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Abstract9

We present a new algorithm called DualDFS which analyzes a set of binary clauses to determine the10

complete backbone of forced literals. DualDFS generalizes the failed literal algorithm by starting11

with a chain S of implications and using a dual depth-first search to find all literals that can be12

seen to be forced true or false via a literal in S. Experiments indicate that DualDFS performs13

comparably to, or better than, the state-of-the-art method KB3 of Frolysks, Yu, and Biere (2023)14

on sets of binary clauses arising in SAT competitions, and that it performs substantially better on15

many hard cases. The performance of DualDFS is analyzed on some crafted hard instances of binary16

clause reasoning. We give a reduction from the problem of detecting k-cycles in directed graphs to17

the problem of finding even a single forced literal in binary clause reasoning. Thus a sub-quadratic18

time algorithm for detecting backbone variables in binary clauses would improve on the best known19

algorithms for k-cycle detection. Due to known reductions from Max-k-SAT to cycle detection, a20

near-linear time algorithm for the 2-CNF backbone would imply O((2 − δ)n) time algorithms for21

δ > 0 for Max-k-SAT for all constants k, resolving a major open problem.22
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1 Introduction28

The satisfiability problem (SAT) is to determine whether a Boolean formula in conjunctive29

normal form (CNF) has a satisfying assignment. A simple, but important, special case30

is 2-SAT, or “binary clause reasoning”. There are well-known linear time algorithms for31

determining the satisfiability of instances of 2-SAT, the first by Even-Itai-Shamir [13]. Other32

linear time algorithms are given by Van Gelder [22], Del Val [10, 11] and Froleyks-Yu-Biere [14].33

Aspvall-Plass-Tarjan [5] gave a linear time algorithm for quantified 2-SAT.34

For satisfiable instances of 2-SAT, it is useful to identify the “backbone” variables. The35

backbone of a Boolean formula is the set of variables that have the same value τ(x) in36

all satisfying assignments τ . Janota, Lynes and Marques-Silva [17] defined the notion of37

backbone for general CNF formulas, and they and Biere-Froleyks-Wang [7] give algorithms38

for approximating the backbone of general CNF formulas, by finding a subset of the backbone.39

Froleyks-Yu-Biere [14] gave an algorithm KB3 that identifies backbone literals in a 2-CNF.40

Their algorithm is used to find the entire backbone in CadiBack [7]. See Section V of [14] for41

more discussion on prior methods for approximating the backbone.42

A contribution of the present paper is that a subquadratic time algorithm for computing43

the entire backbone would have unexpected implications for algorithms for detecting k-cycles44
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in graphs, and a linear time algorithm would imply a breakthrough for Max-k-SAT algorithms.45

Related hardness results for the backbone were given by Järvisalo-Korhonen [18] who proved46

that if the Strong Exponential Time Hypothesis (SETH) holds then there is no linear time47

algorithm for determining whether a Horn 3-SAT has a backbone literal, or even a failed48

literal. It is still open whether one can base the hardness of backbone computation for 2-CNFs49

on SETH. Section 4, however, uses a reduction by Lincoln, Vassilevska W. and Williams50

[19] from Max-k-SAT to k-cycle detection in directed graphs, to show that a linear time51

algorithm for the backbone of 2-CNFs would imply that for every constant k ≥ 3, there is an52

ε > 0 and an O((2 − ε)n) time algorithm for Max-k-SAT, resolving a major open problem in53

SAT algorithms. Even an O(m4/3−ε) time algorithm for the backbone would have significant54

consequences as it would imply a faster algorithm for Max-3-SAT.55

In comparison with finding the entire backbone, it is seemingly an easier task to find the56

sets of literals which are equivalent due to being in the same strongly connected components57

of the “binary implication graph” (this graph is defined below). We call such literals58

“SCC-equivalent”.1 There are many linear time algorithms for finding strongly connected59

components, notably a one-pass algorithm due to Tarjan [21] and a two-pass algorithm due60

to Kosaraju, see [20]. LInear time algorithms for finding SCC-equivalent literals are given by61

Van Gelder [22], Del Val [11] and Heule-Järvisalo-Biere [16].62

Binary clause reasoning can be an important adjunct for SAT solving of general CNF63

formulas. Finding forced (backbone) literals is particularly useful, as they can be immediately64

eliminated. Many SAT solvers have incorporated binary clause reasoning, e.g., Bacchus’s65

system 2CLS+EQ [6]. Heule-Järvisalo-Biere [16] introduced a number of in- and pre-66

processing techniques that depend on binary clause reasoning. For them, it was also useful67

to detect implied 2-clauses. The present paper does not address this problem, however.68

A principal contribution of the present paper is the new DualDFS algorithm for finding69

all backbone literals. The idea behind DualDFS is a generalization of the technique of failed70

literals. The failed literal method is based on the fact that a literal ℓ is forced false exactly if71

setting ℓ true yields a contradiction by unit propagation. The DualDFS algorithm starts72

with a set S of literals instead of a single literal: in effect, it does unit propagation on every73

literal in S at once and finds not only finds all failed literals in S but other failed literals as74

well. The set S will consist of literals in an implication chain, and the DualDFS algorithm75

handles S in the same time that it would take to handle any one literal in S (modulo a small76

constant factor runtime overhead).77

Sections 1 and 2 give preliminaries and describe the Dual DFS algorithm. Section 3 shows78

experimental results. On crafted examples, Dual DFS provides substantial improvements,79

and on examples from the SAT competitions, the Dual DFS is comparable to the KB380

algorithm. Section 4 shows that the existence of sufficiently good algorithms for the backbone81

of 2-SAT instances imply breakthroughs in algorithms for k-cycle detection and MAX-k-SAT.82

Preliminaries We adopt the usual conventions for Boolean variables and literals, CNF83

formulas and sets of clauses, truth assignments, and satisfiability. The notations C↾τ and Γ↾τ84

indicate the result of applying a partial assignment to a clause C or a CNF formula Γ and85

simplifying. A unit clause is a clause of size 1. The closure of Γ under unit propagation can86

be carried out by the linear-time algorithm UnitPropagate shown in the appendix.87

This paper is concerned exclusively with sets of 2-clauses. We may assume w.l.o.g. that Γ88

1 Note that the literals in the backbone that are forced true (or alternatively, false) are equivalent, but
may not be SCC-equivalent.



S. Buss, O. Kullmann and V. Vassilevska Williams XX:3

Γ
a ∨ b a ∨ b

b ∨ c a ∨ b

c ∨ d a ∨ b

c ∨ e
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e
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Figure 1 A set Γ of 2-clauses and its graph Big(Γ). The literal a is a failed literal.

does not contain a unit clause, since otherwise we can invoke UnitPropagate() to obtain a89

truth assignment τ , and use Γ↾τ instead of Γ. Let n be the number of distinct variables in Γ90

and m the number of clauses. Then the UnitPropagate algorithm runs in time O(m).91

A failed literal is a literal ℓ such that UnitPropagate (Γ↾ℓ 7→⊤) yields a contradiction.92

(The notation “ℓ 7→ ⊤” denotes the minimal truth assignment that maps ℓ to ⊤.) When Γ is93

a set of 2-clauses, ℓ is a failed literal if and only Γ ⊨ ℓ; i.e., if and only if ℓ is assigned the94

value false by every truth assignment satisfying Γ.95

A set Γ of 2-clauses can be represented by a directed graph Big(Γ), called the Binary96

Implication Graph [5]. The vertices of the binary implication graph are the literals of variables97

appearing in Γ. Thus, if Γ uses n distinct variables, Big(Γ) has 2n vertices. For literals ℓ98

and p, there is an edge from ℓ to p in Big(Γ) if only if the clause ℓ ∨ p is in Γ. Hence there99

is an edge from ℓ to p if and only if there is an edge from p to ℓ. It follows that if Γ has100

m clauses, then Big(Γ) has 2m edges. An example is shown in Figure 1.101

We write ℓ →∗ p to indicate there is a (directed) path in Big(Γ) from ℓ to p. The length102

of the path is the number of edges on the path. If fhe length is zero, then ℓ = p.103

▶ Proposition 1. Let Γ be a consistent set of 2-clauses. The following are equivalent for a104

literal ℓ: (a) Γ ⊨ ℓ, (b) ℓ is a failed literal for Γ, (c) ℓ →∗ ℓ in Big(Γ), and (d) There is a105

literal p such that ℓ →∗ p and ℓ →∗ p.106

Furthermore any literals ℓ and p, the following are equivalent: (f) Γ ⊨ (ℓ → p), (g) There107

is a path ℓ →∗ p in Big(Γ), and (h) If σ = UnitPropagate(Γ↾ℓ), then σ(p) = ⊤.108

▶ Definition 2. Let Γ be a set of 2-clauses. The literals ℓ and p are SCC-equivalent provided109

that there are paths ℓ →∗ p and p →∗ ℓ.110

In other words, two literals are SCC-equivalent provided they are in the same strongly111

connected component of Big(Γ). By duality, the literals ℓ and p are SCC-equivalent if and112

only if ℓ and p are SCC-equivalent. Every literal is SCC-equivalent to itself.113

As already discussed, there are efficient, linear time algorithms for determining the114

strongly connected components of a directed graph. Thus, we can just assume, without115

loss of much generality, that Γ has no non-trivial SCC-equivalences. Otherwise we can116

preprocess Γ to identify the strongly connected components and identify SCC-equivalent117

literals with a single literal. Nonetheless, our DualDFS algorithm presented in the next118

section is formulated to work in the presence of non-trivial SCC-equivalences, since there is119

very little overhead needed to accommodate non-trivial SCC-equivalences. Furthermore, in120

practice, one may wish to identify backbone literals without first finding all SCC-equivalences,121

e.g. if there are not very SCC-equivalences. (It would be possible to modify the DualDFS122

algorithm to identify SCC-equivalent literals on the fly; however this would be advantageous123

only in cases where there are not very many SCC-equivalent literals.)124
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2 The Dual-DFS Algorithm125

We assume henceforth that Γ is a set of 2-clauses. The goal of the Dual-DFS algorithm is126

to identify the backbone, namely to identify all literals that are forced true (⊤) by Γ and127

thereby all literals that are forced false (⊥).128

The failed literal method can be used to determine if a literal ℓ is in the backbone by129

checking, firstly whether ℓ → ℓ and secondly whether ℓ → ℓ. These two conditions can be130

checked by performing depth-first search (DFS) in Big(Γ) starting from ℓ and a second131

DFS starting from ℓ. The Dual-DFS algorithm generalizes this idea by starting a depth-first132

search from a set of literals S. For this, we define:133

▶ Definition 3. Let S be a set of literals. We say that ℓ is forced false via S provided that134

there is a literal p ∈ S such that135

ℓ →∗ p and p →∗ ℓ.136

The notion of being forced true via S is defined dually, swapping ℓ and ℓ.137

In other words, ℓ is forced false via S provided there is a path from ℓ to a member of S and138

continuing on to ℓ. It is allowed that p is equal to ℓ if ℓ ∈ S.139

▶ Definition 4. A literal ℓ is in the backbone via S provided that ℓ is forced either true or140

false via S.141

▶ Proposition 5. Suppose ℓ ∈ S. Then ℓ is forced true (respectively, false) if and only ℓ is142

forced true (false) via S. Thus, ℓ is in the backbone if and only if ℓ is in the backbone via S.143

Proof. Suppose ℓ is forced true. Then there is a path ℓ →∗ ℓ. Taking p = ℓ, we have p →∗ ℓ144

by a path of length zero. It follows that ℓ is forced true via S. ◀145

Clearly, if S′ ⊃ S and if ℓ is forced true (respectively, false) via S, then ℓ is also forced146

true (false) via S′. Also, if ℓ is forced true (respectively, false) via S, then there is singleton147

subset {p} ⊆ S such that ℓ is forced true (or false) via {p}.148

The notion of a source or sink (in Big(Γ)) is defined as usual. Thus ℓ is a source if there149

is no literal p such that p → ℓ. Similarly, it is a sink if there is no literal p such that ℓ → p.150

▶ Proposition 6.151

(a) If ℓ is a source or a sink, then no literals forced true or false via {ℓ} other than possibly ℓ.152

(b) If ℓ is forced true (false), then there is some non-sink/non-source literal p such that ℓ is153

forced true (resp., false) via {p}.154

(c) A literal ℓ is forced true (false) via {p} if and only if it is forced true (resp., false) via {p}.155

Proof. Suppose p is not equal to ℓ and is forced true via {ℓ}. By definition, this means156

p →∗ ℓ and ℓ →∗ p. The former is impossible if ℓ is a source, and the latter is impossible if157

ℓ is a sink. This proves (a). For (b), suppose ℓ → ℓ, so there is a path from ℓ to ℓ. Since Γ is158

a set of 2-clauses, there is no edge from ℓ to ℓ in Big(Γ) since this edge would be present only159

if the clause {ℓ, ℓ} = {ℓ} were in Γ and this is a unit clause. Therefore, the path from ℓ to ℓ160

has a path of length at least two, and we take the literal p to be literal in the interior of the161

path. To prove (c), note that, by duality, ℓ →∗ p →∗ ℓ holds if and only if ℓ →∗ p →∗ ℓ, ◀162

At a high level, the Dual-DFS algorithm operates as shown in DualDFS_high_level()163

by repeatedly choosing a new set S. From the above propositions, the suitable sets S can be164

chosen so that165
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Input: A set Γ of 2-clauses.
Return value: Whether Γ is consistent and, if so, the entire backbone.

1 Function DualDFS_high_level(Γ)
2 loop
3 Choose a suitable set S of literals.
4 if no suitable S is found then
5 halt: Γ is satisfiable; the entire backbone is discovered.
6 Either discover Γ is unsatisfiable and halt; or, Identify all literals forced true

or false via S.
7 Let τ be the associated partial truth assignment.
8 Apply τ , i.e. replace Γ with Γ↾τ

9 foreach literal si in S do
10 Mark si and si as handled.

0. S is closed under complementation, i.e., for all literals p ∈ S iff p ∈ S.166

1. S does not include any literals that have already been marked as “handled”.167

2. S does not include any literal which is a source or a sink.168

Items 0., 1. and 2. are justified by the earlier propositions. Furthermore, for our particular169

choices of S, there will never be a significant advantage to putting a source or sink literal170

in S, and there could be disadvantages. We impose also a fourth condition on the sets S:171

3. The set S is a set of literals S = {s1, . . . , sk} so that si+1 → si for all i < k. That is,172

Γ contains the clauses si ∨ s + 1.173

We will choose sets S that satisfy conditions 1.-3. as well as the condition 4. below. An174

example is shown in Figure 1. Condition 0. will not be satisfied, but instead is used to justify175

the fact that if a literal is handled, so is its complement.176

▶ Theorem 7. Let S be a set of literals satisfying 1.-3. A literal ℓ is forced true via S if and177

only if there are i ≥ j such that there is a path in Big(Γ) from ℓ to si and a path from sj178

to ℓ. When this holds, i ≥ j can be chosen so that there is a path from ℓ to si that does not179

pass through any si′ with i′ > i, and there is a path from sj to ℓ that does not pass through180

any sj′ with j′ < j.181

Proof. Let i be the maximum value such that there is a path from ℓ to si. Also, let j be182

the minimum value such that there is a path from sj to ℓ. Suppose i and j exist and i ≥ j.183

Then ℓ →∗ si →∗ sj →∗ ℓ, and therefore ℓ is forced true via S.184

Conversely, suppose that ℓ is forced true via S, so there is a path in Big(Γ) from ℓ to ℓ185

that contains at least one member of S. Let i be maximum such that si is on the path,186

and let j be minimum such that sj is on the path. Then clearly, i and j satisfy the desired187

conditions of the theorem. ◀188

We further impose a maximality condition on S:189

4. Let S be as in condition 3. Every literal s0 such that s1 → s0 is an edge in Big(Γ) is a190

sink. Every literal si+k such that sk+1 → sk is an edge in Big(Γ) is a source.191

The additional Condition 4. can be satisfied without loss of generality. This is because if192

s1 implies some non-sink s0, then S can be extended by adding s0. Similarly, if sk is implied193

by some non-source sk+1, S can be extended by adding sk+1.194
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s5
s4

s3
s2

s1

Source
literals

Sink
literals

Figure 2 A set S = {s1, · · · , s5} satisfying conditions 1.-4. The boldface circles and edges are
used here and in later figures to indicate that literals are in the set S. The literals can have other
incoming and outgoing edges. In the preferred implementation, s1 has only sinks as children and
s5 has only sources as parents.

s5
s4

s3
s2

s1

ℓ

ℓ
*

*
*

Figure 3 Showing how a failed literal is detected by the Dual-DFS algorithm. The edges labeled
with *’s indicate paths of length ≥ 0 that do not involve any other si’s. During the first phase of the
Dual-DFS algorithm, the node ℓ is reached via the depth-first search from s2. It is not re-traversed
when later continuing the depth-first search from s4. The second phase of the Dual-DFS algorithm
discovers the path from ℓ to s3 (or, rather, a path from s3 to ℓ). At this point, since 3 ≥ 2 and thus
s3 →∗ s2, the literal ℓ is discovered to be a failed literal, so ℓ is forced true.

The advantage of making S bigger to satisfy Condition 4. is that more literals can195

be marked as handled. Making S bigger by (repeatedly) adding such s0 or sk would not196

be expected to worsen the runtime of the DualDFS algorithm; because it does not cause197

the DualDFS algorithm to traverse any additional portion of the binary implication graph198

(although it may traverse it in a different order).199

2.1 Overview of the Dual DFS algorithm200

For simplicity, suppose that the set S conditions 1.-4. has been fixed. (In actuality, as201

we discuss later, our preferred implementation dynamically chooses members of S.) The202

DualDFS algorithm has two phases: the first phase uses a depth-first search to find all203

literals ℓ implied by members of S. It initially does a depth-first search (DFS) starting at s1204

to find all literals implied by s1. It then continues the DFS from s2, but does not revisit205

literals already found to be implied by s1. It next does a DFS for all literals implied by s3,206

etc., for all si. The literals ℓ found during the first phase are marked with a time value i207

indicating that si was the first member of S found to imply ℓ. If this first phase, encounters208

a literal ℓ and later encounters its complement ℓ, then it must be that ℓ →∗ ℓ. (This fact209

requires proof, see Theorem 8.) Figure 5 shows this situation. Thus ℓ is forced true and210

ℓ is forced false. Unit propagation is used to set true all literals p such that ℓ →∗ p. If this211

reveals a contradiction by setting some literal both true and false, Γ is inconsistent and the212

algorithm terminates.213

Another way that the first phase can find a forced literal is shown in Figure 4. This is214

the situation where the depth-first search below si encounters sj for some j > i. In this case,215

sj is forced false and it can be unit propagated immediately upon recognizing it as forced.216

The first phase of DualDFS terminates when it runs out of si’s in S or if it reaches an si217

that has been set false by unit propagation. However, our preferred implementation, shown218
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s5
s4

s3
s2

s1

ℓ
ℓ

s3
*

* *

Figure 4 The situation when both ℓ and ℓ are implied by literals si and sj in S. A path sj →∗ ℓ

and duality imply the existence of a path ℓ →∗ sj . This means that also some si implies some sj ,
for j ≥ i. Therefore, sj is forced false. (i = 2 and j = 3 are shown in the figure.)

s5
s4

s3
s2

s1

ℓ ℓ

pp

*
*

*
*

Figure 5 Examples of how a failed literal ℓ or p can be discovered even though it is not forced
via S. As shown, ℓ and hence also s4 are forced false. Likewise, p is forced false, and s3 is forced
true.

below, attempts to recreate the set S in some situations where an si is found to be set false.219

The second phase of the DualDFS algorithm does a “reverse depth-first search”; namely,220

it does a depth-first search for literals implied by the si’s, the negations of literals in S. Of221

course, by duality, if si →∗ ℓ, then also ℓ →∗ si. The reverse DFS starts from sk, then222

continues from sk−1, etc. In this way, each literal ℓ found in the second phase knows the223

largest value of j such that ℓ →∗ sj . There are two ways that literals get forced true or false224

during the second phase. The first way is pictured in Figure 3. Here ℓ → s3 and s2 →∗ ℓ.225

Since also s3 →∗ s2, we have that ℓ is forced true. When this is discovered, the literal ℓ is226

immediately set true, and unit propagation is performed so that every literal implied by ℓ is227

set true. If this yields a contradiction, Γ is inconsistent and the algorithm terminates.228

The second way that a literal can be forced during the second phase is shown in Figure 5229

for the literal p. Here p is forced false, but not via S. When this situation arises during the230

second phase, p is set false and unit propagation is carried out to set every literal implied231

by p. Again, this may discover a contradiction, in which case Γ is inconsistent.232

The second phase terminates if it reaches an si which has been forced true, otherwise it233

terminates after processing s1.234

▶ Theorem 8. Suppose that ℓ and later ℓ are encountered during the first phase of DualDFS235

and that ℓ, ℓ /∈ S. Then:236

(a) For the least value i such that si →∗ ℓ,237

si →∗ ℓ →∗ ℓ →∗ si (1)238

so si and ℓ are failed literals. In addition, i is the least value such that si →∗ ℓ.239

(b) It is possible that ℓ →∗ si′ for some i′ < i. In this case si′′ will be set true for all i′′ ≤ i′
240

while unit propagating after setting ℓ false.241

(c) ℓ →∗ sj for all j ≥ i.242

(d) ℓ →∗ si′ does not hold for any i′ < i.243

(e) If unit propagation after setting ℓ false yields a contradiction, then Γ is unsatisfiable.244
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Proof. To prove (a), let j be the least value such that sj →∗ ℓ. Since ℓ was encountered245

before ℓ, j ≥ i. Duality gives ℓ →∗ sj ; thus sj →∗ si →∗ ℓ →∗ sj , So sj is forced false. If246

j > i, the first phase never carries out the depth-first search starting from sj , since sj will be247

recognized as forced false by virtue of having been encountered during the depth-first search248

below si. This contradicts the hypothesis that ℓ is encountered in the first phase. Therefore,249

j = i. That is, si →∗ ℓ. By duality, ℓ →∗ si. That is, we have si →∗ ℓ →∗ si The depth-first250

search from si reaches ℓ, and continues to (possibly) eventually reach si. If it reaches ℓ251

first, then (1) holds. Otherwise, it reaches si and sets si false and the first phase terminates252

without reaching ℓ, contradicting the hypothesis that both ℓ and ℓ were encountered.253

Part (b) is obvious. Part (c) follows from (a) since si →∗ sj for i ≥ i. To prove (d), note254

that if ℓ →∗ si′ then by duality, si′ →∗ ℓ. If i′ < i, this contradicts the choice of i. Part (e)255

is immediate from the fact that ℓ is forced false. ◀256

A dual theorem holds for the second phase of the Dual DFS algorithm:257

▶ Theorem 9. Suppose that the depth-search during the second phase of DualDFS encounters258

p and then p, and that p, p /∈ S. Let i be maximum such that si →∗ p.259

(a) We have si →∗ p →∗ p →∗ si. Therefore si and p are failed literals. In addition, i is the260

maximum value such that si →∗ p. (This is shown in Figure 5 with i = 3.)261

(b) It is not possible that p →∗ si′ for i′ > i.262

(c) p →∗ sj for all j ≤ i.263

(d) p →∗ si′ does not hold for any i′ > i.264

(e) If unit propagation after setting p false yields a contradiction, then Γ is unsatisfiable.265

Proof. Part (a) is proved using the construction of the proof of Theorem 9 to establish that266

p →∗ p →∗ si holds. For part (b), if p →∗ si, then by duality, si →∗ p →∗ p and then267

p would have been forced false during the first phase of the depth-first search. The proofs of268

(c), (d), and (e) are very similar to the proof of Theorem 8. ◀269

▶ Theorem 10. Suppose the DualDFS algorithm discovers i as the first (and thus minimum)270

value such that si →∗ ℓ, and j as the first (and thus maximum) value such that sj →∗ ℓ271

(equivalently, ℓ → sj). Also suppose j ≥ i. (See Figure 3.) Then ℓ is a failed literal, and ℓ is272

forced true.273

(a) It is possible that ℓ →∗ si′ for some i′ < j. (This allows i′ > i in which case ℓ, si and si′274

are SCC-equivalent.) In this case, si′′ is forced true for all i′′ ≤ i′.275

(b) It is not the case that ℓ →∗ sj′ for any j′ > j.276

(c) It is not possible that ℓ →∗ si′ for any i′.277

(d) If unit propagation after setting ℓ true yields a contradiction, then Γ is unsatisfiable.278

Proof. The fact that ℓ is a failed literal is from Theorem 7. Parts (a) and (d) are obvious.279

To prove (b) note that that if ℓ →∗ sj′ , then sj′ → ℓ and this contradicts the choice of j. To280

prove (c), note that if ℓ →∗ si′ , then si′ →∗ ℓ, and by Theorem 8, ℓ would have already been281

set either false or true during the first phase. ◀282

2.2 The Dual DFS Algorithm283

We now describe our preferred implementation of the Dual DFS algorithm for finding all of284

the forced literals, that is, the entire backbone.285

All literals in Γ are initialized as “not handled”. We define a generalized sink to be a286

not-handled literal such that every child is labeled as handled. Each iteration of the Dual287
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DFS algorithm starts by identifying a set S = {s1, . . . , sk} that satisfies Conditions 1.-3. and288

such that every child of s1 is a generalized sink.289

The DualDFS algorithm first invokes a routine InitializeS() that initializes “half” of290

the set S. It starts with a literal t0 and produces a set S equal to {s1, . . . , sk} so that sk = t0,291

sk−i = ti, and si → si+1 for each i. InitializeS() starts at t0, and greedily chooses each292

ti+1 as the first child of ti that is not a generalized sink. The other “half” of S, that is the293

part above sk, will be dynamically generated during the first phase of DualDFS as described294

below. It is possible that InitializeS() finds a contradiction in Γ. It is also possible that295

InitializeS() discovers that ti is in the backbone, and so forced true or false. In this case,296

there may be no set S created. A detailed description of InitializeS() is in the appendix.297

The notation var(ℓ) denotes the variable underlying a literal ℓ. That is, var(x) = var(x) = x298

for x a variable. Each variable x has associated values x.sign and x.time, along with flags299

indicating whether it has been handled and whether it has been assigned a value. If x is300

assigned a value, then x.sign ∈ {+, −} indicates whether it is has been assigned the value301

true (+) or false (−). The sign of a literal ℓ, denoted sign(ℓ), equals either + or − depending302

on whether ℓ is a variable or a negated variable. x.time indicates the least value i such that303

si implies either x or x as discovered during the first phase of DualDFS.304

The routine ForceImmediate sets a literal true and unit propagates as much as possible.305

Variables are marked as handled when they are forced either true or false. A stack is used to306

hold literals for unit propagation. The detailed algorithm is shown in the appendix.307

The first phase of the DualDFS algorithm carries out the depth-first search from the308

variables si in the (partially formed) set S. The code for the first phase is in Algorithm309

DualDFS_Phase1(ℓ). The values x.time are initialized to equal ∞, indicating that the310

variable x has not been encountered yet. At the end of the first phase, the set S is finalized,311

and k is updated to equal the (possibly new) size of S.312

The inner while loop of DualDFS_Phase1 performs the depth-first search from si. Literals313

encountered during the DFS are checked for being handled when they are popped from314

the stack (see line 9), since it is possible that a literal becomes handled (by virtue of being315

assigned a value true or false) after it is pushed onto the stack. Lines 10 and 11 check whether316

the literal ℓ has just been encountered for the first time, and if so the time-stamp value for ℓ317

is to indicate that i is the least value such that si →∗ ℓ. Lines 13 and 14 unit propagate a318

literal ℓ that is found to be forced true in the fashion pictured in Figure 5 (with ℓ and ℓ319

interchanged). Note that it is possible that ℓ is equal to si. In any event, unit propagating320

ℓ true, sets ℓ false and thereby sets si false. This also sets sj false for every j > i. For321

this reason the DualDFS_Phase1 algorithm halts in this event. When starting with a new322

S-variable si, line 4 checks whether the literal si has already been encountered with the323

opposite sign. If so, si →∗ si, so si is a failed literal. The last part of the outer while loop324

checks whether si+1, the next member of S, has been handled. This can happen due to si+1325

being set false while unit propagating a literal ℓ. If so, an alternative literal is chosen for si+1.326

This is strictly speaking not necessary, as it would be acceptable for DualDFS_Phase1 to just327

remove all literals sj with j ≥ i from S; but we include it in our preferred implementation to328

try to speed up the process of finding forced literals from a larger set S.329

The second phase of the DualDFS algorithm looks for variables that are forced either330

via S (as shown in Figure 3) or not via S (such shown by the literal p in Figure 5). Every331

literal visited during Phase 2 has its time value, var(·).time, set to k∗: this controls the332

depth-first searches. When var(ℓ).time is not equal to k∗ and is ≤ i, lines 10 and 11 handle333

the case where ℓ is a failed literal that is forced via S as shown in Figure 3 (with the roles of334

ℓ and ℓ interchanged again). When var(ℓ).time = k∗ the same lines handle the case where ℓ is335
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Input: s1, . . . , sk as chosen by InitializeS
Effect: Variables encountered during the DFS have their sign and time set. Some

variables may be forced true or false.
Return value: true if no contradiction is found, otherwise false.

1 Function DualDFS_Phase1(ℓ)
2 i := 1
3 while si exists do
4 if var(si).time ̸= ∞ and sign(si) ̸= var(si).sign then
5 return ForceImmediate(si)
6 Push si onto the DFS stack as its only member
7 while the DFS stack is not empty do
8 Pop literal ℓ from the DFS stack
9 if ℓ is not handled then

10 if var(ℓ).time equals ∞ then
11 var(ℓ).time := i; var(ℓ).sign := sign(ℓ)
12 Push each child p of ℓ onto the DFS stack
13 else if sign(ℓ) ̸= var(ℓ).sign then
14 return ForceImmediate(si)

15 if si+1 does not exist or is handled then
16 Unassign the values sj for all j > i (if any)
17 if si has a parent p that is not handled and not a generalized source then
18 si+1 := p

19 i := i + 1
20 k := i − 1, so S = {s1, . . . , sk}
21 return true

found to be forced false as shown in Figure 5 (with p and p playing the roles of ℓ and ℓ). In the336

latter case, the call to ForceImmediate(ℓ) will always set si true. If there are SCC-equivalent337

literals, it is also possible that si is set true in the former case as well. If si is set true, then338

sj is set true for all j < i; therefore, DualDFS_Phase2 stops when this happens.339

The overall DualDFS algorithm is shown in the algorithm on page 11. Every literal340

that becomes part of the set S formed by InitializeS(p) is handled by the calls to341

DualDFS_Phase1() or DualDFS_Phase2(), either by being forced true or false or by remaining342

in S until the end of the second phase. Since handled literals never become unhandled, the343

while loop of line 3 needs to consider each potential p only once.344

2.3 Examples and runtime analyses345

Figure 6 shows four examples of CNF formulas. vglayers and fyb_rakes were identified by [14]346

as hard cases for their solver. The CNFs fyb_rakes turn out to be very simple for Dual DFS:347

the only possible sets S consist of all the P -variables, or dually the ¬P variables, except the348

first one. Once the set S is processed (in linear time), no further work is needed. For similar349

reasons, the CNFs are very easy for Dual DFS, as only one set S needs to be considered.350

The vglayers CNF is based on [22]. There are r many groups of literals (r = 4 in the351

figure), each with p many variables. The literals in the first half of the groups are negated.352

For each x in the i-th group and y in the (i+1)st group, there is a clause x ∨ y. Thus there353
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Input: s1, . . . , sk as updated by DualDFS_Phase1.
Effect: Variables encountered during the DFS have their time set to k+1. Some

variables may be forced true or false.
Return value: true if no contradiction is found, otherwise false.

1 Function DualDFS_Phase2()
2 k∗ := 1 + (max k value used during Phase 1)
3 for i := k, k−1, . . . , 2, 1 do
4 Set var(si).time := k∗

5 Push si onto the DFS stack as its only member
6 while the DFS stack is non-empty do
7 Pop literal ℓ from the DFS stack
8 if ℓ is not handled then
9 if var(ℓ).time = k∗ or var(ℓ).time ≤ i then

10 r := ForceImmediate(ℓ)
11 if (not r) or si is handled then return r
12 else if var(ℓ).time ̸= k∗ then
13 var(ℓ).time := k∗

14 var(ℓ).sign := sign(ℓ)
15 foreach child p of ℓ do push p onto the DFS stack

16 Mark si and si as handled
17 return true

Input: A set Γ of 2-clauses
Effect: All literals in the backbone are set to their forced values
Return value: true if Γ is satisfiable, otherwise false

1 Function DualDFS_high_level()
2 foreach variable x do x.time := ∞
3 while there is a literal p which is not handled and not a generalized source or

sink do
4 InitializeS(p)
5 if not DualDFS_Phase1() then return false
6 if not DualDFS_Phase2() then return false
7 foreach variable x encountered do x.time := ∞
8 return true // Backbone literals all set to their forced values

are n = r · p variables and m = (r − 1)p2 clauses. The Dual DFS algorithm identifies p many354

sets S: each S is a chain of implications of literals from the first to the last group. The355

i-th S has to traverse the entire non-handled portion of the BIG graph, so requires runtime356

O((p− i)pr) = O(p2r). The runtime for the Dual DFS algorithm is thus O(p3r). When p = r,357

the runtime of the Dual DFS algorithm is thus O(p4) = O(r4) = O(m4/3). If the number358

of groups is instead set constant, the Dual DFS algorithm requires time O(p3) = O(m3/2).359

A straightforward failed literal algorithm would take time O(nm) = O(p3r2). The Dual360

DFS algorithm does substantially better in the case r = p. The two algorithms have similar361

asymptotic times when r = 4; however, the Dual DFS algorithm would be expected to have362

an advantage since it handles r−2 = 2 variables at a time.363

The randlayers example was picked to be hard for Dual DFS. This CNF family has three364
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Figure 6 The BIGs for strongindwrap, vglayers, randlayers and fyb_rakes. The doubled arrows in
vglayers indicate all possible (directed) edges are present; e.g., for every a ∈ A and c ∈ C, the clause
a ∨ c is present. The doubled arrows in randlayers indicate that f -many randomly selected outgoing
edges are chosen; e.g., for each a ∈ A the clause a ∨ b is present for f randomly selected b ∈ B.
In fyb_rakes, the variables r ∈ R have edges to the literals r′ for all r ̸= r′ ∈ R. The figures for
vglayers and fyb_rakes are adapted from [14].

parameters: the number r of groups of variables (equal to r = 3 in the figure), the number p365

of variables per group, and the fanout f . For each variable x in the i-th group, there are366

f randomly chosen y’s in the (i+1)st group so that x ∨ y is a clause. For each x in the last367

group, there are f randomly chosen y’s in the first group so that x ∨ y is a clause. There are368

n = p · r = p log p many variables, and m = p · f · r = f · p log p many clauses.369

In the case where p, r and f satisfy fr = p, so some constant fraction of the literals is in370

the backbone, a rough estimate of the runtime shows there are about p many sets S used,371

each requiring time fr, so the total runtime is O(p · fr) = O(n2/ log n) = O(nm/ log m).372

3 Experimental results373

We show experimental results comparing DualDFS to the leading 2-CNF backbone extraction374

algorithm KB3 from [14], as implemented in CadiBack-(version 0.2.1). We consider SAT-375

competition benchmarks and crafted instances. The code for KB3 was obtained from376

https://github.com/arminbiere/cadiback, modified to exit early in case no none-binary377

clauses are present (so no call to CadiCal is performed). The single option used is378

–big-no-els. Times shown are in seconds and mean user-cpu time, run as a single running379

process on a multicore machine. Times for DualDFS are denoted by tDD, and times for380

KB3 within CadiBack as tCBB (for “cadiback BIG”). We used additionally a program381

TotalPermutation that computes a hash-value from an input-DIMACS-file, using it as the382

seed to the C++ 64-bit Mersenne Twister, and then randomly flips all signs of literals and383

randomly permutes the variables, the order of the clauses, and the order of literals in the384

clauses. These “permuted runtimes” are given as PtDD and PtCBB. The times (P)tCBB385

ignore reading of the input and building the implication graph, but give the pure search386

time. Similarly, the times (P)tDD ignore reading of the input, and additionally the following387

analytical steps are not counted in the runtime: To obtain a more stable runtime, the input388

is sorted. To obtain an insight into trivial forms of forced literals x, subsumption-resolution389

pairs (a ∨ x) ∧ (¬a ∨ x) are eliminated and subsequent unit-clause propagation (UCP) run.390

Then we also always check satisfiability (via a linear-time computation of strong connected391

components), where a few forced literals may be detected sporadically. For the crafted392

benchmarks, these analytical steps do not affect (P)tDD (besides the sorting of clauses),393

https://github.com/arminbiere/cadiback
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while for the SAT competition benchmarks we comment on the effects. For all instances, we394

used a third simple algorithm to verify the correctness of DualDFS and KB3.395

SAT competition benchmarks We started with the benchmark set sc04to22sat: Sampled396

and Normalized Satisfiable Instances from the main track of the SAT Competition 2004397

to 2022 of [14]. This contains 1798 instances (general CNFs), from which we extracted398

1650 2-CNF instances (to be made available online) as follows: UCP was performed, and399

then the 2-CNF part was extracted, with gaps in the variable-numbering removed. The400

resulting 145 empty 2-CNFs were removed, and also the three instances with n ≤ 5, resulting401

in 148 removed instances. For these 1650 instances: the average number n of variables is402

164′017, with maximum 11′992′725, while the average number m of clauses is 799′134, with403

maximum 134′145′273 (the average density, that is, m
n , is 17.92). 810 instances have no404

forced literals, while the average number of forced literals is 1839.1, with maximum 104′464;405

the average percentage of forced literals (relative to the number of variables) is 1.95%, with406

maximum 82.56%. We now come to the runtimes. We use a Linux machine with two Intel407

Xeon Platinum 8168 processors (base frequency 2.7GHs, max frequency 3.7GHz) and 376GiB408

memory, with gcc and g++ in version 11.4. To give a basic impression, we first report total409

user-time, which here includes the complete run of the programs, plus the checking of the410

forced literals (for correctness and completeness): DualDFS took 8m47s, with 15m20s for411

the permuted versions, while K3B in CadiBack took 15m50s, with 42m52s for the permuted412

versions. We see that DualDFS is considerably faster, and that both algorithms suffer413

from the permutation of the inputs, with DualDFS being more stable. The averages for tDD414

and PtDD are 0.0942 resp. 0.09416 (hardly any difference), while the averages for tCBB and415

PtCBB are 0.3765 resp. 1.045. So for the core runtimes DualDFS is roughly 4x faster on416

the original instances, and 10x faster on the permuted instances. There are 229 instances417

with subsumption-resolutions; for these instances the average number of such clause-pairs is418

1309 (maximum 94518), where the resulting number of eliminated variables (including UCP)419

has the average 1999 (maximum 95568). Now the averages for tDD and PtDD are 0.4177 resp.420

0.2667, while the averages for tCBB and PtCBB are 0.131 resp. 0.4266. (Currently we do not421

have an explanation for these anomalies.) For the remaining 1650 − 229 = 1421 instances,422

then the averages for tDD and PtDD are 0.04207 resp. 0.06635, while the averages for tCBB423

and PtCBB are 0.4161 resp. 1.144.424

Crafted benchmarks The table on the next page shows experiments on the crafted instances.425

Here we use a Linux machine with one AMD EPYC 7443P 24-Core Processor (base frequency426

2.85GHs, max frequency 4.0GHz) and 995GiB memory, with gcc and g++ in version427

12.3. Missing data means the computation could not be performed due to either missing428

memory or an exception thrown. fyb_rakes uses the same size p for the sets R and P :429

tDD ≈ Θ(p2) = Θ(m), tCBB ≈ Θ(p3) = Θ(m3/2). vglayers uses p = r: For DualDfs the430

instances are too easy to make a meaningful evaluation, while tCBB ≈ Θ(p3) = Θ(m). For431

randlayers we use p for the number of groups of variables, 2p for the number of variables432

per group, while the fanout is 2. The sizes of the inputs are still too small to show the real433

growth, but tCBB ≈ 7 · tDD. Finally for strongindwrap with p = n, clearly tDD is linear,434

while tCBB is exponential. This case shows a strong dependency on the chosen order: while435

KB3 in CadiBack following the given order performs very badly, using a random order436

also yields here (“on average”) linear runtimes, but roughly by a factor of 4 slower than437

DualDfs.438

https://zenodo.org/doi/10.5281/zenodo.7750075
https://zenodo.org/doi/10.5281/zenodo.7750075
https://zenodo.org/doi/10.5281/zenodo.7750075
https://zenodo.org/doi/10.5281/zenodo.7750075
https://zenodo.org/doi/10.5281/zenodo.7750075
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p n m tDD PtDD tCBB PtCBB
fyb_rakes p p

2500 5’000 15’621’250 0.032 0.036 10.30 10.51
5000 10’000 62’492’500 0.122 0.144 84.96 89.96

10000 20’000 249’985’000 0.485 0.605 658.69 690.54
20000 40’000 999’970’000 1.945 3.387 5204.24 5484.90
40000 80’000 3’999’940’000 7.725 15.855
80000 160’000 15’999’880’000 30.764 38.869

vglayers p p
200 40’000 7’960’000 0.000 0.000 0.01 0.02
400 160’000 63’840’000 0.000 0.001 0.09 0.13
800 640’000 511’360’000 0.001 0.002 0.67 1.53

1000 1’000’000 999’000’000 0.001 0.002 1.29 2.95
1200 1’440’000 1’726’560’000 0.000 0.006

randlayers p 2**p 2
16 1’048’576 2’097’152 0.010 0.027 0.07 0.09
17 2’228’224 4’456’448 0.025 0.057 0.19 0.26
18 4’718’592 9’437’184 0.059 0.122 0.45 0.74
19 9’961’472 19’922’944 0.166 0.260 0.97 1.87
20 20’971’520 41’943’040 0.352 0.533 2.40 4.61

strongindwrap p
10000 10’000 19’997 0.000 0.000 0.34 0.01
50000 50’000 99’997 0.001 0.001 8.45 0.03

200000 200’000 399’997 0.002 0.019 134.28 0.17
1000000 1’000’000 1’999’997 0.021 0.447 3353.63 0.447

10000000 10’000’000 19’999’997 0.177 4.369 16.12
20000000 20’000’000 39’999’997 0.365 10.679 34.90
30000000 30’000’000 59’999’997 0.553 9.786 52.78
40000000 40’000’000 79’999’997 0.732 11.867 69.81

100000000 100’000’000 199’999’997 1.764 49.311 190.07

4 Reducing k-cycle detection to 2-SAT backbones439

We now discuss reductions from the problems of finding triangles or k-cycles in directed440

graphs to the problem of detecting backbone literals in instances of 2-SAT. It turns out that441

if there are algorithms for 2-SAT that run in linear time O(m) or even sufficiently better442

than O(nm), then we immediately obtain improvements to the best known algorithms for443

detecting k-cycles and the best known algorithms for Max-k-SAT.444

We assume G = (V, E) is a directed graph; we let n = |V | be the number of vertices and445

m = |E| be the number of edges. For instances of SAT, we continue to let n and m be the446

numbers of variables and clauses. The triangle detection (k-cycle detection) problem is the447

problem of deciding whether G contains a triangle (respectively a k-cycle).448

We define a deterministic polynomial time reduction from the triangle detection problem449

to the problem of finding a backbone literal in a 2-CNF. Given a graph G, we create an450

instance of 2-SAT ΓG,3. The variables of ΓG,3 has three variable v1, v2, and v3 for each451

vertex v of G. The clauses of ΓG,3 are obtained by including, for each (directed) edge452

e = ⟨u, v⟩ in E, the two clauses u1 → v2 and u2 → v3 and the clause u3 → ¬v1. Note that453

ΓG,3 has 3 · |V | many variables and 3 · |E| many edges.454

▶ Theorem 11. G has a triangle if and only if ΓG,3 has a failed literal. Furthermore, G has455

a triangle involving vertex v if and only if ΓG,3 forces v false.456

The theorem is immediate from the construction. A consequence of the theorem is that an457

algorithm for the backbone literals of 2-SAT instance that runs in time O(mc) for any c can458

be converted into an O(mc)-time algorithm that finds all vertices in G that are part of a459

triangle (a 3-cycle). Similarly an O(mc) time algorithm to find even a single failed literal in460

an instance of 2-SAT would give an O(mc) time algorithm for triangle detection.461

The best known triangle detection algorithm [3] in m-edge graphs utilizes fast matrix462

multiplication. For the current value of the matrix multiplication exponent ω < 2.372 [12, 23],463

it runs in O(m1.407) time, and even if ω = 2 (i.e. if there’s a linear time matrix multiplication464
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algorithm), the triangle detection runtime would still only be O(m4/3), far from linear. It465

is in fact conjectured that m4/3−o(1) time is needed for triangle detection (e.g. [1, 2]); this466

conjecture also implies the same running time lower bound for finding a single failed literal.467

The following hypothesis from Fine-Grained complexity concerns the complexity of468

detecting k-cycles (for constant k ≥ 3) in directed graphs:469

▶ Hypothesis 1 (k-Cycle Hypothesis [8, 15, 4, 19]). For every ε > 0 there is an integer k ≥ 3470

such that no O(m2−ε) time algorithm can detect a k-cycle in an m-edge directed graph, in471

the word-RAM model with O(log m) bit words.472

The main motivation behind this hypothesis is that despite decades of research, the best473

algorithms for k-Cycle run in time O(m2−c/k) for various fixed constants c, independent of k.474

If ω > 2 and k large enough, the algorithms of Alon, Yuster and Zwick [3] are the best475

for k-cycle detection; they run in time O(m2−2/k) if k is even and in time O(m2−2/(k+1)) if476

k is odd. Yuster and Zwick [25] use matrix multiplication to obtain improved algorithms and477

analyze them for small k. Dalirooyfard, Vuong and Vassilevska Williams [9] complete the478

analysis for all k for the exponent ck for which the Yuster-Zwick algorithm detects k-cycles479

in Θ̃(mck ) time. Under the (unproven) assumption that ω = 2, the values for ck satisfy480

ck = 2(k + 1)/(k + 3) > 2 − 5/k if k is odd. For k even, still assuming ω = 2, c4 > 7/4 and481

c6 > 17/11 , and for general even k, ck = (2k − 4/k)/(k + 2 − 4/k) > 2 − 5/k. As k → ∞,482

the values ck → 2. Further motivation for the hypothesis was provided by [19].483

Our lower bound construction for failed literals can be generalized to k-cycles instead of484

triangles. Fix k ≥ 3. Define the 2-SAT instance ΓG,k similarly to ΓG,3 but with k vertices485

per vertex of G instead of 3 vertices. ΓG,k has k · |V | many variables and k · |E| many edges.486

Since k is constant, this is still O(|V |) many variables and O(|E|) many edges.487

▶ Theorem 12. G has a k-cycle if and only if ΓG,k has a failed literal. Furthermore, G has488

a k-cycle involving vertex v if and only if ΓG,k forces v false.489

Thus, any algorithm for detecting backbone literals in an instance of 2-SAT that runs in490

time O(m) or even time O((mn)1−ϵ) would refute the k-Cycle Hypothesis and would be a491

substantial breakthrough for k-cycle detection and other problems (as shown by [19]).492

Implications for Max-k-SAT. Williams [24] obtained the first algorithm for Max-2-SAT on493

n variables that substantially beat the ∼ 2n brute-force algorithm, obtaining an O∗(2ωn/3) ≤494

O(1.73n) time algorithm. His algorithm was a reduction from Max-2-SAT to finding a495

triangle in a graph on O∗(2n/3) vertices. A generalization of [24] shows that for every k ≥ 2,496

Max-k-SAT on n variables can be reduced to the problem of finding a (k + 1)-hyperclique in497

a N = O(2n/(k+1))-node k-uniform hypergraph, so that an O(Nk+1−ε) time algorithm for498

the latter problem for any ε > 0 would imply a O((2 − δ)n) time algorithm for Max-k-SAT499

for some δ > 0, resolving a big open problem in SAT algorithms.500

Lincoln et al. [19] showed that the (k + 1)-hyperclique problem in N -node k-uniform501

hypergraphs can be reduced to finding a (k + 1)-cycle in a directed graph with M = O(Nk)502

edges. Thus, a linear time algorithm for (k + 1)-cycle give a O(Nk) time algorithm for503

(k + 1)-hyperclique, in turn implying an O∗(2nk/(k+1)) = O∗(2n(1−1/(k+1)) time algorithm504

for Max-k-SAT. Obtaining such an algorithm for any k > 2 is a major open problem.505

We summarize the above reasoning in the corollary below.506

▶ Corollary 13. If for some ε > 0 and some integer k ≥ 3, the backbone of a 2-CNF on m507

clauses can be computed in O(m1+1/k−ε) time, then Max-k-SAT can be solved in O((2 − δ)n)508

time for some δ > 0.509
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Thus, if Max-3-SAT does not admit O((2 − δ)n) time algorithms for any δ > 0, then510

computing the 2-CNF backbone cannot be done in O(m4/3−ε) time for any ε > 0.511

If the 2-CNF backbone can be computed in O(m1+ε) time for all ε > 0, then for every512

k ≥ 3 there is a δ > 0 and an O((2 − δ)n) time algorithm for Max-k-SAT.513
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A Appendix590

For space reasons, and for completeness of the exposition, we include in the appendix detailed591

descriptions of the simpler algorithms used as subalgorithms by DualDFS.592

A.1 UnitPropagate593

Input: A set Γ of clauses
Return value: The unit propagation assignment τUP(Γ) or “Unsatisfiable”

1 Function UnitPropagate(Γ)
2 τ = ∅; // The empty truth assignment
3 while Γ contains a unit clause {ℓ} do
4 Extend τ so that τ(ℓ) = ⊤
5 Γ := Γ↾τ

6 if ⊥∈ Γ then return “Unsatisfiable”;
7 return τ

594

UnitPropagate() is written using nondeterministic choices for literals ℓ to unit propagate;595

however, the end result of the algorithm is independent of the order in which the literals ℓ596

are propagated. The unit propagation algorithm is also very efficient: in a suitable random597

access model (RAM) of computation, UnitPropagate() can have runtime linearly bounded598

in terms of |Γ|, where |Γ| is the number of occurrences of literals in clauses in Γ. Clearly, if599

τ = UnitPropagate(Γ), then any truth assignment satisfying Γ extends τ .600

A.2 ForceImmediate601

Input: A literal ℓ

Effect: ℓ is set true and unit propagation is carried out
Return value: true if no contradiction is found, otherwise false.

1 Function ForceImmediate(ℓ)
2 Push ℓ onto the UP stack as its only member
3 while the UP stack is nonempty do
4 Pop p from the UP stack
5 if var(p) has not been assigned a truth value then
6 Set p true Mark p and p as handled
7 foreach child t of p do push t onto the UP stack
8 else if p is assigned the value false then
9 return false // Conflict!

10 return true

602

A.3 InitializeS603

InitializeS initializes “half” of the set S. It starts with a literal t0 and produces a set604

S equal to {s1, . . . , sk} so that sk = t0 and si → si+1 for each i. InitializeS() acts by605

starting at t0, and greedily choosing each ti+1 as the first child of ti which is not a generalized606

sink. The other “half” of S, that is, the part above sk, will be dynamically generated during607

the first phase of DualDFS. It is possible that InitializeS() finds a contradiction in Γ. It608

is also possible that InitializeS() discovers that ti is in the backbone, and so forced true609

or false. In this case, there may be no set S created.610
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Input: A literal t0 that is not a generalized sink.
Return value: A set S = {s1, . . . , sk} with sk = t0, or “abort” if S is a subset of

the backbone, or “false” if Γ is unsatisfiable.
1 Function InitializeS(t0)
2 k := 0
3 while tk has a child tk+1 that is not handled, not a generalized sink, and not

equal to any ti for i < k do
4 Set tk+1 to be such a child.
5 if tk+1 equals ti for some i ≤ k then
6 if not ForceImmediate (tk+1) then return false
7 while tk is set true do
8 if k = 0 then abort
9 k := k − 1 // Discard tk

10 if tk is set false then abort
11 else k := k + 1
12 return t0, . . . , tk−1 as sk, . . . , s1. (Discard tk.)

If InitializeS() aborts then every ti has been forced true or false. The test in line 5 is611

carried out in constant time by maintaining for each variable x a flag indicating whether x612

or x is in the set S. The pseudocode does not show it explicitly, but this flag is updated613

whenever a literal is added to or removed from S. In line 3, a potential tk+1 might be equal614

to an already chosen ti. This can happen only if there are non-trivial SCC-equivalences, but615

the test in line 3 prevents the same literal being added again to S. Another possibility is that616

tk+1 is equal to ti; in this case, ti is discovered to be a failed literal and thus tk+1 is set true.617

It is possible that some tj ’s are SCC-equivalent to tk+1 and are also set false. The while loop618

starting on line 7 removes these from S. Then, if the remaining tk’s are all false, it aborts.619
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