
Total NP Functions and Bounded Arithmetic

Total NP Functions II: Provability and Reducibility

Sam Buss (UCSD)
sbuss@math.ucsd.edu

Newton Institute, March 29, 2012

Sam Buss TFNP

Total NP Functions and Bounded Arithmetic

NP Search with Proofs of Totality

.
This talk focuses on classes of NP search problems based on
provable totality in weak formal theories.

• Bounded arithmetic is often the main focus.

• Constant depth propositional proofs. Major goal: independence
results for constant depth proofs. Is there a good depth
hierarchy?

This talk:

• Bounded arithmetic theories — brief overview.

• Colored PLS.

• Game induction principles.

• Local improvement principles.

Sam Buss TFNP

Total NP Functions and Bounded Arithmetic

Theories of bounded arithmetic

Bounded Arithmetic refers to a collection of subtheories of
Peano arithmetic, with severely restricted induction principles.

We work with first- and second-order theories, in the language of
Cook’s PV, with all polynomial time functions and relations.
Adding induction for more formulas gives:

Theory Induction formulas Induction type

S1
2 NP-predicates (Σb

1) length (LIND)/polynomial (PIND)
T 1
2 NP-predicates (Σb

1) successor (IND)

S2
2 NP

NP-predicates (Σb
2) length (LIND)/polynomial (PIND)

T 2
2 NP

NP-predicates (Σb
2) successor (IND)

Sk
2 Σp

k -predicates (Σb
2) length (LIND)/polynomial (PIND)

T k
2 Σp

k -predicates (Σb
2) successor (IND)

U1
2 NEXPTIME (Σ1,b

1) length (LIND)/polynomial (PIND)

V 1
2 NEXPTIME (Σ1,b

1) successor (IND)

Sam Buss TFNP

Total NP Functions and Bounded Arithmetic

Theory Function definition Function class

S1
2 Σb

1-definable polynomial time (P)

S2
2&T 1

2 Σb
1-definable polynomial local search (PLS) [BK’94]

S2
2&T 1

2 Σb
2-definable P

NP [B’85]

S3
2&T 2

2 Σb
1-definable Colored PLS [KST’06]

S3
2&T 2

2 Σb
2-definable PLS

NP [BK’94, BB’09]

S3
2&T 2

2 Σb
3-definable P

Σb
2 [B’85]

...
...

...

U1
2 Σ1,b

1 -definable PSPACE

V 1
2 Σ1,b

1 -definable EXPTIME

Sam Buss TFNP

Total NP Functions and Bounded Arithmetic

Main theories for this talk:

Full induction for Provably total NP search
Theory these predicates functions are computable in:

S1
2 P polynomial time (P)

T 1
2 NP polynomial local search (PLS)

T 2
2 NP

NP Colored PLS

U1
2 PSPACE+ PSPACE

V 1
2 NEXPTIME EXPTIME

Let R be one of the above theories. The provably total NP search
problems of R , also called (projections of) “Σb

1-definable”
functions, correspond to NP-search problems which are R-provably
total by:

R ⊢ ∀x ∃y ϕ(x , y)

where ϕ(x , y) is a polynomial time predicate.

Sam Buss TFNP

Total NP Functions and Bounded Arithmetic

But, having x 7→ y computable in PSPACE, or EXPTIME is not
very helpful in understanding the computational complexity of the
NP search problem. We want to get more information from the
fact that an NP search problem is provably total in U1

2 or V 1
2 .

What about PLS or Colored PLS?
How are they more computational?

Answer:
PLS corresponds to a search process, namely iterating N to find y .
Colored PLS corresponds to a two-stage search process: first
iterating N to find y , then finding a color e(y), then stepping back
through the iteration of N to find an illegal color at i(x).

Sam Buss TFNP

Total NP Functions and Bounded Arithmetic

Definition (Colored PLS [Kraj́ıček-Skelley-Thapen’07)

Given input x and polynomial time computable functions that take
x as a side parameter:

neighbor function N(y) = N(x , y),
initial point i = i(x),
color predicate C (y , α) = C (x , y , α) for node y and color α,
and final node color assignment function e(y) = e(x , y).

Goal: find a witness that one of the following is false:

- ∀α [¬C (i , α)].

- ∀y ∀α [N(y) < y ∧ C (N(y), e) → C (y , e)].

- ∀y [N(y) < y ∨ C (y , e(y))].

Values of y decrease under N until reaching a leaf. The initial
point has no color. Any color of a neighbor of y is a color of y .
Every local minimum has a color.

Sam Buss TFNP

Total NP Functions and Bounded Arithmetic

Game Induction Principle

This idea for the “feasibility” of Colored PLS leads to a more
general idea of k-round Game Induction principles, GIk .
[Skelley-Thapen’11] E.g., k = 4:

G1: x11 → x12 x13 → x14
↑ ↓ ↑ ↓

G2: x21 x22 x23 x24
↑ ↓ ↑ ↓

...
...

...
...

...
↑ ↓ ↑ ↓

Ga: → xa1 xa2 → xa3 xa4

Gi is the i -th instance of a two-player game.
Player A (resp. B) has a winning strategy for Ga (resp. G1).
↑/↓’s indicate reductions between games.

Sam Buss TFNP

Total NP Functions and Bounded Arithmetic

Still with k = 4: Consider a formula

∀x1≤b ∃x2≤b ∀x3≤b ∃x4≤b G (x1, x2, x3, x4).

This defines a game, also called G . Player B plays existential
variables, Player A plays universal values.
B ’s goal is to make G (x1, x2, x3, x4) true.

B has a winning strategy U for G :

∀x1≤b ∀x3≤b G (x1,U2(x1), x3,U4(x1, x3)).

G : x11 → x12 x13 → x14

A has a winning strategy V for G :

∀x2≤b ∀x4≤b¬G (V1, x2,V3(x2), x4).

G : → xa1 xa2 → xa3 xa4

Sam Buss TFNP

Total NP Functions and Bounded Arithmetic

Game Reduction: Reducing G to G ′ via functions F = {fi}i :
G : x1 x2 x3 x4

f1 ↑ f2 ↓ f3 ↑ f4 ↓
G ′: x ′1 x ′2 x ′3 x ′4

“B has a winning strategy for G
⇒ B has a winning strategy for G ′:”

is expressed by:

∀x ′1, x2, x
′

3, x4[G (f1(x ′1), x2, f3(x ′1, x2, x
′

3), x4)

→ G ′(x ′1, f2(x ′1, x2), x ′3, f4(x ′1, x2, x
′

3, x4))].

B ’s strategy U ′ for G ′ is given by in terms of strategy U for G by:
U ′

2(x ′1) = f2(x ′1,U2(f1(x ′1))) and
U ′

4(x ′1, x
′

3) = f4(x ′1,U2(f1(x ′1)), x ′3,U4(f1(x ′1), f3(x ′1,U2(f1(x ′1)), x ′3))).

Sam Buss TFNP

Total NP Functions and Bounded Arithmetic

Definition (Game Induction Principle)

Fix k > 0. The GIk search problem is given parameters a and b
and x , a polynomial time predicate G that uniformly defines k-turn
games Gi for i = 1, · · · a, and polynomial time functions U,V ,W
where W uniformly computes Wi ’s. The value x is a side
parameter for all of G , U, V , W .
A solution consists of values showing that

(a) U does not give winning strategy for B on G1,

(b) V does not give winning strategy for A on Ga, or

(c) for some i , Wi does not give a game reduction from Gi to Gi+1.

GIk is a total NP search problem.

GIk defines a k-stage search process, similar to how Colored PLS
defined a two-stage search process.

Sam Buss TFNP

Total NP Functions and Bounded Arithmetic

Theorem (Skelley-Thapen’11)

Let k ≥ 1. T k
2 proves GIk is total. Conversely, any provably total

NP search problem of T k
2 is polynomial time many-one reducible

to GIk .

This also holds in the relativized setting.

Sam Buss TFNP

Total NP Functions and Bounded Arithmetic

Local Improvement Properties

The Local Improvement Properties are motivated by trying to
extend the GIk principles to non-constant values for k .
[Ko lodziejczyk-Nguyen-Thapen’11,Beckmann-Buss’??]

Intuition: An (implicitly defined) directed acyclic labeled graph G
has bounded in-/out-degree. All nodes of G are initialized with
labels of score s = 0. By sweeping forward in G , labels may be
“locally improved” from even score 2s to score 2s + 1. By sweeping
backward in G , labels may be locally improved from odd score
2s + 1 to score 2s + 2. However, no label can have score s > c .

Solution: A solution is consists of showing values for which the
local improvement process fails to correctly increase the score, or
for which the score is > c .

Sam Buss TFNP

Total NP Functions and Bounded Arithmetic

Forward sweep improvement by I : (even to odd)

︸︷︷︸

Score
2s + 1

︸︷︷︸

Score
2s
⇓ I

Score
2s + 1

︸︷︷︸

Score
2s

y

Sam Buss TFNP

Total NP Functions and Bounded Arithmetic

Reverse sweep improvement by I : (odd to even)

︸︷︷︸

Score
2s + 1

︸︷︷︸

Score
2s + 1
⇓ I

Score
2s + 2

︸︷︷︸

Score
2s + 2

y

Sam Buss TFNP

Total NP Functions and Bounded Arithmetic

Formally, an instance Local Improvement Principle consists of
the following, polynomial-time computable, items:

- A finite directed acyclic graph G with in-/out-degree O(1).
Acyclicity is enforced by node numbering.

- A neighborhood function, N(y), giving the neighbors of node y
in G .

- A initial labeling function E (y) giving a score zero label to each
node y .

- A scoring function S(ℓ) giving the score for label ℓ.

- An improvement function I which takes as input y , and labels for
y and all nodes adjacent to y , and produces a new label for y .

- A predicate wf testing whether the labels on y and its neighbors
are “well-formed”.

- Upper bounds b and c on labels and scores.

Sam Buss TFNP

Total NP Functions and Bounded Arithmetic

A solution to the Local Improvement Principles consists of finding
values (a) where the graph G is not well-formed, or (b) where the
initialization E (y) does not give score zero labels that are
well-formed in a neighborhood, or (c) for a valid label with score
> c , or (d) where the improvement function I does not give valid
labels satisfying:

• If the predecessors of y have labels with score 2s + 1, and if y
and its successors have labels with score 2s, then I gives a
new label for y with score 2s + 1.

• If the successors of y have labels with score 2s + 2, and if and y
and its predecessors have labels with score 2s + 1, then I gives
a new label for y with score 2s + 2.

• Replacing the label on y with the value given by I preserves the
property that the distance-two neighborhood of y has
well-formed labels. (I.e., in the neighborhoods of y and its
neighbors.)

Sam Buss TFNP

Total NP Functions and Bounded Arithmetic

Local Improvement Principles

Definition (General Local Improvement)

Let k ≥ 1. LIk is the NP search problem as defined above with
c = k the bound on score values s.
LI is the local improvement search problem with no limitation on
the value c .

Definition (Linear Local Improvement)

If G is the linear directed graph on {0, . . . , a} with edges from i to
i + 1, then the local improvement condition is denoted LLI or
LLIk .

LLIk corresponds to k-stages of iteration, analogous to GIk .
LIk generalizes to general dags instead of paths.

Sam Buss TFNP

Total NP Functions and Bounded Arithmetic

Definition (Rectangular Local Improvement)

If G is the rectangular directed graph on {0, . . . , a}2 with edges as
shown below (omitting edges at boundary points as needed), then
the local improvement condition is denoted RLI or RLIk .

j − 1

j

j + 1

i − 1 i i + 1

Sam Buss TFNP

Total NP Functions and Bounded Arithmetic

Relativized Theories

.

We often work with relativized theories of bounded arithmetic U1
2

(corresponding to PSPACE computation) and V 1
2 (corresponding

to EXPTIME computation).

The relativization means that there is a new second-order predicate
symbol α added to the language. α is like an oracle: there are no
axioms for α, except it may be used in induction formulas. The
effect is that all computational classes are relativized to α; e.g.,
P
α, PSPACEα, EXPTIME

α.

Σb
1-definable functions now correspond to relativized TFNP search

problems.

Sam Buss TFNP

Total NP Functions and Bounded Arithmetic

Theorem (KNT’11)

The LLIk search problem is provably total in T k
2 . Furthermore,

every NP search problem provably total in T k
2 is polynomial time,

many-one reducible to LLIk .

Theorem (KNT’11)

The LLIlog search problem is provably total in U1
2 . Furthermore,

every NP search problem provably total in U1
2 is polynomial time,

many-one reducible to LLIlog.

Theorem (KNT’11)

The LI search problem is provably total in V 1
2 . Furthermore, every

NP search problem provably total in V 1
2 is polynomial time,

many-one reducible to LI and to RLI.

Sam Buss TFNP

Total NP Functions and Bounded Arithmetic

Theorem (BB’??)

The LLI search problem is provably total in U1
2 . (As before, every

NP search problem provably total in U1
2 is polynomial time,

many-one reducible to LLIlog and hence to LLI.)

Theorem (BB’??)

(The LI, RLI and hence LI1 and RLIlog search problems are
provably total in V 1

2 .) Furthermore, every NP search problem
provably total in V 1

2 is polynomial time, many-one reducible to LI1

and to RLIlog.

In particular, the “log” versions of RLI and LLI are equivalent to
the “non-log” versions. Also LI1 ≡ LIlog ≡ LI.

Next: “new-style” witnessing theorems which help prove the
second parts of the theorems.

Sam Buss TFNP

Total NP Functions and Bounded Arithmetic

Let R ⊇ S1
2 be a theory of bounded arithmetic, and C the

associated complexity class of functions.

Theorem (Old-Style Witnessing Theorem (Template))

Suppose R proves (∀x)(∃y)φ(x , y). Then there is a function f ∈ C
such that R proves ∀x φ(x , f (x)).

Theorem (New-Style Witnessing Theorem (Template))

Suppose R proves (∀x)(∃y)φ(x , y). Then there is a function f ∈ C
such that S1

2 proves

If there exists an encoding of a computation of f (x)

then it outputs a value y s.t. φ(x , y).

and such that R proves that

∀x [“There exists an encoding of a computation of f (x)”]

Sam Buss TFNP

Total NP Functions and Bounded Arithmetic

Theorem (New-style witnessing for V 1
2 , BB’??)

Suppose V 1
2 proves (∃y)φ(y ,~a, ~A) for φ a Σ1,b

0 -formula. Then
there is an exponential time oracle Turing machine M such that

S1
2 proves “If Y encodes a complete computation of M

~A(~a), then

φ(out(Y),~a, ~A) is true.”

Corollary

Assume the above holds with φ a polynomial time predicate. Then
there is a polynomial time procedure, which given oracle access to

the complete computation Y of M
~A(~a) and ~A either produces the

value y such that φ(y ,~a, ~A) or finds a point where encoding Y of
the computation contains a (local) mistake.

Proof of corollary uses the polynomial time witnessing theorem
for S1

2 .

Sam Buss TFNP

Total NP Functions and Bounded Arithmetic

Very sketchy proof outline for V 1
2 and RLIlog: (based on KNT’11)

Suppose that a NP search problem is provably total (Σb
0-definable

by ∃yφ(x , y).) in V 1
2 . The corollary is used to build an instance of

the RLIlog principle.

The first scan creates labels with score 1 encoding the entire
EXPTIME computation Y , rectangularly arranged by time and
tape position. This is done with local improvement based on
Turing machine transition rules.

The polynomial time algorithm of the corollary makes polynomially
many queries to Y . Each query is handled by a back-and-forth
scan in the RLIlog-instance. (This is a tricky part!) This gives the
“log” bound on score.

No local mistake will be discovered in Y , thus any solution to the
RLIlog-instance will give a value y such that φ(x , y) holds.

Sam Buss TFNP

Total NP Functions and Bounded Arithmetic

Proof Sketch: U1
2 ⊢“LLI is total”

For LLI, for a given input with a = c , the graph G is linear, of
length a, and each node is repeatedly given new labels, for a total
of c left-right/right-left scans. The intuition is that this should be
enough to simulate an exponential time computation, since we can
let the nodes of G label the a tape positions for a Turing machine,
and let the labels of vertices of score s encode the exponential time
Turing machine’s configuration time s.

This would be done by initializing the nodes of G to have label
with score zero, scanning left-to-right to give all nodes labels with
score 1, then right-to-left to give all nodes labels with score 2, and
repeat until scores reach value c . Once score c is surpassed, we
must have found a solution to the local improvement principle.

Clearly this process, at least as defined, could simulate an
exponential time computation.

Sam Buss TFNP

Total NP Functions and Bounded Arithmetic

The problem is that U1
2 can formalize (and use induction on)

polynomial space predicates, not exponential time predicates. So
the previous slide’s proof sketch is seemingly beyond the reasoning
power of U1

2 .

To fix this, we assign labels to nodes of G using a
non-deterministic PSPACE procedure instead of an exponential
time procedure. The nondeterministic PSPACE procedure may not
give a consistent wellformed set of labels, but this will not prevent
us from proving the totality of the LI problem.

Furthermore, our argument can be carried out within U1
2 , since it is

not hard to show that Savitch’s theorem on the equivalence of
PSPACE and NPSPACE can be carried out by U1

2 . [BB’??]

Sam Buss TFNP

Total NP Functions and Bounded Arithmetic

• The NSPACE algorithm works by alternately scanning
left-to-right and right-to-left and setting values for labels using the
improvement function I . At any given point, it “knows”
well-formed values of the labels for the nodes
x−2, x−1, x , x+1, x+2, and uses I to set the new label for x .

• The algorithm checks if the well-formedness still holds: if not,
then a solution to the LI problem has been found. Also, if the new
label has cost > c , a solution to the LI problem as been found.

• Otherwise, the algorithm needs to move one step, say rightward
to node x+1. For this it “forgets” the label of x−2 and guesses
the label for x+3. If the well-formedness property fails for the
guessed label, the algorithm aborts (and does not have a solution
to the LI-problem).

• If it does not abort, the algorithm proceeds to handle x+1.

• The obvious adjustments are made at the ends of the graph, and
the algorithm reverses directions when it reaches the ends of the
linear graph.

Sam Buss TFNP

Total NP Functions and Bounded Arithmetic

• We must avoid the case where the algorithm aborts without a
solution.

• Suppose for contradiction, that all runs of the NSPACE machine
abort in this way. Set s0 to be maximum score which can be
reached by any nondeterministic computation before aborting
without a solution. We can prove s0 exists, since it is definable by
a NPSPACE (hence PSPACE) procedure.

Wlog, s0 is odd, so the algorithm is scanning rightward.

• A computation is s0 consistent at x if it uses the same
score s0 − 1 labels for vertices x−2, x−1, x , x+1, x+2 when setting
labels of score s0 − 1 as when setting labels of score s0.

• Choose the maximum value x0 such that there exists an NSPACE
computation which is s0-consistent at x0.

• This computation is not forced to abort after setting the score s0
label of x . This contradicts the choices of s0 and x0. QED

Sam Buss TFNP

Total NP Functions and Bounded Arithmetic

Penultimate slide

Other characterizations:

- Combinatorial principles [Pudlák’03]

- Πb
k -PLS problems [Beckmann-Buss’09]

- Alternating Min/Max characterization [Pudlák-Thapen’12]

Final remark:
If one could give (relativized) separations of the NP search
problems provably total in bounded arithmetic theories T k

2 , this
would resolve the major open question about finding
superquasipolynomial separations of constant-depth propositional
proofs.

Sam Buss TFNP

Total NP Functions and Bounded Arithmetic

Thank you!

Sam Buss TFNP

	Total NP Functions and Bounded Arithmetic

