB inser-
tion and removal. Stabbing counters attempt to limit the number
of AABBs that need to be checked for overlap during insertion,
but perform poorly if even one large AABB overlaps the insertion
point. Markers are similar to our checkpoints, in which the AABB
overlap set is tracked at a number of points within each interval
list, allowing inserted objects to begin at any marker in a linked-list
based implementation. As compared to markers, segmented inter-
val lists provide for insertion allocation in an array-based system,
which is expected to perform better on modern hardware. Our sys-
tem also ensures an upper bound on the number of extrema between
checkpoints.

3.3 Event-based Output

Sweep and prune computes the changes in overlap status in order
to maintain a set of overlapping pairs. Sweep and prune algorithms
can therefore provide changes in overlap status efficiently without
traversing the set of overlaps, eliminating the o term from its com-
plexity. For cases in which the client must perform some processing
each cycle for all overlaps, there is no advantage. However, not all
overlaps require continuous processing.

Many applications model a large number of objects, many of
which are in a stable ‘resting’ state where physics calculations are
not required until a collision or other disturbance occurs. These en-
vironments are ideal for sweep and prune with local sort, as only
active objects must be updated and sorted. Because two stable ob-
jects need not be checked in the narrow phase each cycle, it would
be beneficial if the broad phase provided changes in overlap sta-
tus, rather than require that all overlaps be produced, traversed, and
filtered for relevant candidate collisions. The changes in overlap
status are expected to be very small compared to the full number of
overlaps in temporally coherent environments.

Another example in which this interface would be beneficial is
an advanced physics system such as Timewarp Simulation [20]. In
this technique, an optimistic large-step rigid-body simulation is fol-
lowed by further correction steps using subsets of objects in the

simulation based upon collisions. A cycle of updating some objects,
detecting collisions, and performing further integration occurs. Us-
ing a standard broad phase interface, time is spent each refinement
cycle outputting the full set of overlaps to the physics simulation,
which must then search for the relevant collisions. An event-based
interface provides a small set of events that will only involve objects
that have been updated.

A third example occurs when the client requires code to be exe-
cuted when two AABBs begin or cease to collide, but not continu-
ously during overlap. In this usage, large AABBs can contain many
objects without incurring any overhead for maintaining or travers-
ing this set.

The low-bandwidth nature of event-based output is used to ac-
celerate consolidation of overlaps during query. A list of cells re-
ceiving updates accumulates cell identifiers until a fraction of the
total AABB population is reached. If this limit is reached, all cells
are queried, otherwise those listed are queried. The query gathers
the changes in overlap status from the previous cycle, and a single
table maintains the number of cells witnessing the overlap of each
object pair. When a witness count changes between zero and one,
a collide or uncollide event is provided for the client accordingly.
This process has complexity O(u+ e).

4 EXPERIMENTAL RESULTS

We have implemented efficient spatial subdivision and sweep and
prune methods for performance comparisons. We use an efficient
dynamic octree [27] as a baseline spatial subdivision technique.
Our octree implementation uses dynamic arrays (arrays which may
grow by reallocation) to represent object lists, and performs over
80% of its time traversing arrays, indicating near optimality. We
also compare sweep and prune implementations that include sub-
division using a static grid, the batch insertion and removal tech-
nique discussed in Section 3.2.1, and our segmented interval list
approach.

Our implementations support any number of dimensions, any
comparable data type for spatial position, and any form of client
object key for output reporting. This is done through generic pro-
gramming principles using C++ templates. An infrastructure for
testing the correctness and performance of broad phase algorithms
has been implemented in C++ and OpenGL. Correctness is tested
by optionally comparing all output to a known working algorithm.
The source code to our algorithm will be freely available online,
along with the testing framework and methods used for compari-
son.

Both the batch insertion and removal and segmented interval
list implementations dynamically determine whether to perform a
global sort or local sort in each cell upon every query. Because all
updates and events are buffered for parallelization rather than im-
mediately executed, it is apparent upon each query which approach
should be utilized. For batch insertion and removal, a global sort
occurs if any insertion or removal events are pending or if a large
number of updates exist. For segmented interval lists, the total num-
ber of insertion, removal, and update events must exceed a thresh-
old for global sort. Although local sort is a significant optimiza-
tion when few objects are moving, our tests indicate an over 30%
speedup using global sort when most objects are moving, justifying
this adaptive approach.

All tests are performed on a 2.16 GHz Intel Core 2 Duo machine
with 3 GB RAM running Mac OS X 10.5.5. Our synthetic bench-
mark consists of uniform distributions of AABBs in a cubical envi-
ronment. Each test uses objects moving randomly with a velocity
ten percent of its width per time step in an environment with a vol-
umetric density of five percent. Objects ‘bounce’ off environment
bounds. All results are for a single thread.



4.1 Insertion and Removal Performance

The tests in this section compare the performance of segmented
interval lists versus batch insertion and removal. These tests, shown
in Figures 8 and 9, do not use subdivision.

The relative performance of batch insertion and removal against
segmented interval lists depends upon the extent of activity. Figure
8 shows the total time for sorting movements plus performing one
insertion and one removal from the environment each simulation
cycle as we vary the number of moving objects among a base of
3000 objects total.
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Figure 8: Single Cell, Total time with one insertion & one removal

For a single insertion and removal, segmented interval lists ap-
proaches the overhead of batch insertion and removal when most
objects are moving and the imposition of a global sort is not a bur-
den. When fewer objects are moving, however, segmented interval
lists are much more efficient. With 20% of objects moving, seg-
mented interval lists is 60% faster, while with 5% of objects mov-
ing segmented interval lists is three times faster than batch insertion
and removal.

In Figure 9, we vary the number of insertions and removals in
the context of 150 moving objects among 3000 total (5%). Total
time for sorting updates and performing insertions and removals is
given.
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Figure 9: Single Cell, Total time: 3000 objects total, 150 are moving

For small numbers of events, segmented interval lists provide
lower overhead, allowing it to process larger environments in real
time under coherent conditions. For a single insertion and a single
removal, segmented interval lists is almost three times as fast. For
ten insertions and ten removals, segmented interval lists is still 90%
faster. The cut-off point in this graph is slightly less than 80 events
(forty insertions and forty erases).

The vertical translation of the Batch SAP line in Figure 9 is af-
fected by the total objects. It will be lower for less populated envi-
ronments and higher for more highly populated environments. The
shallower slope of the Batch SAP line indicates a lower constant

of overhead for processing larger numbers of extrema. The steeper
slope of segmented interval lists may be improved by a method that
presorts the events and integrates changes into the chunks in order.
This consolidates swaps within each chunk when events are high
and still reduces swap behavior when events are low. This should
produce a performance behavior that smoothly transitions between
the best results of both segmented interval lists and batch insertion
and removal.

4.2 Aggregate Performance

The remainder of our tests measure the performance of subdivision
using a multi-cell grid with sweep and prune cells that use either
segmented interval lists or batch insertion and removal. The grid
size is optimized based upon object count, ideally about three hun-
dred per cell based upon tests, and is always the same for the two
sweep and prune algorithms being compared. The octree’s subdivi-
sion level is set to have smaller cells for optimum performance.

For the test in Figure 10, ten thousand objects are moving in an
environment with one hundred thousand total objects. We vary the
number of insertions and removals and measure the total time.
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Figure 10: Multi-cell, 100,000 objects, 10,000 Moving

In a large environment supported by the subdivided sweep and
prune scheme, batch methods show significant slow-down as in-
sertion and removal events increase at first. This is because the
events statistically map to a greater number of cells, each one re-
quiring a global sort. The overhead increase drops off after most of
the cells are affected, and the batch method begins to benefit from
single-pass integration of multiple events in each cell. Segmented
interval list-based cells are much more efficient for lower levels of
insertions and removals because they limit the number of swaps
for each event. The crossover point for this graph (not shown) is
four thousand events (two thousand insertions and two thousand
removals). Again, the slope of segmented interval lists could be
improved by sorting insert/erase records and consolidating swaps
within each chunk.

It should also be noted that the uniform distribution tested is ideal
for batch methods, as the segmented technique will perform rela-
tively better as individual cells become overpopulated. The octree
is not included because it is insensitive to insertions and removals,
although it has generally worse performance than subdivided sweep
and prune when few objects are moving.

In Figure 11 we measure performance as we scale an environ-
ment and all events proportionately. We perform moving updates
on 10% of our total objects, and the insert and remove rate is 0.5%
of the total objects each. We test the scale of this environment from
ten thousand to two hundred thousand objects.

The segmented interval list system is slightly faster than the
batch method at small scales in this test, and becomes almost twice
as fast at twenty thousand moving objects among two hundred thou-
sand. The performance advantage widens further if the object dis-
tribution becomes non-uniform or the percentage of moving objects
is decreased.
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Although insensitive to insertions and removals, the octree can-
not take sufficient advantage of temporal coherence as compared to
sweep and prune approaches. Under conditions in which object ve-
locities are low or there are many objects not in motion, sweep and
prune methods perform better.

The algorithms presented in this paper are used in the Scalable
City [4, 5] project, a large virtual reality artwork which is able to
test algorithms for large real-time VR systems. Tens of thousands
of physical objects are simulated across large landscapes, with a va-
riety of forces, physical effects, and behaviors. A sweep and prune
algorithm is used to accelerate many software components by pro-
viding proximity information for collision detection and other ef-
fects based upon spatial proximity. Most objects in this environ-
ment are at rest most of the time, but can become activated immedi-
ately based upon interaction. Subdivision, segmented interval lists,
and event based output result in much-improved execution times.

4.3 Conclusions

We have presented several enhancements to sweep and prune for
broad phase collision detection. Our segmented interval lists, in
combination with subdivision, provide sweep and prune with object
insertion and removal performance several times faster than batch
methods. These techniques perform especially well in large en-
vironments with many unmoving objects in which objects can be
added to and removed from the system.
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