Bounded Arithmetic II: Propositional Translations

Sam Buss

Caleidoscope Research School Institute Henri Poincaré, Paris June 17-18, 2019

Topics:

- Formal theories of weak fragments of Peano arithmetic
 - First- and second-order theories of bounded arithmetic
- ∀∃ consequences: Provably total functions
 - Computational complexity characterizations
- ∀ consequences: Universal statements
 - Cook translation to propositional logic
 - Paris-Wilkie translation to propositional logic

Underlying philosophy:

- A feasibly constructive proof that a function is total should provide a feasible method to compute it.
- A feasibly constructive proof of a universal statement should provide a feasible method to verify any given instance.

A quote

Cook, 1975, Feasibly constructive proofs and the propositional calculus

A constructive proof of, say, a statement $\forall xA$ must provide an effective means of finding a proof of A for each value of x, but nothing is said about how long this proof is as a function of x. If the function is exponential or super exponential, then for short values of x the length of the proof of the instance of A may exceed the number of electrons in the universe.

Introducing PV and the Cook translation

S_2^1 , PV — Polynomial time — $e\mathcal{F}$ [B'85; C'76]

First-order theory S_2^1 of arithmetic:

- Terms have polynomial growth rate (smash, #, is used).
- Bounded quantifiers $\forall x \leq t$, $\exists x \leq t$.
- Sharply bounded quantifiers $\forall x \leq |t|$, $\exists x \leq |t|$, bound x by log (or length) of t.
- Classes $\Sigma_i^{\rm b}$ and $\Pi_i^{\rm b}$ of formulas are defined by counting bounded quantifiers, ignoring sharply bounded quantifiers.
- Σ₁^b formulas express exactly the NP predicates.
 Σ_i^b, Π_i^b express exactly the predicates at the *i*-th level of the polynomial time hierarchy.
- S_2^1 has polynomial induction PIND, equivalently length induction (LIND), for Σ_1^b formulas A (i.e., NP formulas):

$$A(0) \wedge (\forall x)(A(x) \rightarrow A(x+1)) \rightarrow (\forall x)A(|x|)$$

(1) Provably total functions of S_2^1 :

- · The $\forall \Sigma_1^{\rm b}$ -definable functions (aka: *provably total functions*) are precisely the polynomial time computable functions.
- \cdot PV: equational theory over polynomial time functions. [C'75]
- \cdot $S_2^1(PV)$ is conservative over both S_2^1 and PV.

(2) Translation to propositional logic ("Cook translation")

- Any polynomial identity ($\forall \Sigma_0^{\rm b}$ -property) provable in ${\rm PV} / {\rm S}_2^{\rm 1}$, has a natural translation to a family F of propositional formulas. These formulas have polynomial size extended Frege $(e\mathcal{F})$ proofs.
- (3) S_2^1 proves the consistency of $e\mathcal{F}$. Conversely, any propositional proof systems (p.p.s.) S_2^1 proves is consistent(provably) polynomially simulated by $e\mathcal{F}$.
- (4) Lines (formulas) in an $e\mathcal{F}$ proof correspond to Boolean circuits. The circuit value problem is complete for P (polynomial time).

Example of Cook translation S_2^1 , $e\mathcal{F}$, PHP.

The first-order theory S_2^1 proves:

 $(\forall x, n)$ ["The bits of x do not code an incidence matrix of a bipartite graph on $[n+1] \cup [n]$ violating the Pigeonhole Principle PHP_n^{n+1} "]

Propositional translations PHP_nⁿ⁺¹: $(n \ge 1)$

$$\bigwedge_{i=0}^{n}\bigvee_{j=0}^{n-1}p_{i,j} \rightarrow \bigvee_{i=0}^{n-1}\bigvee_{i'=i+1}^{n}\bigvee_{j=0}^{n-1}(p_{i,j}\wedge p_{i',j})$$

The propositional variables $p_{i,j}$ correspond to the bits of the first-order variable x.

Cook translation yields:

The PHP_nⁿ⁺¹ formulas have polynomial size $e\mathcal{F}$ proofs. [CR]

The Cook Translation from $S_2^1(PV)$ to $e\mathcal{F}$

[Cook'75] introduced an equational theory PV of polynomial time functions. And, characterized the logical strength of PV in terms of provability in extended Frege $(e\mathcal{F})$.

- For a polynomial time identity f(x) = g(x), define a family of propositional formulas $[\![f=g]\!]_n$.
- $\llbracket f = g \rrbracket_n$ expresses that f(x) = g(x) for all x with |x| < n.
- The variables in $[\![f=g]\!]_n$ are the bits x_0,\ldots,x_{n-1} of x.
- If $PV \vdash f(x) = g(x)$, then the formulas $[f = g]_n$ have polynomial size extended Frege proofs. [Cook'75]

These results all lift to S_2^1 ...

To describe the Cook translation for S_2^1 :

- Suppose $A(x) \in \Sigma_0^{\rm b}$ (sharply bounded) and $S_2^1 \vdash \forall x \, A(x)$.
- For n > 0, form $[\![A]\!]_n$ as a polynomial size Boolean formula.
- $[\![A]\!]_n$ has Boolean variables x_0,\ldots,x_{n-1} representing the bits of x, where $|x| \leq n$.
- $[A]_n$ expresses that "A(x) is true".

Rather than formally define $[\![A]\!]$, we give an example (on the next slide).

Remark: A similar construction works if all polynomial time functions are added to the language and we work with $S_2^1(PV)$. In this case, $[\![f=g]\!]_n$ needs to use extension variables to define the result of polynomial size circuit computing f(x) and g(x).

Simple examples of $[A(x)]_n$: $[(\forall a \le |x|)(a-1 < x)]_n$

For x and a n-bit integers, with bits given by x_i 's and a_i 's:

$$\begin{split} \llbracket x = a \rrbracket_n \ := \ \bigwedge_{i=0}^{n-1} \big(x_i \leftrightarrow a_i \big). \\ \llbracket x < a \rrbracket_n \ := \ \bigvee_{i=0}^{n-1} \Big(\big(a_i \wedge \neg x_i \big) \wedge \bigwedge_{j=i+1}^{n-1} \big(x_j \leftrightarrow a_j \big) \Big). \\ \llbracket x \le a \rrbracket_n := \llbracket x < a \rrbracket_n \vee \llbracket x = a \rrbracket_n \\ i\text{-th bit of } x-1: \qquad (x-1)_i \ :\Leftrightarrow \ \Big(x_i \leftrightarrow \bigvee_{j=0}^{i-1} x_j \Big) \wedge \llbracket x \ne 0 \rrbracket_n \\ i\text{-th bit of } \lvert x \rvert : \qquad \bigvee_{j \le n, (j)_i = 1} \Big(x_j \wedge \bigvee_{k=j+1}^{n} \neg x_k \Big) \\ \llbracket (\forall a \le \lvert x \rvert) (a-1 < x) \rrbracket_n \ := \ \bigwedge_{i=0}^{n} \Big(\llbracket a \le \lvert x \rvert \rrbracket_n \rightarrow \llbracket a-1 \le x \rrbracket_n \Big). \end{aligned}$$

The sharply bounded quantifier $(\forall a \le |x|)$ becomes a conjunction. Each of the n+1 values for a is "hardcoded" with constants for its bits.

Theorem (essentially [Cook'75])

If $S_2^1 \vdash (\forall x) A(x)$, where A(x) is in Δ_0^b (or a polynomial time identity), then the tautologies $[\![A(x)]\!]_n$ have polynomial size extended Frege proofs.

Proof construction: Witnessing Lemma again. (Proof omitted.)

Theorem ([Cook'75])

- $S_2^1 \vdash Con(e\mathcal{F})$ (the consistency of $e\mathcal{F}$).
- For any propositional proof system \mathcal{G} , if $S_2^1 \vdash Con(\mathcal{G})$, then $e\mathcal{F}$ p-simulates \mathcal{G} .

That is, $e\mathcal{F}$ is the strongest propositional proof system whose consistency is provable by S_2^1 .

Generalizations to S_2^i and T_2^i .

Work in **quantified propositional logic**, with Boolean quantifiers $(\forall q)$, $(\exists q)$ ranging over $\{T, F\}$. Sequent calculus rules now include

$$\frac{\Gamma \longrightarrow \Delta, A(B)}{\Gamma \longrightarrow \Delta, (\exists q) A(q)} \qquad \frac{A(q), \Gamma \longrightarrow \Delta}{(\exists q) A(q), \Gamma \longrightarrow \Delta}$$

where B is any formula, and q appears only as indicated. (Similar rules for \forall .)

- Let G_i be the fragment in which only Σ_i^B -formulas may occur.
- G_i proofs are dag-like.
- Let G_i^* be G_i restricted to use tree-like proofs.

Theorem (Krajíček-Pudlák'90, Cook-Morioka'05)

Let $i \geq 1$. Analogously to S_2^1 and $e\mathcal{F}$,

- S_2^i corresponds to G_i^* .
- T_2^i corresponds to G_i .

Propositional proof systems $(\mathcal{F}, e\mathcal{F}, ...)$

Frege proofs (\mathcal{F}): Sequent calculus propositional system. Equivalent to a 'textbook style' proof system using modus ponens.

Extended Frege proofs ($e\mathcal{F}$): Frege systems augmented with extension rule allowing (iterated) introduction of new variables x abbreviating formulas:

Extension axiom: $x \leftrightarrow \varphi$.

 AC^0 -Frege, aka constant-depth Frege: Frege proofs over \land, \lor, \neg with a constant bound on the number of alternations of \land 's and \lor 's. (Negations applied only to variables.)

Quantified sequent calculus QBF with $\forall p$, $\exists p$ Boolean quantifiers. G_i is QBF restricted to i-levels of quantifiers.

Proof size = number of symbols in the proof. (The purpose of extension is to reduce proof size.)

Open problems:

- (1) Does the Frege system (\mathcal{F}) allow polynomial size proofs of tautologies? (Subexponential size?)
- (2) Does the Frege system quasipolynomially simulate the extended Frege $(e\mathcal{F})$ system?
 - · No good combinatorial candidates for separation are known. [BBP,HT,B,AB,...]
- (3) QBF versus $e\mathcal{F}$?
 - · ($e\mathcal{F}$ is equivalent to G_1^* , i.e., tree-like G_1).

More theories with Cook translations

Theories for polynomial space

- PSA Equational theory for PSPACE functions [Dowd'78]
- ullet U $_2^1$ Second-order theory for polynomial space [B'85]
- The $\Sigma_1^{1,b}$ -definable functions of U_2^1 are precisely the PSPACE functions.
- $U_2^1(PSA)$ is conservative over both U_2^1 and PSA. [**]
- ullet PSPACE identities provable in U_2^1 have natural translations to QBF formulas which have polynomial size QBF proofs.

VNC^1 - Theory for NC^1 .

[Clote-Takeuti'92; Arai'00; Cook-Morioka'05; Cook-Nguyen'10]

ullet Cook translation to ${\mathcal F}$ proofs.

VL - Theory for L .

[Zambella'96, Perron'05, Cook-Nguyen'10]

• Cook translation to tree-like GL^* for $\Sigma - \operatorname{CNF}(2)$ formulas.

VNL - Theory for NL.

[Cook-Kolokolova'03, Perron'09, Cook-Nguyen'10]

• Cook translation is to a tree-like p.p.s. GNL^* for $\Sigma\text{-Krom}$ formulas.

Work in progress: New p.p.s.'s eLDT and eLNDT for branching programs and nondeterministic branching programs as Cook translations for VL and VNL. [B-Das-Knop, following Cook]

Formal Theory	Propositional Proof System	Total Functions	
PV, S_2^1, VPV	$e\mathcal{F}$, G_1^*	Р	[C, B, CN]
T_2^1, S_2^2	G_1, G_2^*	$\leq_{\scriptscriptstyle 1-1}(\mathrm{PLS})$	[B, KP, KT, BK]
T_2^2 , S_2^3	G_2, G_3^*	$\leq_{\text{1-1}} \text{(CPLS)}$	[B, KP, KT, KST]
T_2^i, S_2^{i+1}	G_i , G_{i+1}^*	$\leq_{\scriptscriptstyle 1 ext{-}1}(\mathrm{LLI}_i)$	[B, KP, KT, KNT]
PSA, U_2^1 , W_1^1	QBF	Pspace**	[D, B, S]
$V_2^{\overline{1}}$	**	EXPTIME	[B]
$ m VNC^1$	Frege (\mathcal{F})	ALogTime	[CT, A; CM, CN]
VL	GL^*	${ m L}$	[Z, P, CN]
VNL	GNL^*	NL	[CK, P, CN]

 PV , PSA - equational theories.

 S_2^i , T_2^i - first order

 $U_2^{2}, V_2^{2}, \text{ VNC}^1, \text{VL}, \text{VNL}, \text{VPV}$ - second order

Formal Theory	Propositional Proof System	Total Functions	
PV, S_2^1 , VPV T_2^1 , S_2^2 T_2^2 , S_2^3 T_2^i , S_2^{i+1} PSA, U_2^1 , W_1^1 V_2^1	$e\mathcal{F}, G_1^*$ G_1, G_2^* G_2, G_3^* G_i, G_{i+1}^* QBF **	P $\leq_{1-1}(PLS)$ $\leq_{1-1}(CPLS)$ $\leq_{1-1}(LLI_i)$ $Pspace^{**}$ $EXPTIME$	[C, B, CN] [B, KP, KT, BK] [B, KP, KT, KST] [B, KP, KT, KNT] [D, B, S] [B]
VNC ¹ VL VNL	Frege (\mathcal{F}) GL^* GNL^*	ALOGTIME L NL	[CT, A; CM, CN] [Z, P, CN] [CK, P, CN]

Using Cook translation to propositional proof systems (p.p.s.'s) $\mathcal{F}, e\mathcal{F}$ - Frege and extended Frege.

 $\mathrm{G}_{i},\,\mathrm{QBF}$ - quantified propositional logics.

Starred (*) propositional proof systems are tree-like

Formal Theory	Propositional Proof System	Total Functions	
PV, S_2^1, VPV	$e\mathcal{F}$, G_1^*	Р	[C, B, CN]
T_2^1, S_2^2	G_1, G_2^*	$\leq_{\scriptscriptstyle 1-1}(\mathrm{PLS})$	[B, KP, KT, BK]
T_2^2 , S_2^3	G_2 , G_3^*	$\leq_{\text{1-1}} \text{(CPLS)}$	[B, KP, KT, KST]
T_2^i, S_2^{i+1}	G_i , G_{i+1}^*	$\leq_{\scriptscriptstyle 1 ext{-}1}(\mathrm{LLI}_i)$	[B, KP, KT, KNT]
PSA, U_2^1 , W_1^1	QBF	Pspace**	[D, B, S]
V_2^1	**	EXPTIME	[B]
$\mathrm{VNC^1}$	Frege (\mathcal{F})	ALogTime	[CT, A; CM, CN]
VL	GL^*	${ m L}$	[Z, P, CN]
VNL	GNL^*	NL	[CK, P, CN]

 $\mathrm{PLS} = \mathsf{Polynomial} \ \mathsf{local} \ \mathsf{search} \ [\mathsf{JPY}]$

 $\mathrm{CPLS} =$ "Colored" PLS [ST]

 $\operatorname{LLI} = \operatorname{\mathsf{Linear}}$ local improvement

Pause

Next: Paris-Wilkie translation

Second order arithmetic & Paris-Wilkie translations

Paris-Wilkie translation: is a second kind of translation to propositional logic.

- The Paris-Wilkie translation applies to first-order theories with second-order predicates (free variables, α), essentially oracles.
- Propositional variables now represent values of the second order objects α .
 In contrast, the Cook translation uses variables for the bits of
 - first-order objects (the function's inputs).
- Paris-Wilkie translations are most commonly applied to fragments of $I\Delta_0(\#, \alpha)$. [P, PW, ...].
 - α denotes an uninterpreted second-order object (a predicate, or oracle),
 - and # is the polynomial growth rate function $x # y = 2^{|x| \cdot |y|}$

Example of Paris-Wilkie translation

Let T be the theory $I\Delta_0$ or $I\Delta_0(\#)$.

Thm: [PW] If $T(\alpha)$ proves the pigeonhole principle

$$(\forall x \leq a)(\exists y < a)\alpha(x,y) \to (\exists x < x' \leq a)(\exists y < a)(\alpha(x,y) \land \alpha(x',y))$$

then PHP_n^{n+1} has polynomial (quasipolynomial, resp) size AC^0 -Frege proofs.

Recall PHP_n^{n+1} :

$$\bigwedge_{i=0}^{n}\bigvee_{j=0}^{n-1}p_{i,j} \ \rightarrow \ \bigvee_{i=0}^{n-1}\bigvee_{i'=i+1}^{n}\bigvee_{j=0}^{n-1}(p_{i,j}\wedge p_{i',j})$$

Propositional variables $p_{i,j}$ correspond to truth values of $\alpha(x,y)$.

On the other hand, [A,BPI,KPW],

Thm: PHP $_n^{n+1}$ requires exponential size AC 0 -Frege proofs.

Proof idea: apply a Hastad-style switching lemma, to reduce to a proof in which all formulas are decision trees.

Corollary: Neither $I\Delta_0$ nor $I\Delta_0(\#)$ proves the pigeonhole principle.

But, [PWW,MPW], ...

Thm: $I\Delta_0(\#)$ proves the weak pigeonhole principle (replacing " $\exists y < a$ " with " $\exists y < a/2$ ").

Corollary: The propositional weak pigeonhole principle PHP_n^{2n} has quasipolynomial size AC^0 -Frege proofs.

Theories of arithmetic for Paris-Wilkie translations

A hierarchy of fragments of $/\Delta_0(\#)$: [B]

- T_2^i induction for Σ_i^b predicates (the *i*-th level of the polynomial time hierarchy).
- S_2^i length induction for Σ_i^b predicates.
- $S_2^1 \subseteq T_2^1 \preccurlyeq_{\forall \Sigma_2^b} S_2^2 \subseteq T_2^2 \preccurlyeq_{\forall \Sigma_3^b} S_2^3 \subseteq T_2^3 \preccurlyeq_{\forall \Sigma_4^b} \cdots$

Thm: [KPT]

- If $T_2^i = S_2^{i+1}$, then the polynomial time hierarchy collapses.
- In fact, if $T_2^i \preccurlyeq_{\forall \Sigma_{i+2}^b} S_2^{i+1}$, then the polynomial time hierarchy collapses.
- $T_2^i(\alpha) \neq S_2^{i+1}(\alpha)$; i.e., relative to an oracle.

$$S_2^1(\alpha) \subseteq T_2^1(\alpha) \preccurlyeq_{\forall \Sigma_2^b(\alpha)} S_2^2(\alpha) \subseteq T_2^2(\alpha) \preccurlyeq_{\forall \Sigma_3^b(\alpha)} \cdots$$

Paris-Wilkie translation				
Formal	Propositional	Total		
Theory	Proof System [K]	Functions		
$T_2^1(\alpha), S_2^2(\alpha)$	**	$\leq_{\scriptscriptstyle 1-1}(\operatorname{PLS}(lpha))$		
$T_2^2(\alpha)$, $S_2^3(\alpha)$	res(log)	$\leq_{\text{11}}(\mathrm{CPLS}(\alpha))$		
$T_2^i(\alpha), S_2^{i+1}(\alpha)$	depth $(i-\frac{3}{2})$ -Frege	$\leq_{\scriptscriptstyle 1 ext{-}1}(\mathrm{LLI}_i(lpha))$		

Depth $(n+\frac{1}{2})$ -Frege means LK proofs with formulas having at most n+1 alternations, the bottom level having only logarithmic fanin. $res(log) = depth \frac{1}{2}$ -Frege.

Sample application: $T_2^2 \vdash PHP_n^{2n}$. Hence, the bit-graph weak PHP has res(log) refutations of quasipolynomial size. Likewise, any sparse instance of the weak PHP. [MPW]

Open problem:

- (4) Do the theories $T_2^i(\alpha)$ have distinct (increasing) $\forall \Sigma_0^b(\alpha)$ -consequences?
 - Note this would not have any (known) computational complexity implications.
- (5) For $i \ge 1$, does depth i-Frege quasipolynomially simulate depth (i+1)-Frege with respect to refuting sets of clauses?
 - · Note that this is the nonuniform version of Question (4).

For (5): Best results to-date are a superpolynomial separation, based on upper and lower bounds for the pigeonhole principle. [IK]

Hastad switching lemma gives exponential separation of expressibility in depth i versus depth i+1. (!) (5) asks: Does this extra expressiveness allow shorter proofs?

Pause

TFNP, Provably total functions

It is also interesting to study the $\forall \Sigma_1^{\rm b}$ -consequences of the theories T_2^i . These define a subset of the TFNP problems:

Definition: [MP, P] A **Total NP Search Problem (TFNP)** is a polynomial time relation R(x, y) so that R is

- Total: For all x, there exists y s.t. R(x, y),
- Polynomial growth rate: If R(x, y), then $|y| \le p(|x|)$ for some polynomial p.
- The TFNP problem is:
 Given an input x, output a y s.t. R(x, y).

Note the solution y may not be unique!

TFNP classes need to come with a proof of totality, usually either a combinatorial principle or a formal proof.

Pigeonhole Principle (PPP) [P]

Input: $x \in \mathbb{N}$ and a purportedly injective $f : [x] \to [x-1]$.

Output: $a, b \in [x]$ s.t. either $f(a) \notin [x-1]$ or f(a) = f(b).

Parity principle (PPAD) [P]

Input: A directed graph G with in- and out-degrees ≤ 1 , and a vertex v of total degree 1.

Output: Another vertex v' of total degree 1.

Polynomial Local Search (PLS) [JPY]

Input: A directed graph with out-degree ≤ 1 , and a nonnegative cost function which strictly decreases along directed edges Output: A sink vertex.

Proofs in bounded arithmetic also establish TFNP problems:

 $\ensuremath{\mathrm{PLS}}$ - same as before

 \mathbf{CPLS} - PLS with a Herbrandized coNP (Π_1^b) accepting condition.

RAMSEY

Input: an undirected graph on *n* nodes.

Output: a clique or co-clique of size $\frac{1}{2} \log n$.

But, now the inputs are coded with a second-order object α . The output is a first-order object.

Thm. The PLS function is provably total in $T_2^1(\alpha)$, and is many-one complete for the provably total relations of $T_2^1(\alpha)$. [BK]

Thm. The same holds for CPLS and $T_2^2(\alpha)$. [KST]

Thm. $T_2^3(\alpha)$ proves the totality of RAMSEY. [P]

See also: Game Induction [ST], Local Improvement [KNT,BB], ...

Open problems:

- (6) Do the $\forall \Sigma_1^b(\alpha)$ consequences (or, the provably total functions) of T_2^i form a proper hierarchy (for $i=2,3,4,\ldots$)?
- (7) Does $T_2^2(\alpha)$ prove the totality of RAMSEY?

The $T_2^3(\alpha)$ proof of RAMSEY is essentially a refinement of the usual inductive combinatorial proof of the Ramsey theorem (via a reduction to the pigeonhole principle). It appears that proving RAMSEY in $T_2^2(\alpha)$ would require a new method proof for Ramsey's theorem.

See also related results and questions for the theory of approximate counting, APC^2 . [J,KT]

TFNP problems for stronger theories:

Consistency search problem for Frege proofs: [BB]

Input: A (purported) Frege proof of \bot .

Output: A local error in the proof.

Also introduced as the **Wrong proof** search problem [GP].

Thm.

- The Frege Consistency Search problem is provable in $U_2^1(\alpha)$ and many-one complete for its provably total functions. [BB]
- The same holds for extended Frege and $V_2^1(\alpha)$. [K, BB]

Here the input is coded by a second-order object; i.e., algorithms have *oracle* access to the Frege "proof" and seek a local error.

The "standard" TFNP problems are all included in the Consistency Search/Wrong Proof search classes for all these theories. [BB, GP]

Finis

Finis

Thank you!