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Topics:

Formal theories of weak fragments of Peano arithmetic

First- and second-order theories of bounded arithmetic

∀∃ consequences: Provably total functions

Computational complexity characterizations

∀ consequences: Universal statements

Cook translation to propositional logic
Paris-Wilkie translation to propositional logic

Underlying philosophy:

A feasibly constructive proof that a function is total should
provide a feasible method to compute it.

A feasibly constructive proof of a universal statement should
provide a feasible method to verify any given instance.
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A quote

Cook, 1975, Feasibly constructive proofs and the propositional
calculus

A constructive proof of, say, a statement ∀xA must provide
an effective means of finding a proof of A for each value
of x, but nothing is said about how long this proof is as a
function of x. If the function is exponential or super expo-
nential, then for short values of x the length of the proof
of the instance of A may exceed the number of electrons
in the universe.

Introducing PV and the Cook translation

Sam Buss Bounded Arithmetic II:



First-/second-order
theories of

bounded arithmetic

Π2-consequences:
Provably total

functions

Π1-consequences:
Translations to

propositional logic

Sam Buss Bounded Arithmetic II:



First-/second-order
theories of

bounded arithmetic

Π2-consequences:
Provably total

functions

Π1-consequences:
Translations to

propositional logic

Computational
complexity

Propositional
proof complexity

Sam Buss Bounded Arithmetic II:



First-/second-order
theories of

bounded arithmetic

Π2-consequences:
Provably total

functions

Π1-consequences:
Translations to

propositional logic

Computational
complexity

Propositional
proof complexity

Propositional
proof search
(SAT solvers)

Sam Buss Bounded Arithmetic II:



First-/second-order
theories of

bounded arithmetic

Π2-consequences:
Provably total

functions

Π1-consequences:
Translations to

propositional logic

Computational
complexity

Propositional
proof complexity

Propositional
proof search
(SAT solvers)

Sam Buss Bounded Arithmetic II:



S
1
2, PV — Polynomial time — eF [B’85; C’76]

First-order theory S12 of arithmetic:

Terms have polynomial growth rate (smash, #, is used).

Bounded quantifiers ∀x≤t, ∃x≤t.

Sharply bounded quantifiers ∀x≤|t|, ∃x≤|t|,

bound x by log (or length) of t.

Classes Σb

i and Πb

i of formulas are defined by counting
bounded quantifiers, ignoring sharply bounded quantifiers.

Σb

1 formulas express exactly the NP predicates.

Σb

i , Π
b

i - express exactly the predicates at the i -th level of the
polynomial time hierarchy.

S12 has polynomial induction PIND, equivalently length
induction (LIND), for Σb

1 formulas A (i.e., NP formulas):

A(0) ∧ (∀x)(A(x) → A(x+1)) → (∀x)A(|x |)
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(1) Provably total functions of S1
2:

· The ∀Σb

1-definable functions (aka: provably total functions)
are precisely the polynomial time computable functions.

· PV: equational theory over polynomial time functions. [C’75]

· S12(PV) is conservative over both S12 and PV.

(2) Translation to propositional logic (“Cook translation”)

· Any polynomial identity (∀Σb

0-property) provable in PV / S12,
has a natural translation to a family F of propositional
formulas. These formulas have polynomial size extended Frege
(eF) proofs.

(3) S12 proves the consistency of eF . Conversely, any
propositional proof systems (p.p.s.) S12 proves is
consistent(provably) polynomially simulated by eF .

(4) Lines (formulas) in an eF proof correspond to Boolean
circuits. The circuit value problem is complete for P
(polynomial time).
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Example of Cook translation S
1
2, eF , PHP.

The first-order theory S1
2 proves:

(∀x , n)[“The bits of x do not code an incidence matrix of a
bipartite graph on [n + 1] ·∪ [n] violating the Pigeonhole Principle
PHPn+1

n ”]

Propositional translations PHPn+1
n : (n ≥ 1)

n
∧

i=0

n−1
∨

j=0

pi ,j →

n−1
∨

i=0

n
∨

i ′=i+1

n−1
∨

j=0

(pi ,j ∧ pi ′,j)

The propositional variables pi ,j correspond to the bits of the
first-order variable x .

Cook translation yields:
The PHPn+1

n formulas have polynomial size eF proofs. [CR]
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The Cook Translation from S
1
2(PV) to eF

[Cook’75] introduced an equational theory PV of polynomial time
functions. And, characterized the logical strength of PV in terms
of provability in extended Frege (eF).

For a polynomial time identity f (x) = g(x), define a family of
propositional formulas [[f=g ]]n.

[[f=g ]]n expresses that f (x) = g(x) for all x with |x | < n.

The variables in [[f=g ]]n are the bits x0, . . . , xn−1 of x .

If PV ⊢ f (x)=g(x), then the formulas [[f=g ]]n have
polynomial size extended Frege proofs. [Cook’75]

These results all lift to S12 ...

Sam Buss Bounded Arithmetic II:



To describe the Cook translation for S12:

Suppose A(x) ∈ Σb

0 (sharply bounded) and S12 ⊢ ∀x A(x).

For n > 0, form [[A]]n as a polynomial size Boolean formula.

[[A]]n has Boolean variables x0, . . . , xn−1 representing the bits
of x , where |x | ≤ n.

[[A]]n expresses that “A(x) is true”.

Rather than formally define [[A]], we give an example (on the next
slide).

Remark: A similar construction works if all polynomial time
functions are added to the language and we work with S12(PV). In
this case, [[f=g ]]n needs to use extension variables to define the
result of polynomial size circuit computing f (x) and g(x).
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Simple examples of [[A(x)]]n : [[(∀a≤|x |)(a−1 < x)]]n

For x and a n-bit integers, with bits given by xi ’s and ai ’s:

[[x=a]]n :=
n−1
∧

i=0
(xi ↔ ai).

[[x<a]]n :=
∨n−1

i=0

(

(ai ∧ ¬xi) ∧
n−1
∧

j=i+1
(xj ↔ aj)

)

.

[[x≤a]]n := [[x < a]]n ∨ [[x = a]]n

i -th bit of x − 1: (x−1)i :⇔
(

xi ↔
∨i−1

j=0 xj

)

∧ [[x 6=0]]n

i -th bit of |x |:
∨

j≤n,(j)i=1

(

xj ∧
∨n

k=j+1 ¬xk

)

[[(∀a≤|x |)(a−1 < x)]]n :=
n
∧

a=0

(

[[a≤|x |]]n → [[a−1≤x ]]n

)

.

The sharply bounded quantifier (∀a≤|x |) becomes a conjunction.
Each of the n+1 values for a is “hardcoded” with constants for its
bits.
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Theorem (essentially [Cook’75])

If S12 ⊢ (∀x)A(x), where A(x) is in ∆b

0 (or a polynomial time
identity), then the tautologies [[A(x)]]n have polynomial size
extended Frege proofs.

Proof construction: Witnessing Lemma again. (Proof omitted.)

Theorem ([Cook’75])

S12 ⊢ Con(eF) (the consistency of eF).

For any propositional proof system G, if S12 ⊢ Con(G), then
eF p-simulates G.

That is, eF is the strongest propositional proof system whose
consistency is provable by S12.
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Generalizations to S
i
2 and T

i
2.

Work in quantified propositional logic, with Boolean quantifiers
(∀q), (∃q) ranging over {T ,F}. Sequent calculus rules now
include

Γ→∆,A(B)

Γ→∆, (∃q)A(q)

A(q), Γ→∆

(∃q)A(q), Γ→∆

where B is any formula, and q appears only as indicated. (Similar
rules for ∀.)

Let Gi be the fragment in which only ΣB

i -formulas may occur.

Gi proofs are dag-like.

Let G∗
i be Gi restricted to use tree-like proofs.

Theorem (Kraj́ıček-Pudlák’90, Cook-Morioka’05)

Let i ≥ 1. Analogously to S12 and eF ,

Si2 corresponds to G∗
i .

Ti
2 corresponds to Gi .
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Propositional proof systems (F , eF , ...)

Frege proofs (F): Sequent calculus propositional system.
Equivalent to a ‘textbook style’ proof system using modus ponens.

Extended Frege proofs (eF): Frege systems augmented with
extension rule allowing (iterated) introduction of new variables x
abbreviating formulas:

Extension axiom: x ↔ ϕ.

AC
0-Frege, aka constant-depth Frege: Frege proofs over

∧,∨,¬ with a constant bound on the number of alternations of
∧’s and ∨’s. (Negations applied only to variables.)

Quantified sequent calculus QBF with ∀p, ∃p Boolean
quantifiers. Gi is QBF restricted to i -levels of quantifiers.

Proof size = number of symbols in the proof.
(The purpose of extension is to reduce proof size.)
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Open problems:

(1) Does the Frege system (F) allow polynomial size proofs of
tautologies? (Subexponential size?)

(2) Does the Frege system quasipolynomially simulate the
extended Frege (eF) system?

· No good combinatorial candidates for separation are known.
[BBP,HT,B,AB,...]

(3) QBF versus eF?

· (eF is equivalent to G∗
1, i.e., tree-like G1).
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More theories with Cook translations

Theories for polynomial space

PSA - Equational theory for Pspace functions [Dowd’78]

U1
2 - Second-order theory for polynomial space [B’85]

The Σ1,b
1 -definable functions of U1

2 are precisely the Pspace

functions.

U1
2(PSA) is conservative over both U1

2 and PSA. [**]

Pspace identities provable in U1
2 have natural translations to

QBF formulas which have polynomial size QBF proofs.
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VNC1 - Theory for NC 1.
[Clote-Takeuti’92; Arai’00; Cook-Morioka’05; Cook-Nguyen’10]

Cook translation to F proofs.

VL - Theory for L.
[Zambella’96, Perron’05, Cook-Nguyen’10]

Cook translation to tree-like GL∗ for Σ− CNF(2) formulas.

VNL - Theory for NL.
[Cook-Kolokolova’03, Perron’09, Cook-Nguyen’10]

Cook translation is to a tree-like p.p.s. GNL∗ for Σ-Krom
formulas.

Work in progress: New p.p.s.’s eLDT and eLNDT for branching
programs and nondeterministic branching programs as Cook
translations for VL and VNL. [B-Das-Knop, following Cook]
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Formal Propositional Total
Theory Proof System Functions

PV, S12, VPV eF , G∗
1 P [C, B, CN]

T1
2, S

2
2 G1, G

∗
2 ≤1-1(PLS) [B, KP, KT, BK]

T2
2, S

3
2 G2, G

∗
3 ≤1-1(CPLS) [B, KP, KT, KST]

Ti
2, S

i+1
2 Gi , G

∗
i+1 ≤1-1(LLIi ) [B, KP, KT, KNT]

PSA, U1
2, W

1
1 QBF Pspace** [D, B, S]

V1
2 ** EXPTIME [B]

VNC1 Frege (F) ALogTime [CT, A; CM, CN]

VL GL∗
L [Z, P, CN]

VNL GNL∗
NL [CK, P, CN]

PV, PSA - equational theories.
Si2, T

i
2 - first order

U1
2,V

1
2, VNC

1,VL,VNL,VPV - second order
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Formal Propositional Total
Theory Proof System Functions

PV, S12, VPV eF , G∗
1 P [C, B, CN]

T1
2, S

2
2 G1, G

∗
2 ≤1-1(PLS) [B, KP, KT, BK]

T2
2, S

3
2 G2, G

∗
3 ≤1-1(CPLS) [B, KP, KT, KST]

Ti
2, S

i+1
2 Gi , G

∗
i+1 ≤1-1(LLIi ) [B, KP, KT, KNT]

PSA, U1
2, W

1
1 QBF Pspace** [D, B, S]

V1
2 ** EXPTIME [B]

VNC1 Frege (F) ALogTime [CT, A; CM, CN]

VL GL∗
L [Z, P, CN]

VNL GNL∗
NL [CK, P, CN]

Using Cook translation to propositional proof systems (p.p.s.’s)
F , eF - Frege and extended Frege.
Gi , QBF - quantified propositional logics.
Starred (∗) propositional proof systems are tree-like.
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Formal Propositional Total
Theory Proof System Functions

PV, S12, VPV eF , G∗
1 P [C, B, CN]

T1
2, S

2
2 G1, G

∗
2 ≤1-1(PLS) [B, KP, KT, BK]

T2
2, S

3
2 G2, G

∗
3 ≤1-1(CPLS) [B, KP, KT, KST]

Ti
2, S

i+1
2 Gi , G

∗
i+1 ≤1-1(LLIi ) [B, KP, KT, KNT]

PSA, U1
2, W

1
1 QBF Pspace** [D, B, S]

V1
2 ** EXPTIME [B]

VNC1 Frege (F) ALogTime [CT, A; CM, CN]

VL GL∗
L [Z, P, CN]

VNL GNL∗
NL [CK, P, CN]

PLS = Polynomial local search [JPY]
CPLS = “Colored” PLS [ST]
LLI = Linear local improvement
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Pause

Next: Paris-Wilkie translation
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Second order arithmetic & Paris-Wilkie translations

Paris-Wilkie translation: is a second kind of translation to
propositional logic.

The Paris-Wilkie translation applies to first-order theories with
second-order predicates (free variables, α), essentially oracles.

Propositional variables now represent values of the second
order objects α.
In contrast, the Cook translation uses variables for the bits of
first-order objects (the function’s inputs).

Paris-Wilkie translations are most commonly applied to
fragments of I∆0(#, α). [P, PW, ...].

α denotes an uninterpreted second-order object (a predicate,
or oracle),

and # is the polynomial growth rate function x#y = 2|x |·|y |
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Example of Paris-Wilkie translation

Let T be the theory I∆0 or I∆0(#).

Thm: [PW] If T (α) proves the pigeonhole principle

(∀x≤a)(∃y<a)α(x , y) → (∃x<x ′≤a)(∃y<a)(α(x , y) ∧ α(x ′, y))

then PHPn+1
n has polynomial (quasipolynomial, resp) size

AC
0-Frege proofs.

Recall PHPn+1
n :

n
∧

i=0

n−1
∨

j=0

pi ,j →

n−1
∨

i=0

n
∨

i ′=i+1

n−1
∨

j=0

(pi ,j ∧ pi ′,j)

Propositional variables pi ,j correspond to truth values of α(x , y).
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On the other hand, [A,BPI,KPW],

Thm: PHPn+1
n requires exponential size AC

0-Frege proofs.

Proof idea: apply a Hastad-style switching lemma, to reduce to a
proof in which all formulas are decision trees.

Corollary: Neither I∆0 nor I∆0(#) proves the pigeonhole
principle.

But, [PWW,MPW], ...

Thm: I∆0(#) proves the weak pigeonhole principle (replacing
“∃y<a” with “∃y<a/2”).

Corollary: The propositional weak pigeonhole principle PHP2n
n has

quasipolynomial size AC
0-Frege proofs.
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Theories of arithmetic for Paris-Wilkie translations

A hierarchy of fragments of I∆0(#): [B]

Ti
2 - induction for Σb

i predicates (the i -th level of the
polynomial time hierarchy).

Si2 - length induction for Σb

i predicates.

S12 ⊆ T1
2 4∀Σb

2
S22 ⊆ T2

2 4∀Σb

3
S32 ⊆ T3

2 4∀Σb

4
· · ·

Thm: [KPT]

If Ti
2 = Si+1

2 , then the polynomial time hierarchy collapses.

In fact, if Ti
2 4∀Σb

i+2
Si+1
2 , then the polynomial time hierarchy

collapses.

Ti
2(α) 6= Si+1

2 (α); i.e., relative to an oracle.
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S12(α) ⊆ T1
2(α) 4∀Σb

2 (α)
S22(α) ⊆ T2

2(α) 4∀Σb

3 (α)
· · ·

Paris-Wilkie translation
Formal Propositional Total
Theory Proof System [K] Functions

T1
2(α), S

2
2(α) ** ≤1-1(PLS(α))

T2
2(α), S

3
2(α) res(log) ≤1-1(CPLS(α))

Ti
2(α), S

i+1
2 (α) depth (i−3

2
)-Frege ≤1-1(LLIi(α))

Depth (n+1
2)-Frege means LK proofs with formulas having at most

n+1 alternations, the bottom level having only logarithmic fanin.
res(log) = depth 1

2 -Frege.

Sample application: T2
2 ⊢ PHP2n

n . Hence, the bit-graph weak PHP
has res(log) refutations of quasipolynomial size. Likewise, any
sparse instance of the weak PHP. [MPW]
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Open problem:

(4) Do the theories Ti
2(α) have distinct (increasing)

∀Σb

0(α)-consequences?

· Note this would not have any (known) computational
complexity implications.

(5) For i ≥ 1, does depth i -Frege quasipolynomially simulate
depth (i+1)-Frege with respect to refuting sets of clauses?

· Note that this is the nonuniform version of Question (4).

For (5): Best results to-date are a superpolynomial separation,
based on upper and lower bounds for the pigeonhole principle. [IK]

Hastad switching lemma gives exponential separation of
expressibility in depth i versus depth i+1. (!)
(5) asks: Does this extra expressiveness allow shorter proofs?

Sam Buss Bounded Arithmetic II:



Pause
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TFNP, Provably total functions

It is also interesting to study the ∀Σb

1-consequences of the theories
Ti
2. These define a subset of the TFNP problems:

Definition: [MP, P] A Total NP Search Problem (TFNP) is a
polynomial time relation R(x , y) so that R is

Total: For all x , there exists y s.t. R(x , y),

Polynomial growth rate:
If R(x , y), then |y | ≤ p(|x |) for some polynomial p.

The TFNP problem is:

Given an input x , output a y s.t. R(x , y).

Note the solution y may not be unique!
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TFNP classes need to come with a proof of totality, usually either
a combinatorial principle or a formal proof.

Pigeonhole Principle (PPP) [P]
Input: x ∈ N and a purportedly injective f : [x ] → [x−1].
Output: a, b ∈ [x ] s.t. either f (a) /∈ [x−1] or f (a) = f (b).

Parity principle (PPAD) [P]
Input: A directed graph G with in- and out-degrees ≤ 1,

and a vertex v of total degree 1.
Output: Another vertex v ′ of total degree 1.

Polynomial Local Search (PLS) [JPY]
Input: A directed graph with out-degree ≤ 1, and a nonnegative

cost function which strictly decreases along directed edges
Output: A sink vertex.
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Proofs in bounded arithmetic also establish TFNP problems:

PLS - same as before
CPLS - PLS with a Herbrandized coNP (Πb

1) accepting condition.

RAMSEY

Input: an undirected graph on n nodes.
Output: a clique or co-clique of size 1

2 log n.

But, now the inputs are coded with a second-order object α.
The output is a first-order object.

Thm. The PLS function is provably total in T1
2(α), and is

many-one complete for the provably total relations of T1
2(α). [BK]

Thm. The same holds for CPLS and T2
2(α). [KST]

Thm. T3
2(α) proves the totality of RAMSEY. [P]

See also: Game Induction [ST], Local Improvement [KNT,BB], ...
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Open problems:

(6) Do the ∀Σb

1(α) consequences (or, the provably total
functions) of Ti

2 form a proper hierarchy (for i = 2, 3, 4, . . .)?

(7) Does T2
2(α) prove the totality of RAMSEY?

The T3
2(α) proof of RAMSEY is essentially a refinement of the

usual inductive combinatorial proof of the Ramsey theorem (via a
reduction to the pigeonhole principle). It appears that proving
RAMSEY in T2

2(α) would require a new method proof for
Ramsey’s theorem.

See also related results and questions for the theory of approximate

counting, APC2. [J,KT]
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TFNP problems for stronger theories:

Consistency search problem for Frege proofs: [BB]
Input: A (purported) Frege proof of ⊥.
Output: A local error in the proof.

Also introduced as the Wrong proof search problem [GP].

Thm.

The Frege Consistency Search problem is provable in U1
2(α)

and many-one complete for its provably total functions. [BB]

The same holds for extended Frege and V1
2(α). [K, BB]

Here the input is coded by a second-order object; i.e., algorithms
have oracle access to the Frege “proof” and seek a local error.

The “standard” TFNP problems are all included in the Consistency

Search/Wrong Proof search classes for all these theories. [BB, GP]
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Finis
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Finis

Thank you!
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