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This talk discusses:
CDCL SAT solvers and proof systems.

CDCL solvers are remarkably successful in solving very large
instances of SAT, routinely solving SAT instances with
100,000’s or 1,000,000’s of variables.
CDCL solvers find an instance of SAT to be unsatisfiable,
(mostly!) by implicitly finding a resolution refutation.

DRAT, substitution propagation redundant (SR) and
related inference systems.
These extend CDCL solvers to potentially (but indirectly)
simulate the full strength of extended resolution which is
strictly stronger than resolution.
Dual Implication Points (DIPs). A proposal for strategies
for directly incorporating extended resolution into SAT solvers.

“SAT” = “Satisfiability” of CNF formulas
“CDCL” = “Conflict Driven Clause Learning”
“DRAT” = “Deletion & Reverse Asymmetric Tautologies”
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Satisfiability (SAT) problem: Given a conjunctive normal form
(CNF) formula, determine if there is Boolean truth assignment
that makes it true.

CNF formula: Variables range over True and False.
A formula is a conjunction (Boolean and) of clauses (disjunctions,
i.e. a Boolean or, of literals).

SAT is NP-complete. Furthermore, it is “efficiently”
NP-complete in that common NP-complete problems are reducible
to near-linear size SAT instances.

Thm: For M a non-deterministic Turing machine, the problem of
whether it halts in k steps can be reduced to an instance of SAT
for a formula of size k(log k)O(1). (“quasilinear size”).

SAT solvers have many applications in software and hardware
verification, scheduling, optimization, (combinatorial) theorem
proving, etc.
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I. Conflict Driven Clause Learning (CDCL)

CDCL is the most commonly used algorithm for SAT. Its core
consists of:

Depth-first search (DFS) + Unit propagation.
Picks a variable to set true or false.
Sets all unit propagation consequences.
Repeats as long as possible.

Conflict/Learning: When a some clause is falsified (a
“conflict)”, some new clause is learned (inferred), and the
DFS backtracks.

CDCL (with restarts) simulates Resolution:[BKS’04, PD’11, AFT’11]

A resolution inference is:

C ∨ x D ∨ x
C ∨ D

A resolution refutation
ends with ∅.

Example: { x , x ∨ y , x ∨ y }
is unsatisfiable.
x x ∨ y

y
x x ∨ y

y
∅
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Example of a conflict graph and first-UIP learning

x
z

y
t

u

v

w ⊥

s

a b c

The CNF contains the clauses x ∨ a ∨ z , x ∨ z ∨ y , y ∨ t, y ∨ v ,
y ∨ a ∨ u, y ∨ u ∨ v , u ∨ b ∨ c ∨ w , t ∨ v ∨ w and a ∨ b ∨ c.
x is the latest decision literal (i.e, last chosen by the DFS)
a, b, c were set at earlier decision levels.
The first-UIP literal is y . (“UIP” = “Unique Implication Point”.)
The learned clause is a ∨ b ∨ c ∨ y .
It can be inferred by a “trivial” resolution refutation.

Once x , a, b, c have been set, unit propagation gives successively
z , y , t, s, u, v , w , and finally ⊥.
The first-UIP literal is y .
The learned clause is a ∨ b ∨ c ∨ y .

By backtracking to the maximum decision level of a, b, c, the learned
clause a ∨ b ∨ c ∨ y becomes asserting, allowing y to be inferred
by unit propagation.
This in turn can trigger further unit propagation.

Sam Buss Extending SAT Solvers with Extended Resolution



Example of a conflict graph and first-UIP learning

x
z

y
t

u

v

w ⊥

s

a b c

The CNF contains the clauses x ∨ a ∨ z , x ∨ z ∨ y , y ∨ t, y ∨ v ,
y ∨ a ∨ u, y ∨ u ∨ v , u ∨ b ∨ c ∨ w , t ∨ v ∨ w and a ∨ b ∨ c.

x is the latest decision literal (i.e, last chosen by the DFS)
a, b, c were set at earlier decision levels.
The first-UIP literal is y . (“UIP” = “Unique Implication Point”.)
The learned clause is a ∨ b ∨ c ∨ y .
It can be inferred by a “trivial” resolution refutation.

Once x , a, b, c have been set, unit propagation gives successively
z , y , t, s, u, v , w , and finally ⊥.
The first-UIP literal is y .
The learned clause is a ∨ b ∨ c ∨ y .

By backtracking to the maximum decision level of a, b, c, the learned
clause a ∨ b ∨ c ∨ y becomes asserting, allowing y to be inferred
by unit propagation.
This in turn can trigger further unit propagation.

Sam Buss Extending SAT Solvers with Extended Resolution



Example of a conflict graph and first-UIP learning

x
z

y
t

u

v

w ⊥

s

a b c

The CNF contains the clauses x ∨ a ∨ z , x ∨ z ∨ y , y ∨ t, y ∨ v ,
y ∨ a ∨ u, y ∨ u ∨ v , u ∨ b ∨ c ∨ w , t ∨ v ∨ w and a ∨ b ∨ c.

x is the latest decision literal (i.e, last chosen by the DFS)
a, b, c were set at earlier decision levels.
The first-UIP literal is y . (“UIP” = “Unique Implication Point”.)
The learned clause is a ∨ b ∨ c ∨ y .
It can be inferred by a “trivial” resolution refutation.

Once x , a, b, c have been set, unit propagation gives successively
z , y , t, s, u, v , w , and finally ⊥.
The first-UIP literal is y .
The learned clause is a ∨ b ∨ c ∨ y .

By backtracking to the maximum decision level of a, b, c, the learned
clause a ∨ b ∨ c ∨ y becomes asserting, allowing y to be inferred
by unit propagation.
This in turn can trigger further unit propagation.

Sam Buss Extending SAT Solvers with Extended Resolution



II. Propositional Proof Systems (for SAT Solvers)

Weaker systems: Tree-like resolution; Regular resolution.

Resolution: proofs reason with clauses.

Intermediate (?) systems: AC0-Frege, Cutting Planes, Nullstellensatz, Polynomial
Calculus, Sum-of-Squares, MaxSat, Computer Algebra Systems, Algebraic proof sys-
tems, Semi-algebraic proof systems.

Frege proofs reason with arbitrary Boolean formulas (∧, ∨, ¬, →).
Uses Modus Ponens, e.g.

Extended Frege / Extended Resolution: Extends Frege by
allowing new variables u to be introduced as abbreviations, e.g.

u ↔ x ∧ y (or more complicated formulas).

DRAT / Propagation redundancy / SR proofs - in theory, have
the same strength as extended Frege.

Potentially stronger: Arbitrary symmetry breaking.
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Example tautologies — PHP and Tseitin

Pigeonhole Principle (PHPn): ¬∃ injective f : [n + 1] → [n]:

pi ,1 ∨ pi ,2 ∨ · · · ∨ pi ,n for i = 1, . . . , n + 1
pi ,j ∨ pi ′,j for i < i ′ ≤ n + 1 and j = 1, . . . , n.

Theorem [Haken’86, Cook-Reckhow’79, B’87,. . . ] PHPn has
polynomial size Frege and extended Frege proofs, but requires
exponential size resolution proofs.

Extended resolution proof uses
extension axioms:

qi ,j ↔ pi ,j ∨ (pi ,n ∧ pn+1,j)

to reduce PHPn(p⃗) to PHPn−1(q⃗).
Iterate to reduce to PHP2(· · · ).

1

2

3

i

n
n+1

1

2

3

j

n

qi,j

pi,n

pn+1,j
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The Tseitin principle states that the
following is impossible:
In a (low degree) graph G each node has
a fixed 0/1 charge. The total charge is
odd. Variables label the edges of G . For
each node u; the parity of the incident
edges equals the node’s charge.

1 0 0

0 0 0

0 0 0

x1 x2

x3 x4 x5
x6 x7

x8 x9 x10
x11 x12

e.g., x1 ⊕ x3 = 1
is expressed as

(x1 ∨ x3) ∧ (x1 ∨ x3)

Theorem: [Urquhart’87] For G a connected expander graph, the
Tseitin principles require exponential size resolution refutations.

Corollary: PHP and Tseitin do not have short CDCL refutations.

Theorem: [Tseitin’66; ≈B’87] The Tseitin principles have
polynomial size Frege and extended Frege proofs.
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III. DRAT, Propagation Redundancy, SR

DRAT and Propagation Redundancy (PR) are extensions to CDCL
designed to

Allow checking the correctness of CDCL generated proofs,
including special CDCL techniques that go beyond resolution.
(E.g., “without loss of generality” reasoning, or symmetries.)
Allow inferring non-implied clauses,
Extend CDCL to have the full power of extended resolution.

The next slides define two of the more powerful versions...

Kullmann, On a Generalization of Extended Resolution, Discrete Applied Math., 1999
Järvisalo, Heule, Biere, Inprocessing Rules, IJCAR ’2012.
Heule, Hunt, Wetzler, Verifying Refutations with Extended Resolution, CADE 2013.
Heule, Hunt, Wetzler, Trimming while Checking Clausal Proofs, FMCAD, 2013.
Wetzler, Huele, Hunt; DRAT-trim: Efficient Checking and Trimming Using

Expressive Clausal Proofs, SAT 2014.
Heule, Kiesl, Seidel, Biere, PRuning Through Satisfaction, HVC 2017.
Heule, Kiesl, Biere, Short Proofs Without New Variables, CADE 2017.
Huele, Biere, What a Difference a Variable Makes, TACAS 2018.
Kiesl-Rebola-Pardo-Heule, Extended Resolution Simulates DRAT, IJCAR 2018
B., Thapen, DRAT and Propagation Redundancy Without New Variables, LMCS 2021.
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The Largest Math Proof is a DRAT proof

[Heule-Kullmann-Marek’16]

Resolved the Boolean Pythogorean Triples Problem (false for
n = 7825)
(Thm: Every 2-coloring of {1, . . . , 7825} has a
monochromatic Pathagorean triple.)
DRAT proof size 200TB; compressed to 14TB (clause
compression plus bzip2), then to 68GB by special encoding.
Run time: 2 days wall clock time, 37100 CPU hours.
Verification time: About 16000 CPU hours.

SAT Competitions now routinely require SAT solvers to produce
DRAT or DPR proofs of unsatisfiability.
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Definition: Let Γ be a CNF formula, and C a clause. A
Propagation Redundancy (PR) inference can derive C from Γ
provided, there is a partial truth assignment τ such that

Γ ∪ C ⊨1 (Γ ∧ C)↾τ.

C is the conjunction of the negations of the literals in C .
“↾τ” means apply the truth assignment τ and simplifying.
We do not have that Γ ⊨ C ,
only that Γ is satisfiable iff Γ ∧ C is satisfiable.
Π ⊨1 ∆ means that for each clause D ∈ ∆,
the CNF Γ ∧ D yields a contradiction by unit propagation.
The “⊨1” condition is polynomial time checkable
(since unit propagation can be carried out efficiently, in fact in
linear time).

Definition: SPR (Subset PR) is PR with the additional
condition that the domain of τ is the variables in C .
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Definition: [B-Thapen] Let Γ be a CNF formula, and C a clause.
A Substitution Propagation Redundancy (SR) inference can
derive C from Γ provided, there is a substitution τ such that

Γ ∪ C ⊨1 (Γ ∧ C)↾τ.

The only difference is that now τ is a substitution, namely it
maps variables to a constant 0 or 1 (False) or (True) or to a
literal.
The condition is still satisfiability-preserving and
polynomial-time checkable.

—
Remark: DPR and DSR add a Clause Deletion rule.
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Theorem. [Kullman] The extension rule can be simulated by PR.

Proof sketch: To infer u ↔ x ∨ y :
To infer the clauses x ∨ u and y ∨ u,
use the truth assignment τ(u) = True.
To infer the clause u ∨ x ∨ y ,
use the truth assignment τ(u) = False.

Theorem. [≈ Kiesl,Rebola Pardo,Heule’18]
Extended resolution simulates PR and SR.
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One disadvantage of extended resolution is that it complicates
proof search: namely, there are too many options for what
formulas to abbreviate with new extension variables.

Accordingly: one can define systems that disallow new variables:

Definition: The inferences SPR−, PR− and SR− defined like SPR,
PR and SR, but restricting the inferred clause C to not contain
any new variables.

Theorem: [B.-Thapen’21] The system SPR− has polynomial size
proofs of:

Pigeonhole principles [Heule-Kiesl-Biere’17] and Bit-PHP.
Tseitin tautologies.
Parity principles.
Or-fication and Xor-ification obfuscations of easy formulas.
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Example of how prove PHPn with SR−.
Infer (one at a time, for i = 1, . . . , n) the unit clauses

pi ,n (expressing that pigeon i is not in hole n).

by using the substitution τ that maps pi ,j ’s to pn+1,j ’s and
vice-versa. (Interchanging pigeons i and n.)
Deduce (by unit propagation) the PHPn−1 clauses.
Iterate!
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IV. Dual Implication Points [B.-Chung-Ganesh-Oliveras’24]

A new proposal for choosing pairs of variables x and y for
introducing new variables by extended resolution as

u ↔ x ∧ y .

Based on examination of the conflict graph to finds pairs of
variables that form a dual implication point (DIP).

The notion of DIP generalizes the notion of UIP.
A DIP is a pair of variables x and y that together with literals
from lower levels imply a contradiction.
DIP’s occur very frequently in conflict graphs.
There can be quadratically many DIP’s, but all such pairs can
be identified in linear time using a compressed representation.
Finding DIP’s in linear time is based on an effective version of
Menger’s theorem for 3-connected vertices in a graph.

Prior work: GlucoseER [Audemard-Katsirelos-Simon’10] & TiniSatX [Huang’10].)
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DIP Example:

x1

x2

x3

x4

y2

y1

x5

UIP

y3

x6

x7

x9

x9

y5

x8

x8

y6

x11

x11

x10

x10

y4

x12

x12

x13

x13

⊥

Extension axiom Learned clauses (post-DIP and pre-DIP)
z ↔ (x12 ∧ x13) ¬z and ¬x5 ∨ y1 ∨ ¬y3 ∨ ¬y4 ∨ ¬y5 ∨ y6 ∨ z
z ↔ (x11 ∧ x13) ¬z and ¬x5 ∨ y1 ∨ ¬y3 ∨ ¬x4 ∨ ¬y5 ∨ y6 ∨ z
z ↔ (x10 ∧ x11) ¬z and ¬x5 ∨ y1 ∨ ¬y3 ∨ ¬y4 ∨ ¬y5 ∨ y6 ∨ z
z ↔ (x9 ∧ x11) ¬z ∨ ¬y4 and ¬x5 ∨ y1 ∨ ¬y3 ∨ ¬y4 ∨ ¬y5 ∨ y6 ∨ z
z ↔ (x8 ∧ x9) ¬z ∨ ¬y4 ∨ ¬y5 ∨ y6 and ¬x5 ∨ y1 ∨ ¬y3 ∨ ¬y4 ∨ z

One criterion: The choice of DIP should make z “useful for unit propagation”
by appearing both negatively and especially positively in learned clauses.
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First rounds of experiments on DIP-based extension rules
(xMapleSatLcm), using prior SAT competition problems:

Heuristics for choosing DIP’s tried so far include ”closest”, ” middle” and
“random”. Filtered optionally by activity or LBD (glue). Best results
obtained without the optional filtering.
There are *a lot* of DIP’s, so we choose a DIP only after it has arisen
multiple times (either 5 or 20 times)
Decision variable selection uses the usual VSIDS — and seems to work
well also for extension variables.
Deletion of inactive extension variables is also useful.
Comparison with GlucoseER, an earlier ER-based solver
[Audemard-Katsirelos-Simon’10].

Experimental results:
DIP-based extension and GlucoseER both perform very well on Tseitin
principles, random XOR formulas and “intersecting interval” tautologies
— much better than traditional CDCL. The Tseitin formulas considered
are both grid-based and on random graphs (degree 4 and degree 6).
The DIP method produces polynomial size refutations for Tseitin, albeit
in (slow-growing) exponential time.
DIP-based extension performs comparably to CDCL on a wide range of
other problems, with an overhead of ≈ 2%-5%.
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Open Problems / Future Work
Explore more broadly the capabilities of the DIP-based extension
framework. This framework provides a great deal of flexibility in extension
formulas, and there remain main possibilities to explore. Can it be useful
across a wider range of SAT problems?
Is the DIP-based extension system capable of simulating the full extension
resolution system? Similarly for the restrictive LER system used by
GlucoseER?
Explain how the DIP-based extension can discover small proofs of Tseitin
principles, and random XORs. Show explicitly how such proofs are
possible (e.g., by hand). So far, this is completely open.
Investigate using DIP’s to learn more 2-clauses.
Give superpolynomial lower bounds for strong redundancy proof systems
without new variables, such as SPR−, PR− or SR−. So far, this is done
only for RAT− [B.-Thapen’21].
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Thank you!

Sam Buss Extending SAT Solvers with Extended Resolution


