
Tutorial on
Proof Systems Connected to SAT Solving

Sam Buss
Univ. of California, San Diego

Theory and Practice of SAT Solving
Dagstuhl, Germany

April 21, 2015

Sam Buss Tutorial on Proof Systems Connected to SAT Solving

Satisfiability (SAT); The basics

Satisfiability: Given a propositional formula, determine
- if it has a satisfying assignment
- find a satisfying assignment or a refutation (optional).

Satisfiability is NP-complete. Indeed, many of the “standard”
NP-complete problems are many-one reducible to satisfiability
(even on clauses) in quasilinear time n(log n)O(1).
For instance: the question of whether a given Turing machine halts
in n steps is reducible to SAT in this way.

The best algorithms we know for general satisfiability (even on
clauses) have exponential runtime 2n, where n is the number of
variables. Any substantial improvement, even to just 2n/2, would
be a substantial breakthrough, and give improved algorithms for a
broad range of problems.

Thus, it comes as a shock that in practice many instances of
SAT that arise from hard problem domains can be solved
efficiently. Even for tens or hundreds of thousands of variables.

Sam Buss Tutorial on Proof Systems Connected to SAT Solving

Most SAT solvers use clauses and (implicitly) generate refutations
in resolution.

Variables: x , y , . . ., x1, x2, . . .
Literals: x and x for x a variable. (Involutive negation.)

Clause: a finite set of literals.
Intended meaning is the disjunction (OR) of the literals.
Generally require that clauses are not tautologies (do not contain
both x and x).

Instance of satisfiability: A set Γ of clauses.
Intended meaning is the conjunction of the clauses.
Goal is to assert satisfiable or unsatisfiable.
Usually the answer can be augmented with a satisfying assignment
or a (resolution) refutation, respectively.

Sam Buss Tutorial on Proof Systems Connected to SAT Solving

Resolution inference:

Γ, x ∆, x

Γ,∆

where x , x /∈ Γ ∪∆.

We write Γ ⊢ C to mean C can be derived from Γ by resolution
inferences.
We write Γ � C for logical implication.

Completeness and soundness:

Γ ⊢ ∅ iff Γ is unsatisfiable.

Implicational completeness and soundness:

Γ � C iff for some C ′ ⊆ C , Γ ⊢ C ′.

Sam Buss Tutorial on Proof Systems Connected to SAT Solving

A partial truth assignment, also called a restriction, is a
mapping ρ from variables to {⊤,⊥} (i.e., {True,False}). Thus,
ρ gives truth values to some of the literals.

The restriction Γ↾ρ is the set of clauses obtained from Γ by

- Remove from Γ every clause containing a literal x set true.

- In remaining clauses, remove any literal set false.

A unit clause is a clause with a single literal {x}. Any satisfying
assignment must set x true.

A pure literal x of Γ is one such that x does not appear in Γ.

Sam Buss Tutorial on Proof Systems Connected to SAT Solving

DPLL algorithm (without unit propagation)

Input: Set of clauses Γ
Output: A satisfying assignment or "Not Satisfiable".

DPLL No UP(Γ) {
DPLL No UP(Γ, ∅).

Output "Unsatisfiable" and halt.

}

DPLL No UP(Γ, ρ) {
If Γ↾ρ contains the empty clause ∅, return.

If Γ↾ρ is the empty set,

Output "ρ is a satisfying assignment" and halt.

Choose x /∈ domain(ρ).
DPLL(Γ, ρ[x 7→ ⊤]).

DPLL(Γ, ρ[x 7→⊥]).

}

—
[Davis-Putnam ’60], [Davis, Logemann, Loveland ’62]

Sam Buss Tutorial on Proof Systems Connected to SAT Solving

DPLL algorithm (with unit propagation)

DPLL(Γ, ρ) {
Repeat while possible {

If Γ↾ρ contains the empty clause ∅, return.

If Γ↾ρ is the empty set,

Output "ρ is a satisfying assignment" and halt.

If Γ↾ρ contains unit clause {x} (or pure literal x)

ρ := ρ[x 7→ ⊤]
}
Choose x /∈ domain(ρ).
DPLL(Γ, ρ[x 7→ ⊤]).

DPLL(Γ, ρ[x 7→⊥]).

}

Sam Buss Tutorial on Proof Systems Connected to SAT Solving

CDCL: Conflict-Driven Clause Learning

CDCL is DPLL plus clause learning

CDCL(Γ, ρ) {
Loop {

If Γ↾ρ contains the empty clause ∅,
Learn one or more clauses and return.

If Γ↾ρ is the empty set,

Output "ρ is a satisfying assignment" and halt.

If Γ↾ρ contains unit clause {x} or pure literal x

ρ := ρ[x 7→ ⊤]
}
Choose x /∈ domain(ρ).
DPLL(Γ, ρ[x 7→ ⊤]).

DPLL(Γ, ρ[x 7→⊥]).

}

Learning a clause means: add it persistently to Γ.
(That is, Γ is a global variable — unlike ρ.)

Sam Buss Tutorial on Proof Systems Connected to SAT Solving

Clause learning possibilities:

Generally based on the conflict graph of variables set at the current
decision level with unit propagation.

Methods include:
- First UIP [Marques-Silva, Sakallah ’96]
- rel-sat [Bayardo, Schrag ’97]
- Second UIP, Third Uip, . . . , [M-S,S’96]

First UIP is by far the most popular.
SatDiego experiments: using all UIP’s is somewhat better.

Sam Buss Tutorial on Proof Systems Connected to SAT Solving

Clause Learning – First UIP

Decision literal p Contradiction First UIP

Blue for top level Yellow for lower level literal

b

a

w
v

u

t

s

r

p

q

z

y

~x

x

Clauses: {~y,~z, x}, {~p,~a,r}, etc. (One per unit propagation.)
First UIP Learned Clause: {~a,~u,~s,~w,~v}.
Whole top level learned clause: {~p,~a,~u,~b,~w,~v}.
With First-UIP: Both p and s can be set false when backtracking.
New level of ~s is set to maximum level of u,v,w.

First UIP Cut

1

n p

c

Clause Learning – Example of Two UIP Learning

Decision literal p Contradiction First UIP

b

a

w
v

u

t

s

r

p

q

z

y

~x

x

First UIP Learned Clause: {~a,~u,~s,~w,~v}.
Second UIP (Fragment) Clause: {~n, ~a, ~b, s}
Both p and s can be set false when backtracking.
New level of ~s is set to maximum level of u,v,w.
New level of ~p is set to maximum level of a,b,c,u,v,w.
With both clauses learned: Both ~s and ~p have supporting clauses.

First UIP Cut

2

n p

c

Second Cut

Characterization of clause learning

Def’n: An input (aka, trivial) resolution refutation is one in which
every inference has an initial clause as a hypothesis.

Theorem (Beame-Kautz-Sabharwal’04; Chang’70)

There is an input resolution derivation of C from Γ iff Γ ∪ C has a
unit propagation refutation.

C means the clauses {x} for x ∈ C .

[BKS’04]

Clause learning learns only clauses C which can be derived from Γ
with an input derivation.
Usually, from clauses used to infer literals at the topmost decision
level with unit propagation.

This kind of clause learning thus derives only clauses which are
falsified by the current partial assignment ρ.

Sam Buss Tutorial on Proof Systems Connected to SAT Solving

Learned clause minimization
A learned clause C can often be minimized by learning a clause
D ⊂ C by using “recursive minimization”.

E.g.: If C = {x1, x2, . . . , xk , y , ~z}, and
y follows from the k unit clauses x1, . . . , xk by unit propagation,
so {x1, . . . , xk , y} is derivable by input resolution. Then
D = {x1, x2, . . . , xk , ~z} can be inferred instead of C

Simplifications are found by traversing the implication graph
used to form C , and looking for literals y in C such that y is
implied by other literals whose negations appear in C .

This can be done efficiently in time linear in the size of the
implication graph. (This can still add quadratic time due to
traversaling below the top decision level!)

Extra optimization: Any literal y that is the only literal in the
clause at its decision level cannot be optimized away.

—
Minisat ’05 and [Sörensson-Biere ’09] and [van Gelder ’09]

Sam Buss Tutorial on Proof Systems Connected to SAT Solving

Experimental results

Minimization can give good improvements in learned clause size

Experiments with SatDiego remove from 5% to 20% of the literals
from a learned clause on average.
Initially about 5% when using short restart cycles.

As learned clause length grows (to ≈100 literals or more), the
percentage of removed literals rises as high as 20%.

Net effect is a noticeable improvement in performance.

Sam Buss Tutorial on Proof Systems Connected to SAT Solving

Secondary minimization
Secondary minimizations can be carried out by applying
minimization to every clause used to derive the learned clause.

This is quadratic time in the worst case, but can be done efficiently
in practice, since learned clause simplification is done first, and
only those literals which are simplified out of the learned clause are
candidates for secondary simplification.

Experimental results with SatDiego, minimization of clauses at the
top decision level only: Secondary simplification removes about 1%
of the literals.

Net effect is a slight improvement in performance.

—
[B., SatDiego, unpubl.]

Sam Buss Tutorial on Proof Systems Connected to SAT Solving

Relationship with resolution

Defn: A refutation of Γ can be either dag-like or tree-like, and has
initial clauses from Γ, other clauses inferred by resolution, and final
clause ∅.

Defn: A refutation is regular if on each path through the
refutation (tree or dag) no variable is resolved on more than once.

Question: How do proofs as implicitly generated by CDCL
refutations correspond to resolution refutations? To regular
resolution refutations?

Sam Buss Tutorial on Proof Systems Connected to SAT Solving

Theorem

DPLL refutations (without restarts, and with or without unit
propagation) can be translated to regular tree-like resolution
refutations.

Regular tree-like resolution refutations can be simulated by
DPLL refutations.

The theorem holds even for greedy DPLL algorithms:
‘Greedy” means that contradictions cannot be ignored.

Proof idea: The DPLL refutation can be viewed as traversing the
refutation in depth-first order. Each clause reached in the traversal
is made false by the current assignment ρ.

Question: What about CDCL (that is, with learning)? Can it
polynomially simulate unrestricted resolution?

Sam Buss Tutorial on Proof Systems Connected to SAT Solving

CDCL with restarts and unrestricted resolution

Theorem (BKS’04, AFT’09, PD’09)

CDCL with restarts can polynomially simulate daglike resolution.

Proof idea: Given a resolution proof with clauses C1,C2, . . . , ∅,
successively learn C1, then C2, etc., and then finally ∅.

[BKS’04]’s construction does this exactly, but needs special
conventions on learning and is non-greedy. A non-greedy algorithm
may ignore contradictions and not do all unit propagations.

[AFT’09,PD’09]: Works with general asserting clause learning
methods, and works with greedy algorithms. They only “absorb”
each Ci and may not learn them: Absorptions allow the same unit
propagations to be carried out.

Restarts are very useful in practice too. Why is unclear.
—
Beame-Kautz-Sabharwal’04; Atserias-Fichte-Thurley’09, Pipatsrisawat-Darwiche’09

Sam Buss Tutorial on Proof Systems Connected to SAT Solving

CDCL-without-restarts, and unrestricted resolution

Theorem (Effective p-simulation: BKS’04; BHJ’08; HBPvG’08;
BS’14)

A set of clauses Γ can be conservatively extended to a set Π so
that Γ has a polynomial size dag-like resolution refutation if and
only if Π has a polynomial size CDCL refutation.

This theorem is a bit of a cheat however, since it adds extraneous
variables which can be branched on merely to learn new clauses.

Corollary (BKS’04)

CDCL can p-simulate resolution iff it is “natural” in the sense that
if any Γ has a CDCL refutation of size N, then any restriction Γ↾ρ
has a CDCL refutation of size polynomially bounded by N.

—Beame-Kautz-Sabharwal’04; B.-Hoffmann-Johannsen’08;
Hertel-Bachus-Pitassi-Van Gelder’08; Beame-Sabharwal’14

Sam Buss Tutorial on Proof Systems Connected to SAT Solving

Pool resolution and regWRTI and CDCL

An attempt to better model CDCL as a proof system:

Degenerate resolution inference:
Γ ∆

Π
resolving on x ,

where:

This is a valid resolution inference on x , or

x , x not in Γ, and Π is Γ, or

x , x not in ∆, and Π is ∆.

Definition (van Gelder’05; HBPvG’08)

A pool resolution refutation is a dag-like refutation of degenerate
resolution inferences, and

There is a depth-first traversal of the refutation which is
regular (no literal is repeated on any single branch of the
traversal).

Sam Buss Tutorial on Proof Systems Connected to SAT Solving

The motivation for pool resolution is that a depth-first regular
traversal corresponds to a CDCL algorithm which learns clauses
once they have been traversed.

The degenerate resolution rule corresponds to a CDCL algorithm
branching on a literal, but not using it for learning in both
branches.

Theorem (Van Gelder’04)

Pool resolution can p-simulate CDCL-without-restarts (under a
range of possibilities for clause learning).

Sam Buss Tutorial on Proof Systems Connected to SAT Solving

w-resolution inference:

Γ ∆
(Γ \ {x}) ∪ (∆ \ {x})

Definition (B-Hoffmann-Johannsen’09)

A regWRTI refutation is a dag-like proof using w-resolution so that

The dag-like proof is recast into tree-like form by a
left-to-right depth first (postorder) traversal.

Each leaf node is an input clause or an earlier clause from the
traversal called a lemma.

Each lemma must be a “input lemma”, namely derived by an
input subderivation in the tree.

Sam Buss Tutorial on Proof Systems Connected to SAT Solving

w-resolution combines weakening with resolution: corresponds to
the fact that CDCL may branch on some literal which is not used
for clause learning.

The use of input lemmas mirrors the characterization of clause
learning in terms on input derivations (based on unit propagation).

Theorem (B-Hoffmann-Johannsen’08)

regWRTI is polynomially equivalent to non-greedy
CDCL-without-restarts under a wide range of possibilities for
clause learning (DLL-L-UP).

Sam Buss Tutorial on Proof Systems Connected to SAT Solving

It is still open whether regWRTI is equivalent to resolution

Regular resolution is weaker than unrestricted resolution:

Theorem (AJPU’07; U’11)

Dag-like regular resolution refutations may need to be
exponentially longer than dag-like resolution refutations. This is
known for three principles: an obfuscated graph ordering principle,
an obfuscated xor-ified pebbling principle and an indirectly encoded
pebbling principle (known as the Stone tautologies).

It was conjectured that some of these principles could separate
CDCL-without-restarts from resolution.

—
Alekhnovich-Johannsen-Pitassi-Urquhart’07; Urquhart’11

Sam Buss Tutorial on Proof Systems Connected to SAT Solving

Theorem (BBJ’12; BK’14)

All three principles have polynomial size regWRTI refutations.

All three principles, have polynomial size non-greedy CDCL
refutations provided the CDCL algorithm makes the correct
choices for decision literals and clause learning.

For the first principle, greedy CDCL can work, but this is known
only if learned clauses are “forgotten” at the right times.

Open question

Does regWRTI polynomially simulate dag-like resolution
refutations?

—
Bonet-B.-Johannsen’13; B-Ko lodziejczyk’14

Sam Buss Tutorial on Proof Systems Connected to SAT Solving

Learning that does not fit into pool/regWRTI resolution

Second UIP clause learning, n-th UIP clause learning, for
n > 1.

Secondary clause minimization.

“On the fly” minimization.

2-clauses inferred from dominator analysis. [SatDiego,...,]

These examples allow learning clauses in which one literal is set
true by the current partial assignment ρ,

Suggestion: Reformulate pool resolution and regWRTI to allow
learning clauses in which all but one literal is set false — even if it
requires resolving on a literal which has already been resolved on.

Sam Buss Tutorial on Proof Systems Connected to SAT Solving

Some open problems

Do pool resolution or regWRTI simulate unrestricted daglike
resolution?

Does CDCL-without-restarts, augmented to allow learning of
clauses in which all but one literal is set false, simulate
unrestricted resolution?

Do greedy regWRTI, or greedy CDCL-without-restarts,
polynomially simulate regular resolution?

Another open problem:

Explain why restarts work so well.

Sam Buss Tutorial on Proof Systems Connected to SAT Solving

One more open problem: Give some theoretical justifications
(and guidelines) for the effectiveness of:

Variable selection heuristics, e.g. VSIDS

Clause forgetting heuristics

These seem to be related to each other, and to the problem about
whether CDCL is “local” or “global”.

Sam Buss Tutorial on Proof Systems Connected to SAT Solving

Thank you!

Sam Buss Tutorial on Proof Systems Connected to SAT Solving

	PrfComplexity.pdf
	Clause Learning – First UIP
	Clause Learning – Example of Two UIP Learning

