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Abstract

We study the complexity of a range of propositional proof systems which
allow inference rules of the form: from a set of clauses Γ derive the set of
clauses Γ ∪ {C} where, due to some syntactic condition, Γ ∪ {C} is satis-
fiable if Γ is, but where Γ does not necessarily imply C . These inference
rules include BC, RAT, SPR and PR (respectively short for blocked clauses,
resolution asymmetric tautologies, subset propagation redundancy and prop-
agation redundancy), which arose from work in satisfiability (SAT) solving.
We introduce a new, more general rule SR (substitution redundancy).

If the new clause C is allowed to include new variables then the systems
based on these rules are all equivalent to extended resolution. We focus on
restricted systems that do not allow new variables. The systems with deletion,
where we can delete a clause from our set at any time, are denoted DBC−,
DRAT−, DSPR−, DPR− and DSR−. The systems without deletion are BC−,
RAT−, SPR−, PR− and SR−.

With deletion, we show that DRAT−, DSPR− and DPR− are equivalent.
By earlier work of Kiesl, Rebola-Pardo and Heule [24], they are also equiv-
alent to DBC−. Without deletion, we show that SPR− can simulate PR−
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provided only short clauses are inferred by SPR inferences. We also show
that many of the well-known “hard” principles have small SPR− refutations.
These include the pigeonhole principle, bit pigeonhole principle, parity prin-
ciple, Tseitin tautologies and clique-coloring tautologies. SPR− can also han-
dle or-fication and xor-ification, and lifting with an index gadget. Our final
result is an exponential size lower bound for RAT− refutations, giving expo-
nential separations between RAT− and both DRAT− and SPR−.

1 Introduction

SAT solvers are routinely used for a range of large-scale instances of satisfiability. It
is widely realized that when a solver reports that a SAT instance Γ is unsatisfiable, it
should also produce a proof that it is unsatisfiable. This is of particular importance
as SAT solvers become increasingly complex, combining many techniques, and
thus are more subject to software bugs or even design problems.

The first proof systems proposed for SAT solvers were based on reverse unit
propagation (RUP, or ⊢1 in the notation of this paper) inferences [14, 44] as this is
sufficient to handle both resolution inferences and the usual CDCL clause learning
schemes. However, RUP inferences only support logical implication, and in par-
ticular do not accommodate many “inprocessing” rules. Inprocessing rules support
inferences which do not respect logical implication; instead they only guarantee eq-
uisatisfiabilitywhere the (un)satisfiability of the set of clauses is preserved [23]. In-
processing inferences have been formalized in terms of sophisticated inference rules
including DRAT (deletion, reverse asymmetric tautology), PR (propagation redun-
dancy), SPR (subset PR) in a series of papers including [23, 18, 17, 45] — see Sec-
tion 1.2 for definitions. These inference rules can be viewed as introducing clauses
that hold “without loss of generality” [38], and thus preserve (un)satisfiability. An
important feature of these systems is that they can be used both as proof systems
to verify unsatisfiability, and as inference systems to facilitate searching for either
a satisfying assignment or a proof of unsatisfiability.1

The DRAT system is very powerful as it can simulate extended resolution [29,
24]. This simulation is straightforward, but depends on DRAT’s ability to introduce
new variables; we simply show that the usual extension axioms are RAT. However,
there are a number of results [16, 21, 19, 20] indicating that DRAT and PR are
still powerful when restricted to use few new variables, or even no new variables.
In particular, [21, 19, 20] showed that the pigeonhole principle clauses have short

1The deletion rule is very helpful to improve proof search and can extend the power of the infer-
ences rules, see Corollary 5.5; however, it must be used carefully to preserve equisatisfiabity. The
present paper only considers refutation systems, and thus the deletion rule can be used without re-
striction.
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(polynomial size) refutations in the PR proof system. The paper [21] showed that
Satisfaction Driven Clause Learning (SDCL) can discover PR proofs of the pigeon-
hole principle automatically; in the application studied by [21], the SDCL search ap-
pears to have exponential runtime, but is much more efficient than the usual CDCL
search. There are at present no broadly applicable proof search heuristics for how
to usefully introduce new variables with the extension rule. It is possible however
that there are useful heuristics for searching for proofs that do not use new variables
in DRAT and PR and related systems. For these reasons, DRAT and PR and related
systems (even when new variables are not allowed) hold the potential for substantial
improvements in the power of SAT solvers.

The present paper extends the theoretical knowledge of these proof systems
viewed as refutation systems. We pay particular attention to proof systems that do
not allow new variables. The remainder of Section 1 introduces the proof systems
BC (blocked clauses), RAT, SPR, PR and SR (substitution redundancy). (Only
SR is new to this paper.) These systems have variants which allow deletion, called
DBC, DRAT, DSPR, DPR and DSR. There are also variants of all these systems
restricted to not allow new variables: we denote these with a superscript “−” as
BC−, DBC−, RAT−, DRAT−, etc.

Section 2 studies the relation between these systems and extended resolution.
We show in particular that any proof system containing BC− and closed under re-
strictions simulates extended resolution. Here a proof system  is said to simulate
a proof system  if any -proof can be converted, in polynomial time, into a -
proof of the same result. Two systems are equivalent if they simulate each other;
otherwise they are separated. We also show that the systems discussed above all
have equivalent canonical NP pairs (a coarser notion of equivalence).

Section 3 extends known results that DBC− simulates DRAT− [24] and that
DRAT, limited to only one extra variable, simulates DPR− [16]. Theorem 3.3
proves that DRAT− simulates DPR−. As a consequence, DBC− can also simu-
late DPR−. We then give a partial simulation of PR− by SPR− — our size bound
is exponential in the size of the “discrepancy” of the PR inferences, but in many
cases, the discrepancy will be logarithmic or even smaller.

Section 4 proves new polynomial upper bounds on the size of SPR− proofs for
many of the “hard” tautologies from proof complexity. (Recall that SPR− allows
neither deletion nor the use of new variables.) These include the pigeonhole prin-
ciple, the bit pigeonhole principle, the parity principle, the clique-coloring prin-
ciple, and the Tseitin tautologies. We also show that obfuscation by or-fication,
xor-ification and lifting with a indexing gadget do not work against SPR−. Prior re-
sults gave SPR− proofs for the pigeonhole principle (PHP) [19, 20], and PR− proofs
for the Tseitin tautologies and the 2-1 PHP [16]. These results raise the question
of whether SPR− (with no new variables!) can simulate Frege systems, for in-
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stance. Some possible principles that might separate SPR− from Frege systems are
the graph PHP principle, 3-XOR tautologies and the even coloring principle; these
are discussed at the end of Section 4. However, the even coloring principle does
have short DSPR− proofs, and it is plausible that the graph PHP principle has short
SPR− proofs.

Section 5 shows that RAT− (with neither new variables nor deletion) cannot
simulate either DRAT− (without new variables, but with deletion) or SPR− (with
neither new variables nor deletion). This follows from a size lower bound for RAT−
proofs of the bit pigeonhole principle (BPHP). We first prove a width lower bound,
by showing that any RAT inference in a small-width refutation of BPHP can be
replaced with a small-width resolution derivation, and then derive the size bound.
We use that BPHP behaves well when the sign of a variable is flipped.

The known relationships between these systems, including our results, are sum-
marized in the diagram below. Recall that e.g. BC is the full system, DBC− is the
system with deletion but no new variables, and BC− is the system with neither dele-
tion nor new variables. An arrow shows that the upper system simulates the lower
one. Equivalence ≡ indicates that the systems simulate each other.

ER ≡ SR ≡ PR ≡ SPR ≡ RAT ≡ BC
DSR−

DPR− ≡ DSPR− ≡ DRAT− ≡ DBC− SR−

PR−

SPR−

RAT−

BC−

Res

∗

≢

≢

The arrow from PR− and SPR− is marked ∗ to indicate that there is a simulation
in the other direction under the additional assumption that the discrepancies (see
Definition 3.9) of PR inferences are logarithmically bounded.

We summarize the rules underlying these systems in a table. The details and
the necessary definitions are in Section 1.2 below – in particular see Theorem 1.10
for this definition of RAT.
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BC (a restriction of RAT) blocked clause
RAT � is � with one variable flipped reverse asymmetric tautology
SPR � is a partial assignment, dom(�)=dom(�) subset propagation redundant
PR � is a partial assignment propagation redundant
SR no extra conditions substitution redundant

As presented here the rules (except for BC) have the form: derive C from Γ, if there
is a substitution � satisfying Γ

|� ⊢1 Γ|� plus the conditions shown, where � is C .
The implication ⊢1 is defined below in terms of reverse unit propagation (RUP).

We remark that the question of whether new variables help reasoning with
blocked clause inferences was already studied by Kullmann in the context of the
system Generalized Extended Resolution (GER) [29]. As far as we know, GER
does not correspond exactly to any of the systems we consider. [29] showed that
allowing new variables does not reduce GER proof length when the blocked clause
rule is restricted to introducing clauses of length at most two.

1.1 Preliminaries

We use the usual conventions for clauses, variables, literals, truth assignments, sat-
isfaction, etc. Var and Lit denote the sets of all variables and all literals. A set
of literals is called tautological if it contains a pair of complementary literals p
and p. A clause is a non-tautological2 set of literals; we use C,D,… to denote
clauses. The empty clause is denoted ⟂, and is always false. 0 and 1 denote respec-
tively False and True; and 0 and 1 are respectively 1 and 0. We use both C ∪ D
or C ∨ D to denote unions of clauses, but usually write C ∨ D when the union
is a clause. The notation C = D ∨̇E indicates that C = D ∨ E is a clause and
D and E have no variables in common. If Γ is a set of clauses, C ∨ Γ is the set
{C ∨D ∶ D ∈ Γ and C ∨D is a clause}.

A partial assignment � is a mapping with domain a set of variables and range
contained in {0, 1}. It acts on literals by letting �(p) = �(p). It is called a total
assignment if it sets all variables. We sometimes identify a partial assignment �
with the set of unit clauses asserting that � holds. For C a clause, C denotes the
partial assignment whose domain is the variables of C and which asserts that C is
false. For example, ifC = x∨y∨z then, depending on context, C will denote either
the set containing the three unit clauses x and y and z, or the partial assignment �
with domain dom(�) = {x, y, z} such that �(x) = 0, �(y) = 1 and �(z) = 0.

A substitution generalizes the notion of a partial assignment by allowing vari-
ables to be mapped also to literals. Formally, a substitution � is a map from Var ∪

2Disallowing tautological clauses makes the rest of the definitions more natural. In particular, we
can identify clauses with the negations of partial assignments.
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{0, 1} to Lit ∪ {0, 1} which is the identity on {0, 1}. Note that a substitution may
cause different literals to become identified.3 A partial assignment � can be viewed
as a substitution, by defining �(x) = x for all variables x outside the domain of �.
The domain of a substitution � is the set of variables x for which �(x) ≠ x.

Suppose C is a clause and � is a substitution (or a partial assigment viewed as
a substitution). Let �(C) = {�(p) ∶ p ∈ C}. We say � satisfies C , written � ⊨ C ,
if 1 ∈ �(C) or �(C) is tautological. When � ⊭ C , the restriction C

|� is defined
by letting C

|� equal �(C) ⧵ {0}. Thus C|� is a clause expressing the meaning of C
under �. For Γ a set of clauses, the restriction of Γ under � is

Γ
|� = {C

|� ∶ C ∈ Γ and � ⊭ C }.

The composition of two substitutions is denoted �◦�, meaning that (�◦�)(x) =
�(�(x)), and in particular (�◦�)(x) = �(x) if �(x) ∈ {0, 1}. For partial assignments
� and �, this means that dom(�◦�) = dom(�) ∪ dom(�) and

(�◦�)(x) =
{

�(x) if x ∈ dom(�)
�(x) if x ∈ dom(�) ⧵ dom(�).

Lemma 1.1. For a set of clauses Γ and substitutions � and �, Γ
|�◦� = (Γ|�)|� . In

particular, � ⊨ Γ
|� if and only if �◦� ⊨ Γ.

Proof. Notice �◦� ⊨ C if and only if � ⊨ C or (� ⊭ C ∧ � ⊨ C
|�). Thus

(Γ
|�)|� =

{

(C
|�)|� ∶ C ∈ Γ, � ⊭ C, � ⊭ C

|�
}

=
{

�◦�(C) ⧵ {0} ∶ C ∈ Γ, � ⊭ C, � ⊭ C
|�
}

=
{

C
|�◦� ∶ C ∈ Γ, �◦� ⊭ C

}

= Γ
|�◦� .

A set of clauses Γ semantically implies a clause C , written Γ ⊨ C , if every
total assignment satisfying Γ also satisfies C . As is well-known, Γ ⊨ C holds if
and only if there is a resolution derivation of some C ′ ⊆ C; that is, C ′ is derived
from Γ using resolution inferences of the form

p ∨̇D p ∨̇E
D ∨ E

. (1)

If the derived clause C ′ is the empty clause ⟂, then the derivation is called a res-
olution refutation of Γ. By the soundness and completeness of resolution, Γ ⊨⟂,
that is, Γ is unsatisfiable, if and only if there is a resolution refutation of Γ.

3[40] defined a notion of “homomorphisms” that is similar to substitutions. Substitutions, how-
ever, allow variables to be mapped also to constants. Our SR inference, defined below, uses ⊢1; thiswas not used with homomorphisms in [40].
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If eitherD or E is empty, then the resolution inference (1) is an instance of unit
propagation. A refutation using only such inferences is called a unit propagation
refutation. Recall that we can write C for the set of unit clauses {p ∶ p ∈ C}.
Definition 1.2. Wewrite Γ ⊢1 ⊥ to denote that there is a unit propagation refutation
of Γ. We define Γ ⊢1 C to mean Γ∪C ⊢1 ⊥. For a set of clausesΔ, we write Γ ⊢1 Δ
to mean Γ ⊢1 C for every C ∈ Δ.
Fact 1.3. If Γ ⊢1 ⊥ and � is any partial assignment or substitution, then Γ

|� ⊢1 ⊥.

In the literature, when Γ ⊢1 C then C is said to be derivable from Γ by reverse
unit propagation (RUP), or is called an asymmetric tautology (AT) with respect
to Γ [44, 23, 18]. Of course, Γ ⊢1 C implies that Γ ⊨ C . The advantage of
working with ⊢1 is that there is a simple polynomial time algorithm to determine
whether Γ ⊢1 C . We have the following basic property of ⊢1 (going back to [10]):
Lemma 1.4. If C is derivable from Γ by a single resolution inference, then Γ ⊢1 C .
Conversely, if Γ ⊢1 C , then some C ′ ⊆ C has a resolution derivation from Γ of
length at most n, where n is the total number of literals occurring in clauses in Γ.

Proof. First suppose thatC = D∨E and clauses p ∨̇D and p ∨̇E appear in Γ. Then
by resolving these with the unit clauses in C we can derive the two unit clauses p
and p, then resolve these together to get the empty clause.

Now suppose that Γ ⊢1 C . Then there is a unit propagation derivation of ⊥
from Γ ∪ C , which is of length at most n. Removing all resolutions against unit
clauses p for p ∈ C , this can be turned into a resolution derivation of C or of some
C ′ ⊆ C from Γ.
Lemma 1.5. Let C ∨D be a clause (so C ∪D is not tautological), and set � = C .
Then

Γ
|� ⊢1 D ⧵ C ⟺ Γ

|� ⊢1 D ⟺ Γ ⊢1 C ∨D.

Proof. The left-to-right directions are immediate from the definitions, since Γ
|� is

derivable from Γ ∪ � using unit propagation. To show that Γ ⊢1 C ∨ D implies
Γ
|� ⊢1 D ⧵ C , suppose Γ ∪ � ∪D ⊢1 ⊥ and apply Fact 1.3.

1.2 Inference rules

We will describe a series if inference rules which can be used to add a clause C to
a set of clauses Γ. In increasing order of strength the rules are

BC ← RAT ← SPR ← PR ← SR.
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We will show that in each case the sets Γ and Γ ∪ {C} are equisatisfiable, that is,
either they are both satisfiable or both unsatisfiable. The definitions follow [23, 18,
20], except for the new notion SR of “substitution redundancy”.4 All of these rules
can be viewed as allowing the introduction of clauses that hold “without loss of
generality” [38]. The rules are summarized in a table earlier in this section.

Let Γ be a set of clauses and C a clause with a distinguished literal p, so that C
has the form p ∨̇C ′.
Definition 1.6. ([27, 28]) The clause C is a blocked clause (BC) with respect to p
and Γ if, for every clause D of the form p ∨̇D′ in Γ, the set C ′ ∪D′ is tautological.

Notice that the condition “C ′ ∪ D′ is tautological" above would be equivalent
to ∅ ⊢1 C ′ ∨D′, except that our notation does not allow us to write the expression
C ′ ∨D′ if C ′ ∪D′ is tautological, since it is not a clause. Since p does not appear
in C ′ or D′, it would also be equivalent to ∅ ⊢1 p ∨ C ′ ∨ D′. Compare with the
definition of RAT below.
Definition 1.7. ([23, 16, 45]) A clause C is a resolution asymmetric tautology
(RAT) with respect to p and Γ if, for every clause D of the form p ∨̇D′ in Γ, either
C ′ ∪D′ is tautological or

Γ ⊢1 p ∨ C ′ ∨D′.

Here we write p ∨ C ′ instead of C to emphasize that we include the literal p
(some definitions of RAT omit it). Clearly, being BC implies being RAT.
Example 1.8 ([29]). Let Γ be a set of clauses in which the variable x does not occur,
but the variables p and q may occur. Consider the three clauses

x ∨ p ∨ q x ∨ p x ∨ q

which together express that x ↔ (p ∧ q). Let Γ1 ⊂ Γ2 ⊂ Γ3 be Γ with the three
clauses above successively added. Then x ∨ p ∨ q is BC with respect to Γ and x,
because no clause in Γ contains x, so there is nothing to check. The second clause
x ∨ p is BC with respect to Γ1 and x because the only clause in Γ1 containing x is
x ∨ p ∨ q, and resolving this with x ∨ p gives a tautological conclusion. The third
clause x ∨ q is BC with respect to Γ2 and x in a similar way.

4M. Heule [personal communication, 2018] has independently formulated an inference rule “per-
mutation redundancy” (�PR) which allows only substitutions which set some variables to constants
and acts as a permutation on the remaining literals. This is a special case of SR; but unlike SR, �PR
does not allow identifying distinct literals. However, we do not know the strength of �PR− relative
to SR− (even if deletion is allowed for both systems).
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It follows from the example that we can use the BC rule to simulate extended
resolution if we are allowed to introduce new variables; see Section 2.1.

We say the clauseC is RATwith respect to Γ if it is RATwith respect to p and Γ
for some literal p in C , and similarly for BC.
Theorem 1.9. ([29, 23]) If C is BC or RAT with respect to Γ, then Γ and Γ ∪ {C}
are equisatisfiable.

Proof. It suffices to show that if Γ is satisfiable, then so is Γ ∪ {C}. Let � be any
total assignment satisfying Γ. We may assume � ⊨ C , as otherwise we are done.
Let �′ be � with the value of �(p) switched to satisfy p. Then �′ satisfies C , along
with every clause in Γ which does not contain p. LetD = p ∨̇D′ be any clause in Γ
which contains p. It follows from the RAT assumption that Γ ⊨ C ∨D′, so � ⊨ D′

since � ⊨ C . Hence �′ ⊨ D′ and thus �′ ⊨ D. This shows that �′ ⊨ Γ ∪ {C}.
For the rest of this section, let � be the partial assignment C . In a moment we

will introduce the rules SPR, PR and SR. These are variants of a common form,
and we begin by showing that RAT can also be expressed in a similar way (in the
literature this form of RAT is called literal propagation redundant or LPR).
Theorem 1.10. ([20]) A clause C is RAT with respect to p and Γ if and only if
Γ
|� ⊢1 Γ|� where � is the partial assignment identical to � except at p, with �(p) = 1.

Proof. First suppose that C satifies the second condition. Consider any clause D
of the form p ∨̇D′ in Γ. We need to show that either C ∪ D′ is tautological or
Γ ⊢1 C ∨ D′. Suppose C ∪ D′ is not tautological. Then � ⊭ D′, � ⊭ D, and by
Lemma 1.5 it is enough to show Γ

|� ⊢1 D′. But this now follows from Γ
|� ⊢1 D|� ,

since D
|� = D′

|� ⊆ D′.
Now suppose C is RAT with respect to p and Γ. Consider any D ∈ Γ such that

� ⊭ D and thus D
|� ∈ Γ|� . We must show that Γ

|� ⊢1 D|� . If p ∉ D this is trivial,
since then D

|� = D
|� ∈ Γ|�. Otherwise D = p ∨̇D′, where � ⊭ D′ since � ⊭ D,

so C ∪D′ is not tautological. By the RAT property, Γ ⊢1 C ∨D′. By Lemma 1.5
this implies Γ

|� ⊢1 D′ ⧵ C . But D′ ⧵ C = D′
|� = D|� .

Definition 1.11. ([20]) A clause C is subset propagation redundant (SPR) with
respect to Γ if there is a partial assignment � with dom(�) = dom(�) such that
� ⊨ C and Γ

|� ⊢1 Γ|� .
Definition 1.12. ([20]) A clause C is propagation redundant (PR) with respect to Γ
if there is a partial assignment � such that � ⊨ C and Γ

|� ⊢1 Γ|� .

Definition 1.13. A clauseC is substitution redundant (SR) with respect to Γ if there
is a substitution � such that � ⊨ C and Γ

|� ⊢1 Γ|� .
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Example 1.14 (based on [20]). Let Γ be the pigeonhole principle PHPn (see Sec-
tion 4.1) in variables pi,j expressing that pigeon i goes to hole j. LetC be the clause
p1,0 ∨ p0,0 so that � is the partial assignment p1,0 ∧ p0,0.

Let � be the substitution which swaps pigeons 0 and 1; that is, �(p0,j) = p1,j and
�(p1,j) = p0,j for every hole j, and � is otherwise the identity. Notice that, by the
symmetries of the pigeonhole principle, Γ

|� = Γ and thus Γ
|� = (Γ

|�)|� = Γ
|�◦� .

Let � = �◦�, so � is the same as � except that �(p0,0) = 1 and �(p1,0) = 0.
Then � ⊨ C and Γ

|� ⊢1 Γ|� (since they are the same set of clauses). Hence we
have shown that C is SR with respect to Γ.

We go on to sketch a polynomial size DSR− refutation of Γ, that is, one that
uses SR inferences, resolution and deletion but introduces no new variables (see
Section 1.4 below). Resolve C with the hole axiom p1,0 ∨ p0,0 to derive the unit
clause p1,0. Delete C , so that we are now working with the set of clauses Γ ∪ {p1,0}.
Let C ′ be the clause p2,0 ∨ p0,0 and let �′ be its negation p2,0 ∧ p0,0. Let �′ be the
substitution which swaps pigeons 0 and 2 and let �′ = �′◦�′. As before �′ ⊨ C ′
and (Γ ∪ {p1,0})|�′ ⊢1 (Γ ∪ {p1,0})|�′ , since neither �′ nor �′ affects p1,0 so these
are again the same set of clauses. Hence we may derive C ′ by a SR inference, then
resolve with the hole axiom p2,0 ∨ p0,0 to get p2,0.

Carrying on in this way, we eventually derive Γ∪{p1,0}∪⋯∪{pn−1,0}. We now
resolve each unit clause pi,0 with the pigeon axiom for pigeon i, for i = 1,… , n−1.
After some deletions, we are left with clauses asserting that pigeons 1,… , n−1map
injectively to holes 1,… , n−2. This is essentially PHPn−1. We carry on inductively
to derive PHPn−2 etc. and can easily derive a contradiction when we get to PHP2.

Section 4.1 contains a more careful version of this argument, refuting PHPn
using SPR inferences and no deletion.
Theorem 1.15. If C is SR with respect to Γ, then Γ and Γ∪{C} are equisatisfiable.
Hence the same is true for SPR and PR.

Theorem 1.15 trivially implies the same statement for BC and RAT (this was
Theorem 1.9 above).
Proof. Again it is sufficient to show that if Γ is satisfiable, then so is Γ ∪ {C}.
Suppose we have a substitution � such that � ⊨ C and Γ

|� ⊢1 Γ|� . Let � be any
total assignment satisfying Γ. If � ⊨ C then we are done. Otherwise � ⊨ C ,
so � ⊇ � and � satisfies Γ

|� by Lemma 1.1. Thus, by the assumption, � ⊨ Γ
|� .

Therefore �◦� ⊨ Γ by Lemma 1.1, and �◦� ⊨ C since � ⊨ C .
This proof of Theorem 1.15 still goes through if we replace Γ

|� ⊢1 Γ|� with
the weaker assumption Γ

|� ⊨ Γ|� . The advantage of using ⊢1 is that it is efficiently
checkable. Consequently, the conditions of being BC, RAT, SPR, PR or SR with
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respect to Γ are all polynomial-time checkable, as long as we include the partial
assignment or substitution � as part of the input.

1.3 Proof systems with new variables

This section introduces proof systems based on the BC, RAT, SPR, PR and SR in-
ferences. Some of the systems also allow the use of the deletion rule: these systems
are denoted DBC, DRAT, etc. All the proof systems are refutation systems. They
start with a set of clauses Γ, and successively derive sets Γi of clauses, first Γ0 = Γ,
then Γ1,Γ2,… ,Γm until reaching a set Γm containing the empty clause. It will al-
ways be the case that if Γi is satisfiable, then Γi+1 is satisfiable. Since the empty
clause ⟂ is in Γm, this last set is not satisfiable. This suffices to show that Γ is not
satisfiable.
Definition 1.16. ABC, RAT, SPR, PR or SR proof (a refutation) of Γ is a sequence
Γ0,… ,Γm such that Γ0 = Γ, ⟂∈ Γm and each Γi+1 = Γi ∪ {C}, where either

• Γi ⊢1 C or
• C is BC, RAT, SPR, PR, or SR (respectively) with respect to Γi.

For BC or RAT steps, the proof must specify which p is used, and for SPR, PR or
SR, it must specify which �.

There is no constraint on the variables that appear in clauses C introduced in
BC, RAT, etc. steps. They are free to include new variables that did not occur
in Γ0,… ,Γi.
Definition 1.17. A DBC, DRAT, DSPR, DPR or DSR proof allows the same rules
of inference (respectively) as Definition 1.16, plus the deletion inference rule:

• Γi+1 = Γi ⧵ {C} for some C ∈ Γi.
Resolution can be simulated by RUP inferences (Lemma 1.4), so all the systems

introduced in this and the next subsection simulate resolution. Furthermore, by
Theorems 1.9 and 1.15, they are sound. Since the inferences are defined using ⊢1,
they are polynomial time verifiable, as the description of � is included with every
SPR, PR or SR inference. Hence they are all proof systems in the sense of Cook-
Reckhow [12, 13].

The deletion rule deserves more explanation. First, we allow any clause to be
deleted, even the initial clauses from Γ. So it is possible that Γi is unsatisfiable
but Γi+1 is satisfiable after a deletion. For us, this is okay since we focus on refut-
ing sets of unsatisfiable clauses, not on finding satisfying assignments of satisfiable
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sets of clauses. SAT solvers generally wish to maintain the equisatisfiability prop-
erty: they use deletion extensively to prune the search time, but are careful only to
perform deletions that preserve both satisfiability and unsatisfiability, generally as
justified by the BC or RAT rules. Since applying RAT, or more generally PR or SR,
can change the satisfying assignment, a SAT solver may also need to keep a proof
log with information about how to reverse the steps of the proof once a satisfying
assignment is found (see [23]).

Second, deletion is important for us because the property of being BC, RAT
etc. involves a universal quantification over the current set of clauses Γi. So dele-
tion can make the systems more powerful, as removing clauses from Γi can make
more inferences possible. For example, the unit clause x is BC with respect to the
set {x ∨ y}, since the literal x does not appear, but is not even SR with respect to
the set {x ∨ y, x}, since {x ∨ y, x} and {x ∨ y, x, x} are not equisatisfiable. An
early paper on this by Kullmann [29] exploited deletions to generalize the power of
BC inferences.

As we will show in Section 2, all the systems defined so far are equivalent to
extended resolution, because of the ability to freely introduce new variables. The
main topic of the paper is the systems we introduce next, which lack this ability.

1.4 Proof systems without new variables

Definition 1.18. A BC refutation of Γ without new variables, or, for short, a BC−
refutation of Γ, is a BC refutation of Γ in which only variables from Γ appear. The
systems RAT−, PR− etc. and DBC−, DRAT−, DPR− etc. are defined similarly.

There is an alternative natural definition of “without new variables”, which re-
quires not just that a refutation of Γ uses only variables that are used in Γ, but also
that once a variable has been eliminated from all clauses through the use of deletion,
it may not be reused subsequently in the refutation. An equivalent way to state this
is that a clause C inferred by a BC, RAT, SPR, PR or SR inference cannot involve
any variable which does not occur in the current set of clauses.

This stronger definition is in fact essentially equivalent to Definition 1.18, for a
somewhat trivial reason. More precisely, any refutation that satisfiesDefinition 1.18
can be converted into a refutation that satisfies the stronger condition with at worst
a polynomial increase in the size of the refutation. We state the proof for DBC−, but
the same argument works verbatim for the other systems DRAT−, DSPR−, DPR−
and DSR−.

Suppose Π is a DBC− refutation of Γ in the sense of Definition 1.17, and con-
sider a variable x. Suppose x is present in Γ = Γ0 and in Γi, is not present in Γi+1
through Γj , but is present again in Γj+1. The derivation of Γi+1 from Γi deleted a
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single clause x∨C; for definiteness we assume this clause contains x positively. The
derivation of Γj+1 introduced a clause x ∨D with a BC inference; we may assume
without loss of generality that x occurs with the same sign in x ∨ D as in x ∨ C ,
since otherwise the sign of x could be changed throughout the refutation from Γj+1
onwards.

The refutation Π is modified as follows. Before deleting the clause x∨C , infer
the unit clause x by a BC inference; this is valid trivially, since x does not occur
in Γi. Then continue the derivation with the unit clause x added to Γi,… ,Γj . Since
there are no other uses of x in Γi,… ,Γj , these steps in the refutation remain valid
(by part (b) of Lemma 1.20 below). Upon reaching Γj , infer x ∨ D with a BC
inference relative to the variable x. This is allowed since x does not appear in Γj .
Then delete the unit clause x to obtain again Γj+1. Repeating this for every gap
in Π where x disappears, and then doing the same construction for every variable,
yields a DBC− refutation that satisfies the stronger condition.

1.5 Two useful lemmas

We conclude this subsection with two technical lemmas, which we will use in sev-
eral places to simplify the construction of proofs.

All the inference rules BC, RAT, SPR, PR and SR are “non-monotone”, in the
sense that it is possible that Γ

|� ⊢1 Γ|� holds but Γ′
|� ⊢1 Γ

′
|� fails, for Γ ⊆ Γ′.

In particular, adding more clauses to Γ may invalidate a BC, RAT, SPR, PR or
SR inference. Conversely, removing clauses from Γ may allow new clauses to be
inferred by one of these inferences. This is one reason for the importance of the
deletion rule.

The next lemma is a useful technical tool that will sometimes let us avoid using
deletion. It states conditions under which the extra clauses in Γ′ do not invalidate a
RAT, SPR, PR or SR inference.5
Definition 1.19. A clause C subsumes a clause D if C ⊆ D. A set Γ of clauses
subsumes a set Γ′ if each clause of Γ′ is subsumed by some clause of Γ.
Lemma 1.20. Suppose � and � are substitutions and Γ

|� ⊢1 Γ|� holds. Also sup-
pose Γ ⊆ Γ′.

(a) If Γ subsumes Γ′, then Γ′
|� ⊢1 Γ

′
|� .

(b) If Γ′ is Γ plus one or more clauses involving only variables that are not in the
domain of either � or �, then Γ′

|� ⊢1 Γ
′
|� .

5The conclusion of Lemma 1.20 is true also for BC inferences.
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Consequently, in either case, if C can be inferred from Γ by a RAT, SPR, PR or SR
rule, then C can also be inferred from Γ′ by the same rule.

Proof. We prove (a). Suppose D ∈ Γ′ and � ⊭ D. We must show Γ′
|� ⊢1 D|� . Let

E ∈ Γ with E ⊆ D. Then � ⊭ E, so by assumption Γ
|� ⊢1 E|� . Also E|� ⊆ D

|� ,
so Γ

|� ⊢1 D|� . It follows that Γ′
|� ⊢1 D|� , since Γ ⊆ Γ′.

The proof of (b) is immediate from the definitions.
Our last lemma gives a kind of normal form for propagation redundancy. Namely,

it implies that when C is PR with respect to Γ, we may assume without loss of
generality that dom(�) includes dom(�). We will use this later to show a limited
simulation of PR by SPR.
Lemma 1.21. Suppose C is PR with respect to Γ, witnessed by a partial assign-
ment �. Then Γ

|� ⊢1 Γ|�◦� , where � is the partial assignment C .

Proof. Let � = �◦�. Suppose E ∈ Γ is such that � ⊭ E. We must show that
Γ
|� ⊢1 E|� . We can decompose E as E1 ∨ E2 ∨ E3 where E1 contains the literals

in dom(�), E2 the literals in dom(�) ⧵ dom(�) and E3 the remaining literals. Then
E
|� = E2 ∨ E3 and by the PR assumption Γ

|� ⊢1 E|� , so there is a derivation
Γ
|� ∪ E2 ∪ E3 ⊢1 ⊥. But neither Γ|� nor E3 contain any variables from dom(�),

so the literals in E2 are not used in this derivation. Hence Γ
|� ∪ E3 ⊢1 ⊥, which

completes the proof since E3 = E|� .

2 Relations with extended resolution

2.1 With new variables

It is known that RAT, and even BC, can simulate extended resolution if new vari-
ables are allowed [29]. In extended resolution for any variables p, q we are allowed
to introduce a new variable x together with three clauses expressing that x↔ (p∧q).
As shown in Example 1.8, we can instead introduce these clauses using BC infer-
ences. Thus all the systems described above which allow new variables simulate
extended resolution. The converse holds as well:
Theorem 2.1. The system ER simulatesDSR, and hence every other system above.

Proof. (Sketch) It is known that the theorem holds for DPR in place ofDSR. Namely,
[24] gives an explicit simulation of DRAT by extended resolution, and [16] gives
an explicit simulation of DPR by DRAT. Thus extended resolution simulates DPR.

We sketch a direct proof of the simulation of DSR by extended resolution. Sup-
pose Γ0,… ,Γm is a DSR proof and in particular Γi+1 = Γi ∪ {C} is introduced
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by an SR inference from Γi with a substitution �. Let x1,… , xs be all variables
occurring in Γi+1 including any new variables introduced in C . Using the exten-
sion rule, introduce new variables x′1,… , x′s along with extension variables and
extension axioms expressing

x′j ↔ (xj ∧ C) ∨ (�(xj) ∧ ¬C).

Here �(xj) stands for a fixed symbol from Lit ∪ {0, 1}. Let Γi+1(x⃗∕x⃗′) be the set
of clauses obtained from Γi by replacing each variable xj with x′j . It can be provedusing only resolution, using the extension axioms, that if all clauses in Γi hold
then all clauses in Γi+1(x⃗∕x⃗′) hold. The extended resolution proof then proceeds
inductively on i using the new variables x′j in place of the old variables xj .Another way to prove the full theorem is via the theories of bounded arithmetic
S12 [9] and PV [11]. Namely, suppose we are given a DSR proof Γ0,… ,Γm and
a satisfying assignment �0 for Γ0. By induction, there exists a satisfying assign-
ment �i for each Γi. The inductive step, for an SR rule deriving Γi+1 = Γi ∪ {C},
witnessed by a substitution �, is to set �i+1 = �i if �i ⊨ C and otherwise to
set �i+1 = �i◦�, as in the proof of Theorem 1.15. The inductive hypothesis can
be written as a Σb1 formulas and the induction has m steps, so this is formally Σb1length-induction (or Σb1-LIND) which is available in S12 . Thus S12 can prove the
soundness of DSR. By conservativity of S12 over PV [9], the theory PV also proves
the soundness of DSR. A fundamental property of PV is that PV proofs translate
into uniform families of polynomial size extended resolution refutations [11]. Thus
ER efficiently proves the soundness of DSR. It follows that ER simulates DSR.

2.2 Without new variables

In the systems without the ability to freely add new variables, we can still imitate
extended resolution by adding dummy variables to the formula we want to refute.
This was observed already in [29].

For m ≥ 1, define Xm to be the set consisting of only the two clauses
y ∨ x1 ∨⋯ ∨ xm and y.

Lemma 2.2. Suppose Γ has an ER refutation Π of size m, and that Γ andXm have
no variables in common. Then Γ∪Xm has a BC−-refutationΠ∗ of sizeO(m), which
can furthermore be constructed from Π in polynomial time.

Proof. We describe how to change Π into Π∗. We first rename all extension vari-
ables to use names from {x1,… , xm} and replace all resolution steps with ⊢1 infer-
ences. Now consider an extension rule in Π which introduces the three extension
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clauses (1.8) expressing xi ↔ (p∧ q), where we may assume that p and q are either
variables of Γ or from {x1,… , xi−1}. We simulate this by introducing successively
the three clauses

xi ∨ p ∨ q xi ∨ p ∨ y xi ∨ q ∨ y

using the BC rule. The first clause, xi ∨ p ∨ q, is BC with respect to xi, because
xi has not appeared yet. The second clause is BC with respect to xi, because xi
appears only in two earlier clauses, namely y∨ x1 ∨⋯∨ xm, which contains y, and
xi∨p∨q, which contains p. In both cases the resolvent with xi∨p∨y is tautological.
The third clause is similar. The unit clause y is in Xm, so we can then derive the
remaining two needed extension clauses xi∨p and xi∨q by two ⊢1 inferences.

In the terminology of [32], Lemma 2.2 shows that BC− effectively simulates
ER, in that we are allowed to transform the formula as well as the refutation when
we move from ER to BC−.

The next corollary is essentially from [29]. It shows how to use the lemma to
construct examples of usually-hard formulas which have short proofs in BC−. (We
will give less artificial examples of short SPR− proofs in Section 4.) Letm(n) be the
polynomial size upper bound on ER refutations of the pigeonhole principle PHPn
which follows from [13] — see Section 4.1 for the definition of the PHPn clauses.
Corollary 2.3. The set of clauses PHPn∪Xm(n) has polynomial size proofs in BC−,
but requires exponential size proofs in constant depth Frege.

Proof. The upper bound follows from Lemma 2.2. For the lower bound, let Π be
a refutation in depth-d Frege. Then we can restrict Π by setting y = 1 to obtain a
depth-d refutation of PHPn of the same size. By [26, 31], this must have exponential
size.

The same argument can give a more general result. A propositional proof sys-
tem  is closed under restrictions if, given any -refutation of Γ and any partial
assignment �, we can construct a -refutation of Γ

|� in polynomial time. Most of
the commonly-studied proof systems such as resolution, Frege, etc. are closed under
restrictions. On the other hand, it follows from results in this paper that BC− and
RAT− are not closed under restrictions. To see this, let Γ be BPHPn ∪Xm(n) where
BPHPn is the bit pigeonhole principle (see Section 4.2) andm is a suitable function.
Then Γ has short BC− refutations, since BPHPn has short refutations in ER. But
BPHPn is a restriction of Γ, as in Corollary 2.3, and has no short RAT− refutations
by Theorem 5.4 below.
Theorem 2.4. Let  be any propositional proof system which is closed under re-
strictions. If  simulates BC−, then  simulates ER.
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Proof. Suppose Γ has a refutation Π in ER of length m. Take a copy of Xm in dis-
joint variables fromΓ. By Lemma 2.2we can construct a BC−-refutation ofΓ ∪Xm.
Since  simulates BC−, we can then construct a -refutation of Γ ∪Xm. Let � be
the restriction which just sets y = 1, so that (Γ ∪ Xm)

|� = Γ. By the assump-
tion that  is closed under restrictions, we can construct a  refutation of Γ. All
constructions are polynomial time.
Corollary 2.5. If the Frege proof system simulates BC−, then Frege and ER are
equivalent.

Hence it is unlikely that Frege simulates BC−, since Frege is expected to be
strictly weaker than ER.

2.3 Canonical NP pairs

The notion of disjoint NP pairswas first introduced by Grollmann and Selman [15].
Razborov [37] showed how a propositional proof system  gives rise to a canon-
ical disjoint NP pair, which gives a measure of the strength of the system. It is
known that if a propositional proof system 1 simulates a system 2, then there is
a many-one reduction from the canonical NP pair for 2 to the canonical NP pair
for 1 [37, 35]. We can use Lemma 2.2 to prove that the systems BC− through
DSR− cannot be distinguished from each other or ER by their canonical NP pairs,
even though they do not all simulate each other.
Definition 2.6. A disjoint NP pair is a pair (U, V ) of NP sets such that U ∩V = ∅.
A many-one reduction from a disjoint NP pair (U, V ) to a disjoint NP pair (U ′, V ′)
is a polynomial time function f mapping U to U ′ and mapping V to V ′.

To motivate this definition a little, a disjoint NP pair (U, V ) is said to be polyno-
mially separable if there is a polynomial time function f which, given x ∈ U ∪ V ,
correctly identifies whether x ∈ U or x ∈ V . Clearly if (U, V ) is many-one re-
ducible to (U ′, V ′), then if (U ′, V ′) is polynomially separable so is (U, V ).
Definition 2.7. SAT is the set of pairs (Γ, 1m) such that Γ is a satisfiable set of
clauses and m ≥ 1 is an arbitrary integer. Let  be a propositional proof system
for refuting sets of clauses. Then REF() is the set of pairs (Γ, 1m) such that Γ has
a -refutation of length at most m. Notice that SAT and REF() are both NP. We
define the canonical disjoint NP pair, or canonical NP pair, associated with  to
be (REF(),SAT).

The canonical NP pair for a proof system  defines the following problem.
Given a pair (Γ, 1m), the soundness of  implies that it is impossible that both
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(a) Γ is satisfiable and (b) Γ has a proof in  of length ≤ m. The promise problem
is to identify one of (a) and (b) which does not hold. (If neither (a) nor (b) holds,
then either answer may be given.)
Theorem2.8. There aremany-one reductions in both directions between the canon-
ical NP pair for ER and the canonical NP pairs for all the systems in Section 1.3.

Proof. As a simulation implies a reduction between canonical NP pairs, all we need
to show is a reduction of the canonical NP pair for ER to the canonical NP pair for
the weakest systemBC−, that is, of (REF(ER),SAT) to (REF(BC−),SAT). Suppose
(Γ, 1m) is given as a query to (REF(ER),SAT). We must produce some Γ∗ and m∗
such that

1. Γ∗ is satisfiable if Γ is,
2. Γ∗ has a BC−-refutation of size m∗ if Γ has an ER-refutation of size m, and
3. m∗ is bounded by a polynomial in m.

We use Lemma 2.2, letting Γ∗ be Γ ∪Xm for Xm in variables disjoint from Γ, and
letting m∗ be the bound on the size of the BC−-refutation of Γ∗.

3 Simulations

3.1 DRAT− simulates DPR−
The following relations were known between DBC−, DRAT− and DPR−.
Theorem 3.1. ([24]) DBC− simulates DRAT−. (Hence they are equivalent).
Theorem 3.2. ([16]) Suppose Γ has a DPR refutation Π. Then it has a DRAT
refutation constructible in polynomial time from Π, using at most one variable not
appearing in Π.

We prove:
Theorem 3.3. DRAT− simulates DPR−.

Hence the systems DBC−, DRAT−, DSPR− and DPR− are all equivalent. The
theorem relies on the following main lemma used in the proof of Theorem 3.2. We
include a proof for completeness.
Lemma 3.4. ([16]) Suppose C is PR with respect to Γ. Then there is a polynomial
size DRAT derivation of Γ∪{C} from Γ, using at most one variable not appearing
in Γ or C .
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Proof. We have Γ
|� ⊢1 Γ|� , where � = C and � ⊨ C . Let x be a new variable. We

describe the construction step-by-step.
Step 1. For eachD ∈ Γwhich is not satisfied by �, deriveD

|� ∨x by RAT on x.
This is possible, as x does not appear anywhere yet.

Step 2. DeriveC∨x by RAT on x. The only clauses in which x appears are those
of the form D

|� ∨ x introduced in step 1, and from Lemma 1.5 and the assumption
that Γ

|� ⊢1 Γ|� we have that Γ ⊢1 D|� ∨ C .
Step 3. For each E ∈ Γ satisfied by �, derive E ∨ x by a ⊢1 step and delete E.
Step 4. For each literal p in �, derive x ∨ p by RAT on p. To see that this

satisfies the RAT condition, consider any clauseG = G′ ∨̇ pwith which x∨p could
be resolved. If � ⊨ G, then by steps 2 and 3 above, G must also contain x, so the
resolvent G′ ∪ x is a tautology. If � ⊭ G, then G must be one of the clauses D ∈ Γ
or D

|� ∨ x from step 1, which means that we have already derived G
|� ∨ x, which

subsumes the resolvent G′ ∨ x.
Step 5. Consider each clause E ∨ x introduced in step 2 or 3. In either case

� ⊨ E, so E contains some literal p in �. Therefore we can derive E by resolving
E ∨ x with x ∨ p. Thus we derive C and all clauses from Γ deleted in step 3.

Finally delete all the new clauses except for C .
Definition 3.5. Let Γ be a set of clauses and x any variable. Then Γ(x) consists of
every clause in Γ which does not mention x, together with every clause of the form
E ∨ F where both x ∨̇E and x ∨̇F are in Γ.

In other words, Γ(x) is formed from Γ by doing all possible resolutions with
respect to x and then deleting all clauses containing either x or x. (This is exactly
like the first step of the Davis-Putnam procedure. In [29] the notation DPx is used
instead of Γ(x).)
Lemma 3.6. There is a polynomial sizeDRAT derivation of Γ from Γ(x), using only
variables from Γ.

Proof. We first derive every clause of the form E ∨̇ x in Γ, by RAT on x. As x
has not appeared yet, the RAT condition is satisfied. Then we derive each clause of
the form F ∨̇ x in Γ, by RAT on x. The only possible resolutions are with clauses
of the form E ∨̇ x which we have just introduced, but in this case either E ∪ F is
tautological or E ∨ F is in Γ(x) so Γ(x) ⊢1 x ∨ F ∨E. Finally we delete all clauses
not in Γ.

The next two lemmas show that, under suitable conditions, if we can derive C
from Γ in DPR−, then we can derive it from Γ(x). We will use a kind of normal
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form for PR inferences. Say that a clause C is PR0 with respect to Γ if there is a
partial assignment � such that � ⊨ C , all variables in C are in dom(�), and

C ∨ Γ
|� ⊆ Γ. (2)

(Recall that the notation C ∨ Γ
|� means the set of clauses C ∨D for D ∈ Γ

|� .) The
PR0 inference rule lets us derive Γ ∪ {C} from Γ when (2) holds. Letting � = C it
is easy to see that (2) implies Γ

|� ⊆ Γ|�, so in particular Γ
|� ⊢1 Γ|� , and hence this

is a special case of the PR rule.
Lemma 3.7. Any PR inference can be replaced with a PR0 inference together with
polynomially many ⊢1 and deletion steps, using no new variables.

Proof. Suppose Γ
|� ⊢1 Γ|� , where � = C and � ⊨ C . By Lemma 1.21 we may

assume dom(�) ⊆ dom(�) so dom(�) contains all variables in C . Let Δ = C ∨ Γ
|�

and Γ∗ = Γ∪Δ. Note thatΔ
|� is empty, as � satisfies C . This implies that C∨Γ∗

|� =
C ∨Γ

|� ⊆ Γ∗, so C is PR0 with respect to Γ∗. Furthermore the condition Γ
|� ⊢1 Γ|�

and Lemma 1.5 imply that every clause in Δ is derivable from Γ by a ⊢1 step. Thus
we can derive Γ∗ from Γ by ⊢1 steps, then introduce C by the PR0 rule, and recover
Γ ∪ {C} by deleting everything else.
Lemma 3.8. Suppose C is PR0 with respect to Γ, witnessed by � with x ∉ dom(�).
Then C is PR0 with respect to Γ(x).
Proof. The PR0 condition implies that the variable x does not occur in C . We are
given that C ∨ Γ

|� ⊆ Γ and want to show that C ∨ Γ(x)
|� ⊆ Γ(x). So let D ∈ Γ(x) with

� ⊭ D. First suppose D is in Γ and x does not occur in D. Then C ∨ D
|� ∈ Γ by

assumption, so C ∨D
|� ∈ Γ(x). Otherwise,D = E ∨F where both E ∨̇ x and F ∨̇ x

are in Γ. Then by assumption both C ∨ E
|� ∨ x and C ∨ F

|� ∨ x are in Γ. Hence
C ∨D

|� = C ∨ E|� ∨ F|� ∈ Γ(x).
We can now prove Theorem 3.3, that DRAT− simulates DPR−.

Proof of Theorem 3.3. We are given a DPR− refutation of some set Δ, using only
the variables in Δ. By Lemma 3.7 we may assume without loss of generality that
the refutation uses only ⊢1, deletion and PR0 steps. Consider a PR0 inference in
this refutation, which derives Γ∪{C} from a set of clauses Γ, witnessed by a partial
assignment �. We want to derive Γ ∪ {C} from Γ in DRAT using only variables
in Δ.

Suppose � is a total assignment to all variables in Γ. The set Γ is necessarily
unsatisfiable, as otherwise it could not occur as a line in a refutation. Therefore Γ

|�
is simply ⊥, so the PR0 condition tells us that C ∈ Γ and we do not need to do
anything.

20



Otherwise, there is some variable xwhich occurs in Γ but is outside the domain
of �, and thus in particular does not occur in C . We first use ⊢1 and deletion steps
to replace Γ with Γ(x). By Lemma 3.8, C is PR0, and thus PR, with respect to Γ(x).
By Lemma 3.4 there is a short DRAT derivation of Γ(x) ∪ {C} from Γ(x), using
one new variable which does not occur in Γ(x) or C . We choose x for this variable.
Finally, observing that here Γ(x) ∪ {C} = (Γ ∪ {C})(x), we recover Γ ∪ {C} using
Lemma 3.6.

3.2 Towards a simulation of PR− by SPR−
Our next result shows how to replace a PR inference with SPR inferences, without
additional variables. It is not a polynomial simulation of PR− by SPR− however,
as it depends exponentially on the “discrepancy” as defined next. Recall that C is
PR with respect to Γ if Γ

|� ⊢1 Γ|� , where � = C and � is a partial assignment
satisfying C . We will keep this notation throughout this section. C is SPR with
respect to Γ if additionally dom(�) = dom(�).
Definition 3.9. The discrepancy of a PR inference is |dom(�) ⧵ dom(�)|. That is,
it is the number of variables which are assigned by � but not by �.
Theorem 3.10. Suppose that Γ has a PR refutation Π of size S in which every
PR inference has discrepancy bounded by �. Then Γ has a SPR refutation of size
O(2�S) which does not use any variables not present in Π.

When the discrepancy is logarithmically bounded, Theorem 3.10 gives poly-
nomial size SPR refutations automatically. We need a couple of lemmas before
proving the theorem.
Lemma 3.11. Suppose Γ

|� ⊢1 Γ|� and � is a partial assignment extending �, such
that dom(�) ⊆ dom(�). Then Γ

|� ⊢1 Γ|�

Proof. Suppose E ∈ Γ
|� . Then E contains no variables from �, so E

|� = E, and
by assumption there is a refutation Γ

|�, E ⊢1 ⊥. Thus Γ|� , E ⊢1 ⊥ by Fact 1.3.
Proof of Theorem 3.10. Our main task is to show that a PR inference with discrep-
ancy bounded by � can be simulated by multiple SPR inferences, while bounding
the increase in proof size in terms of �. Suppose C is derivable from Γ by a PR in-
ference. That is, Γ

|� ⊢1 Γ|� where � = C and � ⊨ C , and by Lemma 1.21 we may
assume that dom(�) ⊇ dom(�). List the variables in dom(�) ⧵ dom(�) as p1,… , ps,
where s ≤ �.

Enumerate asD1,… , D2s all clauses containing exactly the variables p1,… , ps
with some pattern of negations. Let �i = C ∨Di, so that �i ⊇ � and dom(�i) =
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dom(�). By Lemma 3.11, Γ
|�i ⊢1 Γ|� . Since � ⊨ C ∨Dj for every j, in fact

Γ
|�i ⊢1 (Γ ∪ {C ∨D1,… , C ∨Di−1})|� .

Thus we may introduce all clauses C ∨ D1,… , C ∨ D2s one after another by SPR
inferences. We can then use 2s − 1 resolution steps to derive C .

The result is a set Γ′ ⊇ Γ which contains C plus many extra clauses subsumed
by C , which must be carried through the rest of the refutation, as we do not have the
deletion rule. But by Lemma 1.20(a) this is not a problem, as the presence of these
additional subsumed clauses does not affect the validity of later PR inferences.

4 Upper bounds for some hard tautologies

This section proves that SPR− — without new variables — can give polynomial
size refutations for many of the usual “hard” propositional principles. Heule, Kiesl
and Biere [20, 19] showed that the tautologies based on the pigeonhole principle
(PHP) have polynomial size SPR− proofs, and Heule and Biere discuss polynomial
size PR− proofs of the Tseitin tautologies and the 2-1 pigeonhole principle in [16].
The SPR− proof of the PHP tautologies can be viewed as a version of the original
extended resolution proof of PHP given by Cook and Reckhow [13]; see also [29]
for an adaptation of the original proof to use BC inferences.

Here we describe polynomial size SPR− proofs for several well-known prin-
ciples, namely the pigeonhole principle, the bit pigeonhole principle, the parity
principle, the clique-coloring principles, and the Tseitin tautologies. We also show
that orification, xorification, and typical cases of lifting can be handled in SPR−.

The existence of such small proofs is surprising, since they use only clauses in
the original literals, and it is well-known that such clauses are limited in what they
can express. However, SPR− proofs can exploit the underlying symmetries of the
principles to introduce new clauses, in effect arguing that properties can be assumed
to hold “without loss of generality” (see [38]).

It is open whether extended resolution, or the Frege proof system, can be sim-
ulated by PR− or DPR−, or more generally by DSR−. The examples below show
that any separation of these systems must involve a new technique.

Our proofs use the same basic idea as the sketch in Example 1.14. One com-
plication is that we are now working with SPR rather than SR inferences. This
requires us to make the individual inferences more complicated – for example the
assignments � in Example 1.14 set one pigeon, while those in Section 4.1 below
set two pigeons. Another is that we want to avoid using any deletion steps. This
means that, when showing that an SPR inference is valid, we have to consider every
clause introduced so far. For this reason we will do all necessary SPR inferences at
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the start, in a careful order, before we do any resolution steps. This is the purpose
of Lemma 4.2.
Definition 4.1. A Γ-symmetry is an invertible substitution � such that Γ

|� = Γ.
We will use the observation that, if � is a Γ-symmetry and � = C is a partial

assignment, then by Lemma 1.1 we have
Γ
|� = (Γ|�)|� = Γ|�◦� .

Hence, if �◦� ⊨ C , we can infer C from Γ by an SR inference with � = �◦�.
If furthermore all literals in the domain and image of � are in dom(�), then �◦�
behaves as a partial assignment and dom(�◦�) = dom(�), so this becomes an SPR
inference.

We introduce one new piece of notation, writing � for the clause expressing
that the partial assignment � does not hold (so C = � if and only if � = C).
Two partial assignments are called disjoint if their domains are disjoint. The next
lemma describes sufficient conditions for introducing, successively, the clauses �i
for i = 0, 1, 2,… using only SPR inferences.
Lemma 4.2. Suppose (�0, �0),… , (�m, �m) is a sequence of pairs of partial assign-
ments such that for each i,

1. Γ
|�i = Γ|�i

2. �i and �i are contradictory and have the same domain
3. for all j < i, the assignments �j and �i are either disjoint or contradictory.

Then we can derive Γ∪{�i ∶ i = 0,… , m} from Γ by a sequence of SPR inferences.

Proof. We write Ci for �i. By item 2, �i ⊨ Ci. Thus it is enough to show that for
each i,

(

Γ ∪ {C0,… , Ci−1}
)

|�i
⊇
(

Γ ∪ {C0,… , Ci−1}
)

|�i
.

We have Γ
|�i = Γ|�i . For each j < i, either �j and �i are disjoint, and consequently

(Cj)|�i = (Cj)|�i = Cj , or they are contradictory and so �i ⊨ Cj and Cj vanishes
from the right hand side.

In the lemma, if we added to 2. the condition that �i and �i disagree on only
a single variable, then by Theorem 1.10 we could derive the clauses �i by RAT
inferences rather than needing SPR inferences. However in the applications below
they typically differ on more than one variable, so our proofs are in SPR−, not
in RAT−.
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4.1 Pigeonhole principle

Let n ≥ 1 and [n] denote {0,… , n−1}. The pigeonhole principle PHPn consists of
the clauses

⋁

j∈[n]
pi,j for each fixed i ∈ [n + 1] (pigeon axioms)

pi,j ∨ pi′,j for all i < i′ ∈ [n + 1] and j ∈ [n] (hole axioms).
Theorem 4.3 ([20]). PHPn has polynomial size SPR− refutations.

Proof. Our strategy is to first derive all unit clauses pj,0 for j > 0, which effectively
takes pigeon 0 and hole 0 out of the picture and reduces PHPn to a renamed instance
of PHPn−1. We repeat this construction to reduce to a renamed instance of PHPn−2,
etc. At each step, we will need to use several clauses introduced by SPR inferences.
We use Lemma 4.2 to introduce all necessary clauses at one go at the start of the
construction.

Let �i,j,k be the assignment setting pi,k = 1, pj,i = 1 and all other variables
pl,k, pl,i for holes k and i to 0. Let �k,i be the PHPn-symmetry which switches
holes k and i, that is, maps pl,i ↦ pl,k and pl,k ↦ pl,i for every pigeon l. Let �i,j,k
be �i,j,k◦�k,i, so in particular �i,j,k sets pi,i = 1 and pj,k = 1. By the properties of
symmetries, we have (PHPn)|�i,j,k = (PHPn)|�i,j,k .For i = 0,… , n − 2 define

Ai ∶= {(�i,j,k, �i,j,k) ∶ i < j < n + 1, i < k < n}.

Any �i,j,k appearing in Ai contradicts every �i,j′,k′ appearing in Ai, since they dis-
agree about which pigeon maps to hole i. On the other hand, if i′ < i and �i′,j′,k′
appears in Ai′ and is not disjoint from �i,j,k, then they must share some hole. So
either i = k′ or k = k′, and in either case they disagree about hole k′.

Hence we can apply Lemma 4.2 to derive all clauses �i,j,k such that i < j < n+1
and i < k < n. Note �i,j,k is the clause pi,k ∨⋁l≠i pl,k ∨ pj,i ∨

⋁

l≠j pl,i, which weresolve with hole axioms to get pi,k ∨ pj,i.
Now we use induction on i = 0,… , n − 1 to derive all unit clauses pj,i for all j

with i < j < n+1. Fix j > i. For each hole k > i we have pi,k ∨ pj,i (or if i = n−1
there is no such k). We have pi,i∨pj,i since it is a hole axiom, and for each k < i, we
have pi,k from the inductive hypothesis. Resolving all these with the axiom⋁

k pi,kgives pj,i.
Finally the unit clauses pn,i for i < n together contradict the axiom⋁

i pn,i.
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4.2 Bit pigeonhole principle

Let n = 2k. The bit pigeonhole principle contradiction, BPHPn, asserts that each
of n + 1 pigeons can be assigned a distinct k-bit binary string. For each pigeon x,
with 0 ≤ x < n+1, it has variables px1 ,… , pxk for the bits of the string assigned to x.We think of strings y ∈ {0, 1}k as holes. When convenient we will identify holes
with numbers y < n. We write (x→y) for the conjunction ⋀

i(p
x
i = yi) asserting

that pigeon x goes to hole y, where pxi = 1 is the literal pxi and pxi = 0 is the literal
pxi , and where yi is the i-th bit of y. We write (x↛y) for its negation: ⋁i(p

x
i ≠ yi).

The axioms of BPHPn are then
(x↛y) ∨ (x′↛y) for all holes y and all distinct pigeons x, x′.

Notice that the set {(x↛y) ∶ y < n} consists of the 2k clauses containing the
variables px1 ,… , pxk with all patterns of negations. We can derive ⊥ from this set in
2k−1 resolution steps.
Theorem 4.4. The BPHPn clauses have polynomial size SPR− refutations.

The theorem is proved below. It is essentially the same as the proof of PHP
in [20] (or Theorem 4.3 above). For each m < n − 1 and each pair x, y > m, we
define a clause

Cm,x,y ∶= (m↛y) ∨ (x↛m).
Note we allow x = y. Let Γ be the set of all such clauses Cm,x,y. We will show
these clauses can be introduced by SPR inferences, but first we show they suffice to
derive BPHPn.
Lemma 4.5. BPHPn ∪ Γ has a polynomial size resolution refutation.

Proof. Using induction on m = 0, 1, 2,… , n−1 we derive all clauses (x↛m) such
that x > m. So suppose m < n and x > m. For each y > m, we have the clause
(m↛y)∨ (x↛m), as this is Cm,x,y. We also have the clause (m↛m)∨ (x↛m), as this
is an axiom of BPHPn. Finally, for each m′ < m, we have (m↛m′) by the inductive
hypothesis (or, in the base case m = 0, there are no such clauses). Resolving all
these together gives (x↛m).

At the end we have in particular derived all the clauses (n↛m) such that m < n.
Resolving all these clauses together yields ⊥.

Thus it is enough to show that we can introduce all clauses in Γ using SPR
inferences. We use Lemma 4.2. For m < n − 1 and each pair x, y > m, define
partial assignments

�m,x,y ∶= (m→y) ∧ (x→m)
�m,x,y ∶= (m→m) ∧ (x→y)
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so that Cm,x,y = �m,x,y and �m,x,y = �m,x,y◦� where � swaps all variables for pi-
geons m and x. Hence (BPHPn)|�m,x,y = (BPHPn)|�m,x,y as required.For the other conditions for Lemma 4.2, first observe that assignments �m,x,y and
�m,x′,y′ are always inconsistent, since they map m to different places. Now suppose
that m < m′ and �m,x,y and �m′,x′,y′ are not disjoint. Then they must have some
pigeon in common, so either m′ = x or x′ = x. In both cases �m′,x′,y′ contradicts
(x→m), in the first case because it maps x tom′, and in the second because it maps x
to y′ with y′ > m′.

4.3 Parity principle

The parity principle states that there is no (undirected) graph on an odd number of
vertices in which each vertex has degree exactly one (see [1, 4]). For n odd, let PARn
be a set of clauses expressing (a violation of) the parity principle on n vertices, with
variables xi,j for the

(n
2

)many values 0 ≤ i < j < n, where we identify the variable
xi,j with xj,i. We write [n] for {0,… , n−1}. PARn consists of the clauses

⋁

j≠i
xi,j for each fixed i ∈ [n] (“pigeon” axioms)

xi,j ∨ xi,j′ for all distinct i, j, j′ ∈ [n] (“hole” axioms).
Theorem 4.6. The PARn clauses have polynomial size SPR− refutations.

Proof. Let n = 2m + 1. For i < m and distinct j, k with 2i + 1 < j, k < n define
�i,j,k to be the partial assignment which matches 2i to j and 2i + 1 to k, and sets
all other adjacent variables to 0. That is, x2i,j = 1 and x2i,j′ = 0 for all j′ ≠ j,
and x2i+1,k = 1 and x2i+1,k′ = 0 for all k′ ≠ k. Similarly define �i,j,k to be the
partial assignment which matches 2i to 2i+1 and j to k, and sets all other adjacent
variables to 0, so that �i,j,k = �i,j,k◦� where � swaps vertices 2i+1 and j. It is easy
to see that the conditions of Lemma 4.2 are satisfied. Therefore, we can introduce
all clauses �i,j,k by SPR inferences.

We now inductively derive the unit clauses x2i,2i+1 for i = 0, 1,… , m−1. Once
we have these, refuting PARn becomes trivial. So suppose we have x2i′,2i′+1 for all
i′ < i and want to derive x2i,2i+1. Consider any r < 2i. First suppose r is even,
so r = 2m for some m < i. We resolve the “hole” axiom x2m,2i ∨ x2m,2m+1 with
x2m,2m+1 to get x2m,2i, which is the same clause as x2i,r. A similar argument works
for r odd, and we can also obtain x2i+1,r in a similar way.

Resolving the clauses x2i,r and x2i+1,r for r < 2i with the “pigeon” axioms for
vertices 2i and 2i + 1 gives clauses

x2i,2i+1 ∨
⋁

r>2i+1
x2i,r and x2i,2i+1 ∨

⋁

r>2i+1
x2i+1,r.
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Now by resolving clauses �i,j,k with suitable “hole” axioms we can get x2i,j∨x2i+1,k
for all distinct j, k > 2i + 1. Resolving these with the clauses above gives x2i,2i+1,
as required.

4.4 Clique-coloring principle

The clique-coloring principle CCn,m states, informally, that a graph with n vertices
cannot have both a clique of size m and a coloring of size m − 1 (see [25, 33]).
For m ≤ n integers, CCn,m uses variables pa,i, qi,c and xi,j where a ∈ [m] and
c ∈ [m−1] and i, j ∈ [n]with i ≠ j. Again, xi,j is identified with xj,i. The intuition
is that xi,j indicates that vertices i and j are joined by an edge, pa,i asserts that i is
the a-th vertex of a clique, and qi,c indicates that vertex i is assigned color c. The
clauses of CCn,m are
(i) ⋁

i pa,i for each a ∈ [m]
(ii) pa,i ∨ pa′,i for distinct a, a′ ∈ [m] and each i ∈ [n]
(iii) ⋁

c qi,c for each i ∈ [n]
(iv) qi,c ∨ qi,c′ for each i ∈ [n] and distinct c, c′ ∈ [m−1]
(v) pa,i ∨ pa′,j ∨ xi,j for each distinct a, a′ ∈ [m] and distinct i, j ∈ [n]
(vi) qi,c ∨ qj,c ∨ xi,j for each c ∈ [m−1] and distinct i, j ∈ [n].
Theorem 4.7. The CCn,m clauses have polynomial size SPR− refutations.

Proof. The intuition for the SPR− proof is that we introduce clauses stating that
the first r clique members are assigned vertices that are colored by the first r colors;
iteratively for r = 1, 2,….

Write (a→i→c) for the assignment which sets
pa,i = 1 and pa′,i = 0 for all a′ ≠ a
qi,c = 1 and qi,c′ = 0 for all c′ ≠ c.

For all r < m−2, all indices a > r, all colors c > r and all distinct vertices i, j ∈ [n],
define

�ra,i,j,c ∶= (a→j→r) ∧ (r→i→c)

�ra,i,j,c ∶= (a→j→c) ∧ (r→i→r).

Let Γ consist of axioms (i), (ii) and (v), containing p and x variables but no q
variables, and let Δ consist of the remaining axioms (iii), (iv) and (vi), containing
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q and x variables but no p variables. Let us write � for �ra,i,j,c and � for �ra,i,j,c . Then
Γ
|� = Γ|� since � and � are the same on p variables. Let �′ and �′ be respectively
� and � restricted to q variables. Then Δ

|�′ = Δ|�′ since �′ = �′◦� where � is the
Δ-symmetry which swaps vertices i and j. Hence also Δ

|� = Δ|� .
Wewill show that the conditions of Lemma 4.2 are satisfied, sowe can introduce

all clauses �ra,i,j,c by SPR inferences. The first condition was just discussed. For the
second condition, first notice that �ra,i,j,c and �ra,i,j,c set the same variables.

Now suppose r, a, c, i, j are such that r < a < m, that r < c < m−1, and
that i, j ∈ [n] are distinct. Suppose r′, a′, c′, i′, j′ satisfy the same conditions, with
r′ ≤ r. We want to show that if � ∶= �ra,i,j,c and � ∶= �r′a′,i′,j′,c′ are not disjoint, thenthey are contradictory. Notice that showing this will necessarily use the literals
pa′,i and qi,c′ in the definition of our assignments, and that it will be enough to
show that � and � disagree about either which index or which color is assigned to
a vertex i. First suppose r′ = r. Assuming � and � are not disjoint, we must be in
one of the following four cases.

1. i′ = i. Then � maps vertex i to color c′ > r while � maps i to color r.
2. i′ = j. Then � maps index r < a to vertex j while � maps index a to j.
3. j′ = i. Then � maps index a′ > r to vertex i while � maps index r to i.
4. j′ = j. Then � maps vertex j to color r < c while � maps j to color c.

Now suppose r′ < r. Assuming � and � are not disjoint, we have the same cases.
1. i′ = i. Then � maps index r′ < r to vertex i while � maps index r to i.
2. i′ = j. Then � maps index r′ < a to vertex j while � maps index a to j.
3. j′ = i. Then � maps vertex i to color r′ < r while � maps i to color r.
4. j′ = j. Then � maps vertex j to color r′ < c while � maps j to color c.
Thus the conditions are met and we can introduce the clauses �ra,i,j,c , that is,

pa,j ∨
⋁

a′≠a
pa′,j ∨ qj,r ∨

⋁

r′≠r
qj,r′ ∨ pr,i ∨

⋁

r′≠r
pr′,i ∨ qi,c ∨

⋁

c′≠c
qi,c′ ,

for all r < a < m, all r < c < m−1 and all distinct i, j ∈ [n]. Now let Cra,i,j,c be theclause
pa,j ∨ qj,r ∨ pr,i ∨ qi,c .

We derive this by resolving �ra,i,j,c with instances of axiom (ii) to remove the liter-
als pa′,j and pr′,i and then with instances of axiom (iv) to remove the literals qj,r′
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and qi,c′ . We now want to derive, for each r, each a with r < a < m and each
j ∈ [n], the clause

pa,j ∨
⋁

c>r
qj,c (3)

which can be read as “if a > r goes to j, then j goes to some c > r". Intuitively,
this removes indices and colors 0,… , r from CCn,m, thus reducing it to a CNF iso-
morphic to CCn,m−r−1.

Suppose inductively that we have already derived (3) for all r′ < r. In particular
we have pa,j ∨⋁

c>r−1 qj,c , or for r = 0 we use the axiom
⋁

c qj,c . We resolve this
with the clauses Cra,i,j,c for all c > r to get

pa,j ∨ qj,r ∨ pr,i ∨ qi,r. (4)
By resolving together suitable instances of axioms (v) and (vi) we obtain

pa,j ∨ pr,i ∨ qj,r ∨ qi,r

and resolving this with (4) removes the variable qi,r to give pa,j∨qj,r ∨pr,i. We derive
this for every i, and then resolve with the axiom⋁

i pr,i to get pa,j ∨ qj,r, and finallyagain with our inductively given clause pa,j ∨⋁

c>r−1 qj,c to get pa,j ∨⋁

c>r qj,c asrequired.

4.5 Tseitin tautologies

The Tseitin tautologies TSG,
 are well-studied hard examples for many proof sys-
tems (see [41, 42]). LetG be an undirected graph with n vertices, with each vertex i
labelled with a charge 
(i) ∈ {0, 1} such that the total charge on G is odd. For each
edge e of G there is a variable xe. Then TSG,
 consists of clauses expressing that,
for each vertex i, the parity of the values xe over the edges e touching i is equal to
the charge 
(i). For a vertex i of degree d, this requires 2d−1 clauses, using one
clause to rule out each assignment to the edges touching i with the wrong parity.
If G has constant degree then this has size polynomial in n, but in general the size
may be exponential in n. It is well-known to be unsatisfiable.

The next lemma is a basic property of Tseitin contradictions. Note that it does
not depend on 
 . By cycle we mean a simple cycle, with no repeated vertices.
Lemma 4.8. LetK be any cycle inG. Then the substitution �K which flips the sign
of every literal on K is a TSG,
 -symmetry.

Lemma 4.9. If every node in G has degree at least 3, then G contains a cycle of
length at most 2 log n.
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Proof. Pick any vertex i and letH be the subgraph consisting of all vertices reach-
able from i in at most log n steps. Then H cannot be a tree, as otherwise by the
assumption on degree it would contain more than n vertices. Hence it must contain
some vertex reachable from i in two different ways.
Theorem 4.10. The TSG,
 clauses have polynomial size SPR− refutations.

Proof. We will construct a sequence of triples (G0, 
0,l0),… , (Gm, 
m,lm) where
(G0, 
0) is (G, 
), each Gi+1 is a subgraph of Gi formed by deleting one edge and
removing any isolated vertices, 
i is an odd assignment of charges to Gi, and li is
a literal corresponding to an edge in Gi ⧵ Gi+1. Let

Γi = TSG0,
0 ∪ {l0} ∪⋯ ∪ TSGi,
i ∪ {li}.

Aswe go wewill construct an SPR− derivation containing sets of clauses Γ′i extend-ing and subsumed by Γi, and we will eventually reach a stagemwhere Γm is trivially
refutable. The values of li, Gi+1 and 
i+1 are defined from Gi and 
i according to
the next three cases.

Case 1: Gi contains a vertex j of degree 1. Let {j, k} be the edge touch-
ing j. If k has degree 2 or more, we define (Gi+1, 
i+1) by letting Gi+1 be Gi with
edge {j, k} and vertex j removed, and letting 
i+1 be 
i restricted to Gi+1 and with

i+1(k) = 
i(k) + 
i(j). If k has degree 1 and the same charge as j, then we let Gi+1
be Gi with both j and k removed (with unchanged charges). In both cases, every
clause in TSGi+1,
i+1 is derivable from TSGi,
i by a ⊢1 step, as the Tseitin condition
on j in TSGi,
i is a unit clause; we set li to be the literal contained in this clause. If khas degree 1 and opposite charge from j, then we can already derive a contradiction
from TSGi,
i by one ⊢1 step.

Case 2: Gi contains no vertices of degree 1 or 2. Apply Lemma 4.9 to find a
cycle K in Gi of length at most 2 log n and let e be the first edge in K . Our goal is
to derive the unit clause xe and remove e from Gi.

Let � be any assignment to the variables on K which sets xe to 1, and let � be
the opposite assignment. Using Lemma 4.8 applied simultaneously to all graphs
G0,… , Gi we have (Γi)|� = (Γi)|� , as the unit clauses li are unaffected by these
restrictions. Hence by Lemma 4.2, SPR− inferences can be used to introduce all
clauses �, of which there are at most 22 log n−1. We resolve them all together to get
the unit clause xe. This subsumes all other clauses introduced so far in this step;
we set li to be xe, and by Lemma 1.20(a), we may ignore these subsumed clauses
in future inferences. (Therefore we avoid needing the deletion rule.) We define
(Gi+1, 
i+1) by deleting edge e from Gi and leaving 
i unchanged. All clauses in
TSGi+1,
i+1 can now be derived from TSGi,
i and xe by single ⊢1 steps.
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Case 3: Gi contains no vertices of degree 1, but may contain vertices of de-
gree 2. We will adapt the argument of case 2. Redefine a path to be a sequence of
edges connected by degree-2 vertices. By temporarily replacing paths in Gi with
edges, we can apply Lemma 4.9 to find a cycle K in Gi consisting of edge-disjoint
paths p1,… , pm where m ≤ 2 log n. Let xj be the variable associated with the first
edge in pj . For each j, there are precisely two assignments to the variables in pj
which do not immediately falsify some axiom of TSGi,
i . Let � be a partial assign-
ment which picks one of these two assignments for each pj , and such that �(x1) = 1.
As in case 2, SPR− inferences can be used to introduce � for each � of this form.

Let us look at the part of � consisting of literals from path pj . This has the
form zj1 ∨ ⋯ ∨ zjr , where zj1 is xj with positive or negative sign and for each k,
by the choice of �, there are Tseitin axioms expressing that zjk and zjk+1 have the
same value. Hence if we set zj1 = 0 we can set all literals in this clause to 0 by
unit propagation. Applying the same argument to all parts of � shows that we can
derive z11 ∨⋯∨ zm1 from � and TSGi,
i with a single ⊢1 step. We introduce all 2m−1
such clauses, one for each �, all with z11 = x1. We resolve them together to get the
unit clause x1, then proceed as in case 2.

For the size bound, each case above requires us to derive at most n ⋅ |TSG,
 |
clauses, and the refutation can take at most n steps.

4.6 Or-ification and xor-ification

Orification and xorification have been widely used to make hard instances of propo-
sitional tautologies, see [6, 5, 43]. This and the next section discuss how SPR−
inferences can be used to “undo” the effects of orification, xorification, and lifting
without using any new variables. As a consequence, these techniques are not likely
to be helpful in establishing lower bounds for the size of PR− refutations.

Typically, one “orifies” many variables at once; however, for the purposes of
this paper, we describe orification of a single variable. Let Γ be a set of clauses, and
x a variable. For them-fold orification of x, we introduce new variables x1,… , xm,
with the intent of replacing xwith x1∨x2∨⋯∨xm. Specifically, each clause x∨C
in Γ is replaced with x1 ∨⋯ ∨ xm ∨ C , and each clause x ∨ C is replaced with the
m-many clauses xj ∨C . Let Γ∨ denote the results of this orification of x. We claim
that SPR− inferences may be used to derive Γ (with x renamed to x1) from Γ∨,
undoing the orification, as follows. We first use SPR− inferences to derive each
clause x1 ∨ xj for j > 1. This is done using Lemma 4.2, with �j setting x1 to 0 and
xj to 1, and �j setting x1 to 1 and xj to 0, so that �j is �j with x1 and xj swapped.
Thus any clause x1 ∨⋯ ∨ xm ∨C in Γ∨ can be resolved with these to yield x1 ∨C ,
and for clauses x1 ∨ C in Γ∨ we do not need to change anything.
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Xorification of x is a similar construction, but now we introduce m new vari-
ables with the intent of letting x be expressed by x1⊕x2⊕⋯⊕xm. Each clause x∨C
in Γ (respectively, x∨C in Γ) is replaced by 2m−1 many clauses x�1 ∨x�2 ∨⋯∨x�m∨Cwhere � is a partial assignment setting an odd number (respectively, an even num-
ber) of the variables xj to 1. To undo the xorification it is enough to derive the unit
clauses xj for j > 1. So for each j > 1, we first use Lemma 4.2 to introduce the
clause x1∨xj , using the same partial assignments as in the previous paragraph, and
the clause x1∨xj , using assignments �j setting x1 and xj both to 1, and �j setting x1
and xj both to 0, so that �j is �j with the signs of both x1 and xj flipped. Resolving
these gives xj . This subsumes x1 ∨ xj and x1 ∨ xj , so by Lemma 1.20(a), we may
ignore these two clauses in later SPR− steps, and can thus use the same argument
to derive the clauses xi for i ≠ j, since �i and �i do not affect the clause xj .

4.7 Lifting

Lifting is a technique for leveraging lower bounds on decision trees to obtain lower
bounds in stronger computational models, see [36, 3, 22].

The most common form of lifting is the “indexing gadget” where a single vari-
able x is replaced by l + 2l new variables y1,… , yl and z0,… , z2l−1. The intent
is that the variables y1,… , yl specify an integer i ∈ [2l], and zi gives the value
of x. As in Section 4.2, we write (y⃗→i) for the conjunction⋀j(yj = ij) where ij isthe j-th bit of i, and write (y⃗↛i) for its negation⋁j(yj ≠ ij). Thus, x is equivalent
to the CNF formula ⋀i∈[2l]

(

(y⃗↛i) ∨ zi
) and x is equivalent to the CNF formula

⋀

i∈[2l]
(

(y⃗↛i) ∨ zi
).

Let Γ is a set of clauses with an SPR− refutation. The indexing gadget ap-
plied to Γ on the variable x does the following to modify Γ to produce set of
lifted clauses Γ′: Each clause x ∨̇C containing x is replaced by the 2l clauses
(y⃗↛i) ∨ zi ∨ C for i ∈ [2l], and each clause x ∨̇C containing x is replaced by the
2l clauses (y⃗↛i) ∨ zi ∨ C .

For all i ≠ 0 and all a, b ∈ {0, 1}, let �i,a,b and �i,a,b be the partial assignments
�i,a,b ∶= (y⃗→i) ∧ z0 = a ∧ zi = b
�i,a,b ∶= (y⃗→0) ∧ z0 = b ∧ zi = a.

Since i ≠ 0 always holds, it is immediate that conditions 2. and 3. of Lemma 4.2
hold. For condition 1., observe that the set of clauses {(y⃗↛j) ∨ zj ∨C ∶ j ∈ [2l]},
restricted by (y⃗→i), becomes the single clause zi ∨ C , and restricted by (y⃗→0)
becomes z0 ∨ C . In this way Γ′

|�i,a,b
= Γ′

|�i,a,b
and condition 1. also holds. Therefore

by Lemma 4.2, SPR− inferences can be used to derive all clauses �i,a,b, namely all
the clauses (y⃗↛i) ∨ z0 ≠ a ∨ zi ≠ b. For each fixed i ≠ 0 this is four clauses,
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which can be resolved together to give the clause (y⃗↛i). Then from these 2l − 1
clauses we can obtain by resolution each unit clause yj for j = 1,… ,l. Finally,
using unit propagation with these, we derive the clauses z0 ∨̇C and z0 ∨̇C for all
original clauses x ∨̇C and x ∨̇C in Γ. We have thus derived from Γ′, using SPR−
and resolution inferences, a copy Γ′′ of all the clauses in Γ, except with x replaced
with z0. The other clauses in in Γ′ or that were inferred during the process of
deriving Γ′′ are subsumed by either the unit clauses yj or the clauses in Γ′′. Thus
applying part (b) and then part (a) of Lemma 1.20, they do not interfere with any
future SPR− inferences refuting Γ′′.

5 Lower bounds

This section gives an exponential separation between DRAT− and RAT−, by show-
ing that the bit pigeonhole principle BPHPn requires exponential size refutations
in RAT−. This lower bound still holds if we allow some deletions, as long as no
initial clause of BPHPn is deleted. On the other hand, with unrestricted deletions,
it follows from Theorems 3.1, 3.3 and 4.4 in this paper that it has polynomial size
refutations in DRAT− and even in DBC−, as well as in SPR−.

Kullmann [29] has already proved related separations for generalized extended
resolution (GER), which lies somewhere between DBC and BC in strength. That
work shows separations between various subsystems ofGER, and in particular gives
an exponential lower bound on proofs of PHPn in the system GER with no new
variables, by analyzing which clauses are blocked with respect to PHPn.

We define the pigeon-width of a clause or assignment to equal the number of
distinct pigeons that it mentions. Our size lower bound for BPHPn uses a conven-
tional strategy: we first show a width lower bound (on pigeon-width), and then use
a random restriction to show that a proof of subexponential size can be made into
one of small pigeon-width. We do not aim for optimal constants.

We have to be careful about one technical point in the second step, which is
that RAT− refutation size does not in general behave well under restrictions, as
discussed in Section 2.2. So, rather than using restrictions as such to reduce width,
we will define a partial random matching � of pigeons to holes and show that if
BPHPn has a RAT− refutation of small size, then BPHPn ∪ � has one of small
pigeon-width.

A useful tool in analyzing resolution derivations from a set of clauses Γ is the
Prover-Adversary game on Γ (see e.g. [34, 2]). In the game, the Adversary claims
to know a satisfying assignment for Γ, and the Prover tries to force her into a con-
tradiction by querying the values of variables; the Prover can also forget variable
assignments to save memory and simplify his strategy. A position in the game is
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a partial assignment � recording the contents of the Prover’s memory. To fully
specify the game we also need to specify the starting position.

As the next lemma shows, a strategy for the Prover in this game is essentially
the same thing as a resolution derivation. But it is more intuitive to describe a
strategy than a derivation, and the game also gives a natural way to show width
lower bounds.
Lemma5.1. Consider a restriction of the Prover-Adversary game on a set of clausesΓ
starting from position C in which the Prover’s memory can hold information about
at mostm pigeons simultaneously. If the Prover has a winning strategy in this game,
then C is derivable from Γ in pigeon-width m. If the Adversary has a winning strat-
egy, then C is not derivable from Γ in pigeon-width m − 1.

Proof. We can think of a winning strategy for the Prover as a tree in which the
nodes are labelled with a partial assignment (the position �) and with the Prover’s
action in that situation, that is: query a variable, forget a variable, or declare victory
because � falsifies a clause from Γ. We can make this into a resolution refutation
by replacing each label � with the clause negating it and interpreting the three ac-
tions as respectively resolution, weakening, and deriving a clause from an axiom
by weakening.

For the other direction, it is enough to construct awinning strategy for the Prover
from a derivation of pigeon-widthm−1. This is the reverse of the process described
above, except that we need to be careful with the resolution rule. Suppose an in-
stance of the rule is: from p∨D and p∨E deriveD∨E, where each clause mentions
at most m − 1 pigeons. In the Prover-strategy, this becomes: from position D ∪ E,
query p. If it is false, forget some variables from E to reach position p ∪D. If it is
true, forget some variables from D to reach position p ∪ E. Thus the Prover may
be in a position mentioning m pigeons immediately after p is queried.
Lemma 5.2. Let � be a partial assignment corresponding to a partial matching
of m pigeons to holes. Then BPHPn ∪ � requires pigeon-width n−m to refute in
resolution.

Proof. BPHPn ∪ � is essentially an unusual encoding of the pigeonhole principle
with n+1−m pigeons and n−m holes. Thus, if the Prover is limited to remembering
variables from at most n − m pigeons, there is an easy strategy for the Adversary
in the game starting from the empty position. Namely, she can always maintain a
matching between the pigeons mentioned in the Prover’s memory and the available
holes. The result follows by Lemma 5.1.
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Theorem 5.3. Let � be a partial matching of size at most n∕4. Let Π be a DRAT−
refutation of BPHPn ∪ � in which no clause of BPHPn is ever deleted. Then some
clause in Π has pigeon-width more than n∕3.

Proof. Suppose for a contradiction there is a such a refutation Π in pigeon-width
n∕3. We consider each RAT inference in Π in turn, and show it can be eliminated
and replaced with standard resolution reasoning, without increasing the pigeon-
width.

Inductively suppose Γ is a set of clauses derivable from BPHPn ∪ � in pigeon-
width n∕3, using only resolution and weakening. Suppose a clause C in Π of the
form p ∨̇C ′ is RAT with respect to Γ and p. Let � = C , so �(p) = 0 and � mentions
at most n∕3 pigeons. We consider three cases.

Case 1: the assignment � is inconsistent with �. This means that � satisfies a
literal which appears in C , so C can be derived from � by a single weakening step.

Case 2: the assignment � ∪ � can be extended to a partial matching � of the
pigeons it mentions. We will show that this cannot happen. Let x be the pigeon
associated with the literal p. Let y = �(x) and let y′ be the hole � would map x to
if the bit p were flipped to 1. If y′ = �(x′) for some pigeon x′ in the domain of �,
let �′ = �. Otherwise let �′ = � ∪ {(x′, y′)} for some pigeon x′ outside the domain
of �.

LetH be the hole axiom (x↛y′)∨(x′↛y′) in Γ. The clause (x↛y′) contains the
literal p, since (x→y′) contains p. SoH = p ∨̇H ′ for some clauseH ′. By the RAT
condition, eitherC ′∪H ′ is a tautology orΓ ⊢1 C∨H ′. Either way, Γ∪C∪H ′ ⊢1 ⊥.
Since �′ ⊇ �, �′ falsifies C . It also falsifiesH ′, since it satisfies (x→y′) ∧ (x′→y′)
except at p. It follows that Γ ∪ �′ ⊢1 ⊥. By assumption, Γ is derivable from
BPHPn ∪ � in pigeon-width n∕3, and �′ extends �. Since unit propagation does
not increase pigeon-width, this implies that BPHPn ∪ �′ is refutable in resolution
in pigeon-width n∕3, by first deriving Γ and then using unit propagation. This
contradicts Lemma 5.2 as �′ is a matching of at most n∕3 + n∕4 + 1 pigeons.

Case 3: the assignment � ∪ � cannot be extended to a partial matching of the
pigeons it mentions. Consider the Prover-Adversary game on BPHPn∪�with start-
ing position �. The Prover can ask all remaining bits of the pigeons mentioned in �,
and since there is no suitable partial matching this forces the Adversary to reveal a
collision and lose the game. This strategy has pigeon-width n∕3; it follows that C
is derivable from BPHPn ∪ � in resolution in this pigeon-width, as required.
Theorem 5.4. LetΠ be aDRAT− refutation ofBPHPn in which no clause ofBPHPn
is ever deleted. Then Π has size at least 2n∕60.

Proof. Construct a random restriction � by selecting each pigeon independently
with probability 1∕5 and then randomly matching the selected pigeons with distinct
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holes (there is an (1∕5)n+1 chance that there is no matching, because we selected
all the pigeons — in this case we set all variables at random).

Letm = n∕4. LetC be a clausementioning at leastm distinct pigeons x1,… , xm
and choose literals p1,… , pm inC such that pi belongs to pigeon xi. The probability
that pi is satisfied by � is 1∕10. However, these events are not quite independent
for different i, as the holes used by other pigeons are blocked for pigeon xi. To
deal with this, we may assume that pigeons x1,… , xm, in that order, were the first
pigeons considered in the construction of �. When we come to xi, if we set it,
then there are n∕2 holes which would satisfy pi, at least n∕2 − m ≥ n∕4 of which
are free; so of the free holes, the fraction which satisfy pi is at least 1∕3. So the
probability that � satisfies pi, conditioned on it not satisfying any of p1,… , pi−1,
is at least 1∕15. Therefore the probability that C is not satisfied by � is at most
(1 − 1∕15)m < e−m∕15 = e−n∕60.

Now supposeΠ contains nomore than 2n∕60 clauses of pigeonwidth at least n∕4.
By the union bound, for a random �, the probability that at least one of these clauses
is not satisfied by � is at most 2n∕60e−n∕60 = (2∕e)n∕60. Therefore most restrictions �
satisfy all clauses in Π of pigeon-width at least n∕4, and by the Chernoff bound we
may choose such a � which also sets no more than n∕4 pigeons.

We now observe inductively that for each clause C in Π, some subclause of C
is derivable from BPHPn ∪ � in resolution in pigeon-width n∕3, ultimately contra-
dicting Lemma 5.2. If C has pigeon-width more than n∕3, this follows because C is
subsumed by �. Otherwise, if C is derived by a RAT inference, we repeat the proof
of Theorem 5.3; in case 2 we additionally use the observation that if Γ ⊢1 C ∨H ′

and Γ′ subsumes Γ, then Γ′ ⊢1 C ∨H ′.
Corollary 5.5. RAT− does not simulate DRAT−. RAT− does not simulate SPR−.
Proof. By Theorem 4.4, BPHPn has short proofs in SPR−. Thus, by Theorem 3.3,
this also holds for DRAT− (and for DBC− by Theorem 3.1). On the other hand,
Theorem 5.4 just showed BPHPn requires exponential size RAT− proofs.

6 Open problems

There are a number of open questions about the systems with no new variables. Of
particular importance is the question of the relative strengths of DPR−, DSR− and
related systems. The results of [16, 19, 20] and the present paper show that DPR−,
and even the possibly weaker system SPR−, are strong. DPR− is a promising system
for effective proof search algorithms, but it is open whether practical proof search
algorithms can effectively exploit its strength. It is also open whether DPR− or
DSR− simulates ER.
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Another important question is to understand the strength of deletion for these
systems. Of course, deletion is well-known to help the performance of SAT solvers
in practice, if for no other reason, because unit propagation is faster when fewer
clauses are present. In addition, for systems such as RAT, it is known that deletion
can allow new inferences. The results in Sections 4 and 5 improve upon this by
showing that RAT− does not simulate DRAT−. This strengthens the case, at least
in theory, for the importance of deletion.

In Section 4 we described small SPR− proofs of many of the known “hard” tau-
tologies that have been shown to require exponential size proofs in constant depth
Frege. It is open whether SPR− simulates Frege; and by these results, any sepa-
ration of SPR− and Frege systems will likely require developing new techniques.
Even more tantalizing, we can ask whether SR− simulates Frege.

There are several hard tautologies for which we do not whether there are as poly-
nomial size SPR− proofs. Jakob Nordström [personal communication, 2019] sug-
gested (random) 3-XOR SAT and the even coloring principle as examples. 3-XOR
SAT has short cutting planes proofs via Gaussian elimination; it is open whether
SPR− or DSPR− or even DSR− has polynomial size refutations for all unsatisfi-
able 3-XOR SAT principles. The even coloring principle is a special case of the
Tseitin principle [30]: the graph has an odd number of edges, each vertex has even
degree, and the initial clauses assert that, for each vertex, exactly one-half the inci-
dent edges are labeled 1. It is not hard to see that the even coloring principle can be
weakened to the Tseitin principle by removing some clauses with the deletion rule.
Hence there are polynomial size DSPR− refutations (with deletion) of the even col-
oring principle. It is open whether SPR− (without deletion) has polynomial size
refutations for the even coloring principle.

Paul Beame [personal communication, 2018] suggested that the graph PHP
principles (see [7]) may separate systems such as SPR− or even SR− from Frege
systems. However, there are reasons to suspect that in fact the graph PHP prin-
ciples also have short SPR− proofs. Namely, SPR inferences can infer a lot of
clauses from the graph PHP clauses. If an instance of graph PHP has every pigeon
with outdegree ≥ 2, then there must be an alternating cycle of pigeons i1,… il+1
and holes j1,… jl such that il = i1, the edges (is, js) and (is+1, js) are all in the
graph, and l = O(log n). Then an SPR inference can be used to learn the clause
xi1,j1 ∨xi2,j2 ∨⋯∨xil ,jl , by using the fact that a satisfying assignment that falsifies
this clause can be replaced by the assignment that maps instead each pigeon is+1 to
hole js.

This construction clearly means that SPR inferences can infer many clauses
from the graph PHP clauses. However, we do not know how to use these to form a
short SPR− proof of the graph PHP principles. It remains open whether a polyno-
mial size SPR− proof exists.
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