Bounded Arithmetic II: Propositional Translations

Sam Buss

Caleidoscope Research School Institute Henri Poincaré, Paris

June 17-18, 2019

Topics:

- Formal theories of weak fragments of Peano arithmetic
- First- and second-order theories of bounded arithmetic
- $\forall \exists$ consequences: Provably total functions
- Computational complexity characterizations
- \forall consequences: Universal statements
- Cook translation to propositional logic
- Paris-Wilkie translation to propositional logic

Underlying philosophy:

- A feasibly constructive proof that a function is total should provide a feasible method to compute it.
- A feasibly constructive proof of a universal statement should provide a feasible method to verify any given instance.

A quote

Cook, 1975, Feasibly constructive proofs and the propositional calculus
A constructive proof of, say, a statement $\forall x A$ must provide an effective means of finding a proof of A for each value of x, but nothing is said about how long this proof is as a function of x. If the function is exponential or super exponential, then for short values of x the length of the proof of the instance of A may exceed the number of electrons in the universe.

Introducing PV and the Cook translation

First-/second-order theories of bounded arithmetic

Computational complexity Propositional proof complexity

> | Propositional |
| :--- |
| proof search |
| (SAT solvers) |

Π_{2}-consequences:
 Provably total functions

Π_{1}-consequences:
Translations to propositional logic

S_{2}^{1}, PV - Polynomial time - eF [B'85; C'76]

First-order theory S_{2}^{1} of arithmetic:

- Terms have polynomial growth rate (smash, \#, is used).
- Bounded quantifiers $\forall x \leq t, \exists x \leq t$.
- Sharply bounded quantifiers $\forall x \leq|t|, \exists x \leq|t|$, bound x by log (or length) of t.
- Classes \sum_{i}^{b} and Π_{i}^{b} of formulas are defined by counting bounded quantifiers, ignoring sharply bounded quantifiers.
- Σ_{1}^{b} formulas express exactly the NP predicates.
$\Sigma_{i}^{\mathrm{b}}, \Pi_{i}^{\mathrm{b}}$ - express exactly the predicates at the i-th level of the polynomial time hierarchy.
- S_{2}^{1} has polynomial induction PIND, equivalently length induction (LIND), for Σ_{1}^{b} formulas A (i.e., NP formulas):

$$
A(0) \wedge(\forall x)(A(x) \rightarrow A(x+1)) \rightarrow(\forall x) A(|x|)
$$

(1) Provably total functions of S_{2}^{1} :

- The $\forall \Sigma_{1}^{\mathrm{b}}$-definable functions (aka: provably total functions) are precisely the polynomial time computable functions.
- PV: equational theory over polynomial time functions. [C'75] $\mathrm{S}_{2}^{1}(\mathrm{PV})$ is conservative over both S_{2}^{1} and PV.
(2) Translation to propositional logic ("Cook translation") Any polynomial identity ($\forall \Sigma_{0}^{\mathrm{b}}$-property) provable in PV / S_{2}^{1}, has a natural translation to a family F of propositional formulas. These formulas have polynomial size extended Frege (eF) proofs.
(3) S_{2}^{1} proves the consistency of $e \mathcal{F}$. Conversely, any propositional proof systems (p.p.s.) S_{2}^{1} proves is consistent(provably) polynomially simulated by $e \mathcal{F}$.
(4) Lines (formulas) in an e \mathcal{F} proof correspond to Boolean circuits. The circuit value problem is complete for P (polynomial time).
Polynomial time functions (P)
Π_{2}-consequences:
Provably total
functions
Equational \& First-order theories of bounded arithmetic

Example of Cook translation $\mathrm{S}_{2}^{1}, \mathrm{eF}, \mathrm{PHP}$.

The first-order theory \mathbf{S}_{2}^{1} proves:
$(\forall x, n)$ ["The bits of x do not code an incidence matrix of a
bipartite graph on $[n+1] \cup[n]$ violating the Pigeonhole Principle $\mathrm{PHP}_{n}^{n+1 "}$]

Propositional translations $\mathrm{PHP}_{n}^{n+1}:(n \geq 1)$
$\bigwedge_{i=0}^{n} \bigvee_{j=0}^{n-1} p_{i, j} \rightarrow \bigvee_{i=0}^{n-1} \bigvee_{i^{\prime}=i+1}^{n} \bigvee_{j=0}^{n-1}\left(p_{i, j} \wedge p_{i^{\prime}, j}\right)$

The propositional variables $p_{i, j}$ correspond to the bits of the first-order variable x.

Cook translation yields:
The PHP_{n}^{n+1} formulas have polynomial size $e \mathcal{F}$ proofs. [CR]

The Cook Translation from $S_{2}^{1}(\mathrm{PV})$ to e \mathcal{F}

[Cook'75] introduced an equational theory PV of polynomial time functions. And, characterized the logical strength of PV in terms of provability in extended Frege ($e \mathcal{F}$).

- For a polynomial time identity $f(x)=g(x)$, define a family of propositional formulas $\llbracket f=g \rrbracket_{n}$.
- $\llbracket f=g \rrbracket_{n}$ expresses that $f(x)=g(x)$ for all x with $|x|<n$.
- The variables in $\llbracket f=g \rrbracket_{n}$ are the bits x_{0}, \ldots, x_{n-1} of x.
- If $\mathrm{PV} \vdash f(x)=g(x)$, then the formulas $\llbracket f=g \rrbracket_{n}$ have polynomial size extended Frege proofs. [Cook'75]
These results all lift to $S_{2}^{1} \ldots$

To describe the Cook translation for S_{2}^{1} :

- Suppose $A(x) \in \Sigma_{0}^{b}$ (sharply bounded) and $\mathrm{S}_{2}^{1} \vdash \forall x A(x)$.
- For $n>0$, form $\llbracket A \rrbracket_{n}$ as a polynomial size Boolean formula.
- $\llbracket A \rrbracket_{n}$ has Boolean variables x_{0}, \ldots, x_{n-1} representing the bits of x, where $|x| \leq n$.
- $\llbracket A \rrbracket_{n}$ expresses that " $A(x)$ is true".

Rather than formally define $\llbracket A \rrbracket$, we give an example (on the next slide).

Remark: A similar construction works if all polynomial time functions are added to the language and we work with $S_{2}^{1}(\mathrm{PV})$. In this case, $\llbracket f=g \rrbracket_{n}$ needs to use extension variables to define the result of polynomial size circuit computing $f(x)$ and $g(x)$.

For x and a n-bit integers, with bits given by x_{i} 's and a_{i} 's:
$\llbracket x=a \rrbracket_{n}:=\bigwedge_{i=0}^{n-1}\left(x_{i} \leftrightarrow a_{i}\right)$.
$\llbracket x<a \rrbracket_{n}:=\bigvee_{i=0}^{n-1}\left(\left(a_{i} \wedge \neg x_{i}\right) \wedge \bigwedge_{j=i+1}^{n-1}\left(x_{j} \leftrightarrow a_{j}\right)\right)$.
$\llbracket x \leq a \rrbracket_{n}:=\llbracket x<a \rrbracket_{n} \vee \llbracket x=a \rrbracket_{n}$
i-th bit of $x-1$: $\quad(x-1)_{i}: \Leftrightarrow\left(x_{i} \leftrightarrow \bigvee_{j=0}^{i-1} x_{j}\right) \wedge \llbracket x \neq 0 \rrbracket_{n}$
i-th bit of $|x|: \quad \bigvee_{j \leq n,(j)_{i}=1}\left(x_{j} \wedge \bigvee_{k=j+1}^{n} \neg x_{k}\right)$
$\llbracket(\forall a \leq|x|)(a-1<x) \rrbracket_{n}:=\bigwedge_{a=0}^{n}\left(\llbracket a \leq|x| \rrbracket_{n} \rightarrow \llbracket a-1 \leq x \rrbracket_{n}\right)$.
The sharply bounded quantifier $(\forall a \leq|x|)$ becomes a conjunction. Each of the $n+1$ values for a is "hardcoded" with constants for its bits.

Theorem (essentially [Cook'75])

If $\mathrm{S}_{2}^{1} \vdash(\forall x) A(x)$, where $A(x)$ is in Δ_{0}^{b} (or a polynomial time identity), then the tautologies $\llbracket A(x) \rrbracket_{n}$ have polynomial size extended Frege proofs.

Proof construction: Witnessing Lemma again. (Proof omitted.)

Theorem ([Cook'75])

- $\mathrm{S}_{2}^{1} \vdash \operatorname{Con}(e \mathcal{F})$ (the consistency of e \mathcal{F}).
- For any propositional proof system \mathcal{G}, if $\mathrm{S}_{2}^{1} \vdash \operatorname{Con}(\mathcal{G})$, then e \mathcal{F} p-simulates \mathcal{G}.

That is, $e \mathcal{F}$ is the strongest propositional proof system whose consistency is provable by S_{2}^{1}.

Generalizations to S_{2}^{i} and T_{2}^{i}.

Work in quantified propositional logic, with Boolean quantifiers $(\forall q),(\exists q)$ ranging over $\{T, F\}$. Sequent calculus rules now include

$$
\frac{\Gamma \rightarrow \Delta, A(B)}{\Gamma \rightarrow \Delta,(\exists q) A(q)} \quad \frac{A(q), \Gamma \rightarrow \Delta}{(\exists q) A(q), \Gamma \rightarrow \Delta}
$$

where B is any formula, and q appears only as indicated. (Similar rules for \forall.)

- Let G_{i} be the fragment in which only \sum_{i}^{B}-formulas may occur.
- G_{i} proofs are dag-like.
- Let G_{i}^{*} be G_{i} restricted to use tree-like proofs.

Theorem (Krajiček-Pudlák'90, Cook-Morioka'05)

Let $i \geq 1$. Analogously to S_{2}^{1} and e \mathcal{F},

- S_{2}^{i} corresponds to G_{i}^{*}.
- T_{2}^{i} corresponds to G_{i}.

Propositional proof systems $(\mathcal{F}, e \mathcal{F}, \ldots)$

Frege proofs (\mathcal{F}) : Sequent calculus propositional system.
Equivalent to a 'textbook style' proof system using modus ponens.
Extended Frege proofs $(e \mathcal{F})$: Frege systems augmented with extension rule allowing (iterated) introduction of new variables x abbreviating formulas:

Extension axiom: $\quad x \leftrightarrow \varphi$.
AC ${ }^{\mathbf{0}}$-Frege, aka constant-depth Frege: Frege proofs over \wedge, \vee, \neg with a constant bound on the number of alternations of \wedge 's and \vee 's. (Negations applied only to variables.)
Quantified sequent calculus QBF with $\forall p, \exists p$ Boolean quantifiers. G_{i} is QBF restricted to i-levels of quantifiers.
Proof size $=$ number of symbols in the proof.
(The purpose of extension is to reduce proof size.)

Open problems:
(1) Does the Frege system (\mathcal{F}) allow polynomial size proofs of tautologies? (Subexponential size?)
(2) Does the Frege system quasipolynomially simulate the extended Frege ($e \mathcal{F}$) system?

- No good combinatorial candidates for separation are known. [BBP,HT,B,AB, ...]
(3) QBF versus $e \mathcal{F}$?
- $\left(e \mathcal{F}\right.$ is equivalent to G_{1}^{*}, i.e., tree-like $\left.\mathrm{G}_{1}\right)$.

More theories with Cook translations

Theories for polynomial space

- PSA - Equational theory for Pspace functions [Dowd'78]
- U_{2}^{1} - Second-order theory for polynomial space [B'85]
- The $\Sigma_{1}^{1, b}$-definable functions of U_{2}^{1} are precisely the PSPACE functions.
- U_{2}^{1} (PSA) is conservative over both U_{2}^{1} and PSA. [**]
- Pspace identities provable in U_{2}^{1} have natural translations to QBF formulas which have polynomial size QBF proofs.
VNC^{1} - Theory for $N C^{1}$.
[Clote-Takeuti'92; Arai'00; Cook-Morioka'05; Cook-Nguyen'10]
- Cook translation to \mathcal{F} proofs.

VL - Theory for L.
[Zambella'96, Perron'05, Cook-Nguyen'10]

- Cook translation to tree-like GL* for $\Sigma-\operatorname{CNF}(2)$ formulas.

VNL - Theory for NL.
[Cook-Kolokolova'03, Perron'09, Cook-Nguyen'10]

- Cook translation is to a tree-like p.p.s. GNL* for \sum-Krom formulas.

Work in progress: New p.p.s.'s eLDT and eLNDT for branching programs and nondeterministic branching programs as Cook translations for VL and VNL. [B-Das-Knop, following Cook]

Formal Theory	Propositional Proof System	Total Functions	
$\mathrm{PV}, \mathrm{S}_{2}^{1}, \mathrm{VPV}$	$e \mathcal{F}, \mathrm{G}_{1}^{*}$	P	$[\mathrm{C}, \mathrm{B}, \mathrm{CN}]$
$\mathrm{T}_{2}^{1}, \mathrm{~S}_{2}^{2}$	$\mathrm{G}_{1}, \mathrm{G}_{2}^{*}$	$\leq_{1-1}(\mathrm{PLS})$	$[\mathrm{B}, \mathrm{KP}, \mathrm{KT}, \mathrm{BK}]$
$\mathrm{T}_{2}^{2}, \mathrm{~S}_{2}^{3}$	$\mathrm{G}_{2}, \mathrm{G}_{3}^{*}$	$\leq_{1-1}(\mathrm{CPLS})$	$[\mathrm{B}, \mathrm{KP}, \mathrm{KT}, \mathrm{KST}]$
$\mathrm{T}_{2}^{i}, \mathrm{~S}_{2}^{i+1}$	$\mathrm{G}_{i}, \mathrm{G}_{i+1}^{*}$	$\leq_{1-1}\left(\mathrm{LLI}_{i}\right)$	$[\mathrm{B}, \mathrm{KP}, \mathrm{KT}, \mathrm{KNT}]$
$\mathrm{PSA}_{1}, \mathrm{U}_{2}^{1}, \mathrm{~W}_{1}^{1}$	QBF	Pspace**	$[\mathrm{D}, \mathrm{B}, \mathrm{S}]$
V_{2}^{1}	$* *$	EXPTIME	$[\mathrm{B}]$
VNC^{1}	Frege $(\mathcal{F})^{\text {ALoGTime }}$	$[\mathrm{CT}, \mathrm{A} ; \mathrm{CM}, \mathrm{CN}]$	
VL	GL	L	$[\mathrm{Z}, \mathrm{P}, \mathrm{CN}]$
VNL	GNL^{*}	NL	$[\mathrm{CK}, \mathrm{P}, \mathrm{CN}]$

PV, PSA - equational theories.
$\mathrm{S}_{2}^{i}, \mathrm{~T}_{2}^{i}$ - first order
$\mathrm{U}_{2}^{1}, \mathrm{~V}_{2}^{1}, \mathrm{VNC}^{1}$, VL, VNL, VPV - second order
Formal Propositional Total

Theory Proof System Functions

$\mathrm{PV}, \mathrm{S}_{2}^{1}, \mathrm{VPV}$	$e \mathcal{F}, \mathrm{G}_{1}^{*}$	P	$[\mathrm{C}, \mathrm{B}, \mathrm{CN}]$
$\mathrm{T}_{2}^{1}, \mathrm{~S}_{2}^{2}$	$\mathrm{G}_{1}, \mathrm{G}_{2}^{*}$	$\leq_{1-1}(\mathrm{PLS})$	$[\mathrm{B}, \mathrm{KP}, \mathrm{KT}, \mathrm{BK}]$
$\mathrm{T}_{2}^{2}, \mathrm{~S}_{2}^{3}$	$\mathrm{G}_{2}, \mathrm{G}_{3}^{*}$	$\leq_{1-1}(\mathrm{CPLS})$	$[\mathrm{B}, \mathrm{KP}, \mathrm{KT}, \mathrm{KST}]$
$\mathrm{T}_{2}^{i}, \mathrm{~S}_{2}^{i+1}$	$\mathrm{G}_{i}, \mathrm{G}_{i+1}^{*}$	$\leq_{1-1}\left(\mathrm{LLI}_{i}\right)$	$[\mathrm{B}, \mathrm{KP}, \mathrm{KT}, \mathrm{KNT}]$
$\mathrm{PSA}, \mathrm{U}_{2}^{1}, \mathrm{~W}_{1}^{1}$	QBF	Pspace**	$[\mathrm{D}, \mathrm{B}, \mathrm{S}]$
V_{2}^{1}	$* *$	EXPTIME	$[\mathrm{B}]$
VNC^{1}	Frege (\mathcal{F})	ALoGTime	$[\mathrm{CT}, \mathrm{A} ; \mathrm{CM}, \mathrm{CN}]$
VL	GL^{*}	L	$[\mathrm{Z}, \mathrm{P}, \mathrm{CN}]$
VNL	GNL^{*}	NL	$[\mathrm{CK}, \mathrm{P}, \mathrm{CN}]$

Using Cook translation to propositional proof systems (p.p.s.'s) $\mathcal{F}, e \mathcal{F}$ - Frege and extended Frege.
G_{i}, QBF - quantified propositional logics.
Starred (${ }^{*}$) propositional proof systems are tree-like.

Formal Theory	Propositional Proof System	Total Functions	
$\mathrm{PV}, \mathrm{S}_{2}^{1}, \mathrm{VPV}$	$e \mathcal{F}, \mathrm{G}_{1}^{*}$	P	$[\mathrm{C}, \mathrm{B}, \mathrm{CN}]$
$\mathrm{T}_{2}^{1}, \mathrm{~S}_{2}^{2}$	$\mathrm{G}_{1}, \mathrm{G}_{2}^{*}$	$\leq_{1-1}(\mathrm{PLS})$	$[\mathrm{B}, \mathrm{KP}, \mathrm{KT}, \mathrm{BK}]$
$\mathrm{T}_{2}^{2}, \mathrm{~S}_{2}^{3}$	$\mathrm{G}_{2}, \mathrm{G}_{3}^{*}$	$\leq_{1-1}(\mathrm{CPLS})$	$[\mathrm{B}, \mathrm{KP}, \mathrm{KT}, \mathrm{KST}]$
$\mathrm{T}_{2}^{i}, \mathrm{~S}_{2}^{i+1}$	$\mathrm{G}_{i}, \mathrm{G}_{i+1}^{*}$	$\leq_{1-1}\left(\mathrm{LLI}_{i}\right)$	$[\mathrm{B}, \mathrm{KP}, \mathrm{KT}, \mathrm{KNT}]$
$\mathrm{PSA}_{2}, \mathrm{U}_{2}^{1}, \mathrm{~W}_{1}^{1}$	QBF	Pspace**	$[\mathrm{D}, \mathrm{B}, \mathrm{S}]$
V_{2}^{1}	$* *$	EXPTIME	$[\mathrm{B}]$
VNC^{1}	Frege $(\mathcal{F})^{\text {ALoGTiME }}$	$[\mathrm{CT}, \mathrm{A} ; \mathrm{CM}, \mathrm{CN}]$	
VL	GL^{*}	L	$[\mathrm{Z}, \mathrm{P}, \mathrm{CN}]$
VNL	GNL^{*}	NL	$[\mathrm{CK}, \mathrm{P}, \mathrm{CN}]$

PLS $=$ Polynomial local search [JPY]
CPLS = "Colored" PLS [ST]
LLI $=$ Linear local improvement

Pause

Next: Paris-Wilkie translation

Second order arithmetic \& Paris-Wilkie translations

Paris-Wilkie translation: is a second kind of translation to propositional logic.

- The Paris-Wilkie translation applies to first-order theories with second-order predicates (free variables, α), essentially oracles.
- Propositional variables now represent values of the second order objects α.
In contrast, the Cook translation uses variables for the bits of first-order objects (the function's inputs).
- Paris-Wilkie translations are most commonly applied to fragments of $I \Delta_{0}(\#, \alpha)$. [P, PW, ...].
α denotes an uninterpreted second-order object (a predicate, or oracle),
and $\#$ is the polynomial growth rate function $x \# y=2^{|x| \cdot|y|}$

Example of Paris-Wilkie translation

Let T be the theory $I \Delta_{0}$ or $I \Delta_{0}(\#)$.
Thm: [PW] If $T(\alpha)$ proves the pigeonhole principle

$$
(\forall x \leq a)(\exists y<a) \alpha(x, y) \rightarrow\left(\exists x<x^{\prime} \leq a\right)(\exists y<a)\left(\alpha(x, y) \wedge \alpha\left(x^{\prime}, y\right)\right)
$$

then PHP_{n}^{n+1} has polynomial (quasipolynomial, resp) size AC^{0}-Frege proofs.

Recall PHP_{n}^{n+1} :

$$
\bigwedge_{i=0}^{n} \bigvee_{j=0}^{n-1} p_{i, j} \rightarrow \bigvee_{i=0}^{n-1} \bigvee_{i^{\prime}=i+1}^{n} \bigvee_{j=0}^{n-1}\left(p_{i, j} \wedge p_{i^{\prime}, j}\right)
$$

Propositional variables $p_{i, j}$ correspond to truth values of $\alpha(x, y)$.

On the other hand, [A,BPI, KPW],
Thm: PHP_{n}^{n+1} requires exponential size AC^{0}-Frege proofs.
Proof idea: apply a Hastad-style switching lemma, to reduce to a proof in which all formulas are decision trees.

Corollary: Neither $I \Delta_{0}$ nor $I \Delta_{0}(\#)$ proves the pigeonhole principle.

But, [PWW,MPW], ...
Thm: $I \Delta_{0}(\#)$ proves the weak pigeonhole principle (replacing " $\exists y<a$ " with " $\exists y<a / 2 ")$.

Corollary: The propositional weak pigeonhole principle $\mathrm{PHP}_{n}^{2 n}$ has quasipolynomial size AC^{0}-Frege proofs.

Theories of arithmetic for Paris-Wilkie translations

A hierarchy of fragments of $I \Delta_{0}(\#):[B]$

- T_{2}^{i} - induction for \sum_{i}^{b} predicates (the i-th level of the polynomial time hierarchy).
- S_{2}^{i} - length induction for \sum_{i}^{b} predicates.
- $\mathrm{S}_{2}^{1} \subseteq \mathrm{~T}_{2}^{1} \preccurlyeq{\forall \Sigma_{2}^{\mathrm{b}}} \mathrm{S}_{2}^{2} \subseteq \mathrm{~T}_{2}^{2} \preccurlyeq_{\forall \Sigma_{3}^{\mathrm{b}}} \mathrm{S}_{2}^{3} \subseteq \mathrm{~T}_{2}^{3} \preccurlyeq \forall \Sigma_{4}^{\mathrm{b}} \cdots$

Thm: [KPT]

- If $\mathrm{T}_{2}^{i}=\mathrm{S}_{2}^{i+1}$, then the polynomial time hierarchy collapses.
- In fact, if $\mathrm{T}_{2}^{i} \preccurlyeq_{\forall \Sigma_{i+2}^{\mathrm{b}}} \mathrm{S}_{2}^{i+1}$, then the polynomial time hierarchy collapses.
- $\mathrm{T}_{2}^{i}(\alpha) \neq \mathrm{S}_{2}^{i+1}(\alpha)$; i.e., relative to an oracle.

$$
\mathrm{S}_{2}^{1}(\alpha) \subseteq \mathrm{T}_{2}^{1}(\alpha) \preccurlyeq_{\forall \Sigma_{2}^{\mathrm{b}}(\alpha)} \mathrm{S}_{2}^{2}(\alpha) \subseteq \mathrm{T}_{2}^{2}(\alpha) \preccurlyeq_{\forall \Sigma_{3}^{\mathrm{b}}(\alpha)} \cdots
$$

	Paris-Wilkie translation	
Formal	Propositional	Total
Theory	Proof System $[\mathrm{K}]$	Functions
$\mathrm{T}_{2}^{1}(\alpha), \mathrm{S}_{2}^{2}(\alpha)$	$* *$	$\leq_{1-1}(\operatorname{PLS}(\alpha))$
$\mathrm{T}_{2}^{2}(\alpha), \mathrm{S}_{2}^{3}(\alpha)$	$\operatorname{res}(\log)$	$\leq_{1-1}(\operatorname{CPLS}(\alpha))$
$\mathrm{T}_{2}^{i}(\alpha), \mathrm{S}_{2}^{i+1}(\alpha)$	depth $\left(\boldsymbol{i}-\frac{3}{2}\right)$-Frege	$\leq_{1-1}\left(\operatorname{LLI}_{i}(\alpha)\right)$

Depth ($n+\frac{1}{2}$)-Frege means LK proofs with formulas having at most $n+1$ alternations, the bottom level having only logarithmic fanin. res $(\log)=$ depth $\frac{1}{2}$-Frege.
Sample application: $\mathrm{T}_{2}^{2} \vdash \mathrm{PHP}_{n}^{2 n}$. Hence, the bit-graph weak PHP has res(log) refutations of quasipolynomial size. Likewise, any sparse instance of the weak PHP. [MPW]

Open problem:
(4) Do the theories $\mathrm{T}_{2}^{i}(\alpha)$ have distinct (increasing) $\forall \Sigma_{0}^{\mathrm{b}}(\alpha)$-consequences?

- Note this would not have any (known) computational complexity implications.
(5) For $i \geq 1$, does depth i-Frege quasipolynomially simulate depth $(i+1)$-Frege with respect to refuting sets of clauses?
- Note that this is the nonuniform version of Question (4).

For (5): Best results to-date are a superpolynomial separation, based on upper and lower bounds for the pigeonhole principle. [IK]

Hastad switching lemma gives exponential separation of expressibility in depth i versus depth $i+1$. (!)
(5) asks: Does this extra expressiveness allow shorter proofs?

Pause

TFNP, Provably total functions

It is also interesting to study the $\forall \Sigma_{1}^{\mathrm{b}}$-consequences of the theories
T_{2}^{i}. These define a subset of the TFNP problems:
Definition: [MP, P] A Total NP Search Problem (TFNP) is a polynomial time relation $R(x, y)$ so that R is

- Total: For all x, there exists y s.t. $R(x, y)$,
- Polynomial growth rate:

If $R(x, y)$, then $|y| \leq p(|x|)$ for some polynomial p.

- The TFNP problem is:

Given an input x, output a y s.t. $R(x, y)$.

Note the solution y may not be unique!

TFNP classes need to come with a proof of totality, usually either a combinatorial principle or a formal proof.

Pigeonhole Principle (PPP) [P]
Input: $x \in \mathbb{N}$ and a purportedly injective $f:[x] \rightarrow[x-1]$.
Output: $a, b \in[x]$ s.t. either $f(a) \notin[x-1]$ or $f(a)=f(b)$.

Parity principle (PPAD) [P]

Input: A directed graph G with in- and out-degrees ≤ 1, and a vertex v of total degree 1 .
Output: Another vertex v^{\prime} of total degree 1 .

Polynomial Local Search (PLS) [JPY]
Input: A directed graph with out-degree ≤ 1, and a nonnegative cost function which strictly decreases along directed edges
Output: A sink vertex.

Proofs in bounded arithmetic also establish TFNP problems:
PLS - same as before
CPLS - PLS with a Herbrandized coNP (Π_{1}^{b}) accepting condition.

RAMSEY

Input: an undirected graph on n nodes.
Output: a clique or co-clique of size $\frac{1}{2} \log n$.
But, now the inputs are coded with a second-order object α.
The output is a first-order object.
Thm. The PLS function is provably total in $\mathrm{T}_{2}^{1}(\alpha)$, and is many-one complete for the provably total relations of $\mathrm{T}_{2}^{1}(\alpha)$. [BK]

Thm. The same holds for CPLS and $\mathrm{T}_{2}^{2}(\alpha)$. [KST]
Thm. $\mathrm{T}_{2}^{3}(\alpha)$ proves the totality of RAMSEY. [P]
See also: Game Induction [ST], Local Improvement [KNT,BB], ...

Open problems:
(6) Do the $\forall \Sigma_{1}^{\mathrm{b}}(\alpha)$ consequences (or, the provably total functions) of T_{2}^{i} form a proper hierarchy (for $i=2,3,4, \ldots$)?
(7) Does $\mathrm{T}_{2}^{2}(\alpha)$ prove the totality of RAMSEY?

The $T_{2}^{3}(\alpha)$ proof of RAMSEY is essentially a refinement of the usual inductive combinatorial proof of the Ramsey theorem (via a reduction to the pigeonhole principle). It appears that proving RAMSEY in $\mathrm{T}_{2}^{2}(\alpha)$ would require a new method proof for Ramsey's theorem.

See also related results and questions for the theory of approximate counting, APC^{2}. [J,KT]

TFNP problems for stronger theories:
Consistency search problem for Frege proofs: [BB]
Input: A (purported) Frege proof of \perp.
Output: A local error in the proof.
Also introduced as the Wrong proof search problem [GP].

Thm.

- The Frege Consistency Search problem is provable in $\mathrm{U}_{2}^{1}(\alpha)$ and many-one complete for its provably total functions. [BB]
- The same holds for extended Frege and $\mathrm{V}_{2}^{1}(\alpha)$. $[\mathrm{K}, \mathrm{BB}]$

Here the input is coded by a second-order object; i.e., algorithms have oracle access to the Frege "proof" and seek a local error.

The "standard" TFNP problems are all included in the Consistency
Search/Wrong Proof search classes for all these theories. [BB, GP]

Finis

Finis

Thank you!

