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Topics:

@ Formal theories of weak fragments of Peano arithmetic
o First- and second-order theories of bounded arithmetic
@ V3 consequences: Provably total functions
o Computational complexity characterizations
@ V consequences: Universal statements

o Cook translation to propositional logic
@ Paris-Wilkie translation to propositional logic

Underlying philosophy:

@ A feasibly constructive proof that a function is total should
provide a feasible method to compute it.

@ A feasibly constructive proof of a universal statement should
provide a feasible method to verify any given instance.
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Cook, 1975, Feasibly constructive proofs and the propositional
calculus

A constructive proof of, say, a statement ¥xA must provide
an effective means of finding a proof of A for each value
of x, but nothing is said about how long this proof is as a
function of x. If the function is exponential or super expo-
nential, then for short values of x the length of the proof
of the instance of A may exceed the number of electrons
in the universe.

Introducing PV and the Cook translation
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S5, PV — Polynomial time — eF [B'85; C'76]

First-order theory S} of arithmetic:
@ Terms have polynomial growth rate (smash, #, is used).
@ Bounded quantifiers Vx<t, Ix<t.
@ Sharply bounded quantifiers Vx<|t|, Ix<|t],
bound x by log (or length) of t.

@ Classes Zl? and I'I}? of formulas are defined by counting
bounded quantifiers, ignoring sharply bounded quantifiers.

) 2113 formulas express exactly the NP predicates.

Z}?, I'I}? - express exactly the predicates at the /-th level of the
polynomial time hierarchy.

° S% has polynomial induction PIND, equivalently length
induction (LIND), for X¥ formulas A (i.e., NP formulas):

A(0) A (Vx)(A(x) — A(x+1)) — (Vx)A(]x])
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(1)

Provably total functions of S%:

- The VX ?-definable functions (aka: provably total functions)

are precisely the polynomial time computable functions.

- PV: equational theory over polynomial time functions. [C'75]
- SY(PV) is conservative over both S} and PV.

(2)

Translation to propositional logic (“Cook translation”)

- Any polynomial identity (VX5-property) provable in PV / Si,

(3)

(4)

has a natural translation to a family F of propositional
formulas. These formulas have polynomial size extended Frege
(eF) proofs.

S3 proves the consistency of eF. Conversely, any
propositional proof systems (p.p.s.) S} proves is
consistent(provably) polynomially simulated by eF.

Lines (formulas) in an eF proof correspond to Boolean
circuits. The circuit value problem is complete for P

(polynomial time). g
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Example of Cook translation S%, eF, PHP.

The first-order theory S% proves:

(Vx, n)[“The bits of x do not code an incidence matrix of a
bipartite graph on [n + 1] U [n] violating the Pigeonhole Principle
PHP+1"]

Propositional translations PHP": (n > 1)

n
i=0

The propositional variables p; ; correspond to the bits of the
first-order variable x.

—1 n

1 n n—1
pij = V' ViiAeey)
0

i=0 i'=i+1 j=0

n—

j=

Cook translation yields:
The PHP”*! formulas have polynomial size eF proofs. [CR]
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The Cook Translation from S3(PV) to eF

[Cook'75] introduced an equational theory PV of polynomial time
functions. And, characterized the logical strength of PV in terms
of provability in extended Frege (eF).
@ For a polynomial time identity f(x) = g(x), define a family of
propositional formulas [f=g],.
o [f=g], expresses that f(x) = g(x) for all x with |x| < n.
@ The variables in [f=g], are the bits xp, ..., x,—1 of x.
o If PV I f(x)=g(x), then the formulas [f=g],, have
polynomial size extended Frege proofs. [Cook'75]

These results all lift to S3 ...
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To describe the Cook translation for S3:
@ Suppose A(x) € Xb (sharply bounded) and S} I Vx A(x).
@ For n> 0, form [A], as a polynomial size Boolean formula.

@ [A],, has Boolean variables xg, . .., xn—1 representing the bits
of x, where |x| < n.

@ [A], expresses that "A(x) is true”.

Rather than formally define [A], we give an example (on the next
slide).

Remark: A similar construction works if all polynomial time
functions are added to the language and we work with S3(PV). In
this case, [f=g], needs to use extension variables to define the
result of polynomial size circuit computing f(x) and g(x).
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Simple examples of JA(x)], : [(Va<|x|)(a—1 < x)],

For x and a n-bit integers, with bits given by x;'s and a;'s:
n—1

[x=a], := .i\o(x,-<—>a,-).
[e<al, = Vi ((arn-m)n A (g o 2).
Jj=i+1

[x<al, = x < al, VIx=al,

i-th bit of x — 1:  (x—1); & (x, < ViZ OXJ) A [x#£0],
i-th bit of |x|: Vi<n()m1 (XJ AVizjn —|xk)

[(Vasix)a-1<x], = A (la=lxll, - [a-12x],).

a=0
The sharply bounded quantifier (Va<|x|) becomes a conjunction.
Each of the n+1 values for a is “hardcoded” with constants for its
bits.
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Theorem (essentially [Cook'75])

If S3 = (Vx)A(x), where A(x) is in Ay (or a polynomial time
identity), then the tautologies [A(x)], have polynomial size
extended Frege proofs.

Proof construction: Witnessing Lemma again. (Proof omitted.)

Theorem ([Cook'75])

o S+ Con(eF) (the consistency of eF).

@ For any propositional proof system G, if S3 = Con(G), then
eF p-simulates G.

That is, eF is the strongest propositional proof system whose
consistency is provable by S%.
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Generalizations to S and T%.

Work in quantified propositional logic, with Boolean quantifiers
(Vq), (3q) ranging over {T, F}. Sequent calculus rules now

include
r—A,A(B) A(q),T—A
r—A4,(39)A(q) (39)A(q),T—A
where B is any formula, and g appears only as indicated. (Similar
rules for V.)

@ Let G; be the fragment in which only Z}B—formulas may occur.
@ G; proofs are dag-like.
o Let G be G;j restricted to use tree-like proofs.

Theorem (Kraji¢ek-Pudlak'90, Cook-Morioka'05)

Let i > 1. Analogously to S} and eF,
o Sk corresponds to G¥.

o T} corresponds to G;.
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Propositional proof systems (F, eF, ...)

Frege proofs (F): Sequent calculus propositional system.
Equivalent to a ‘textbook style’ proof system using modus ponens.

Extended Frege proofs (eF): Frege systems augmented with
extension rule allowing (iterated) introduction of new variables x
abbreviating formulas:

Extension axiom: X .

ACP-Frege, aka constant-depth Frege: Frege proofs over
A, V,— with a constant bound on the number of alternations of
N's and V's. (Negations applied only to variables.)

Quantified sequent calculus QBF with Vp, 3p Boolean
quantifiers. G; is QBF restricted to i-levels of quantifiers.

Proof size = number of symbols in the proof.
(The purpose of extension is to reduce proof size.)
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Open problems:

(1) Does the Frege system (F) allow polynomial size proofs of
tautologies? (Subexponential size?)

(2) Does the Frege system quasipolynomially simulate the
extended Frege (eF) system?

- No good combinatorial candidates for separation are known.
[BBP,HT,B,AB,...]

(3) QBF versus eF?
- (eF is equivalent to Gj, i.e., tree-like Gy).
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More theories with Cook translations

Theories for polynomial space
@ PSA - Equational theory for PSPACE functions [Dowd'78]
@ U} - Second-order theory for polynomial space [B'85]

@ The Zi’b—definable functions of U% are precisely the PSPACE
functions.

o UJ(PSA) is conservative over both U} and PSA. [*¥]

o PSPACE identities provable in U} have natural translations to
QBF formulas which have polynomial size QBF proofs.
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VNC! - Theory for NCI.
[Clote-Takeuti'92; Arai'00; Cook-Morioka'05; Cook-Nguyen'10]

@ Cook translation to F proofs.

VL - Theory for L.
[Zambella'96, Perron’'05, Cook-Nguyen'10]

@ Cook translation to tree-like GL* for ¥ — CNF(2) formulas.

VNL - Theory for NL.
[Cook-Kolokolova'03, Perron’09, Cook-Nguyen'10]

@ Cook translation is to a tree-like p.p.s. GNL* for ¥-Krom
formulas.

Work in progress: New p.p.s.'s eLDT and eLNDT for branching
programs and nondeterministic branching programs as Cook
translations for VL and VNL. [B-Das-Knop, following Cook]
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Formal Propositional Total

Theory Proof System Functions
PV, S}, VPV  eF, GI P [C, B, CN]
Ti, S3 G1, G} <.,(PLS) [B, KP, KT, BK]
T3, S3 Go, G <..(CPLS) [B, KP, KT, KST]
T}, ShH Gi, Gi 4 <u(LLL) [B, KP, KT, KNT]
PSA, U3, Wi QBF Pspace** D, B, S]
\'; ok EXPTIME [B]
VNC! Frege (F)  ALocTmME |[CT, A; CM, CN]
VL GL* L [Z, P, CN]
VNL GNL* NL [CK, P, CN]

PV, PSA - equational theories.
5, Th - first order
U3, Vi, VNCL, VL, VNL, VPV - second order
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Formal Propositional Total
Theory Proof System Functions
PV, S}, VPV eF, Gi P [C, B, CN]
Ti, S3 G1, G} <.,(PLS) [B, KP, KT, BK]
T3, S3 Go, G3 <,.(CPLS) [B, KP, KT, KST]
T}, ShH Gi, Gi 4 <u(LLL) [B, KP, KT, KNT]
PSA, U3, Wi QBF Pspace** D, B, S]
\'; ok EXPTIME [B]
VNC! Frege (F)  ALocTmME |[CT, A; CM, CN]
VL GL* L [Z, P, CN]
VNL GNL* NL [CK, P, CN]

Using Cook translation to propositional proof systems (p.p.s.’s)
F,eF - Frege and extended Frege.

G;, QBF - quantified propositional logics.
Starred (*) propositional proof systems are tree-like.
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Formal Propositional Total

Theory Proof System Functions
PV, S}, VPV  eF, GI P [C, B, CN]
Ti, S3 G1, G} <.,(PLS) [B, KP, KT, BK]
T3, S3 Go, G <..(CPLS) [B, KP, KT, KST]
T}, ShH Gi, Gi 4 <u(LLL) [B, KP, KT, KNT]
PSA, U3, Wi QBF Pspace** D, B, S]
\'; ok EXPTIME [B]
VNC! Frege (F)  ALocTmME |[CT, A; CM, CN]
VL GL* L [Z, P, CN]
VNL GNL* NL [CK, P, CN]

PLS = Polynomial local search [JPY]
CPLS = “Colored” PLS [ST]
LLI = Linear local improvement
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Pause

Next: Paris-Wilkie translation
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Second order arithmetic & Paris-Wilkie translations

Paris-Wilkie translation: is a second kind of translation to
propositional logic.
@ The Paris-Wilkie translation applies to first-order theories with
second-order predicates (free variables, «), essentially oracles.

@ Propositional variables now represent values of the second
order objects .
In contrast, the Cook translation uses variables for the bits of
first-order objects (the function’s inputs).

@ Paris-Wilkie translations are most commonly applied to
fragments of /Ag(#, ). [P, PW, ..].

« denotes an uninterpreted second-order object (a predicate,
or oracle),

and # is the polynomial growth rate function x#y = 2xI'lY|
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Example of Paris-Wilkie translation

Let T be the theory IAg or IAg(#).
Thm: [PW] If T(«) proves the pigeonhole principle
(Vx<a)(Jy<a)alx,y) — (Ix<x'<a)(Iy<a)(alx,y) Aa(x,y))

then PHPZ+1 has polynomial (quasipolynomial, resp) size
ACO-Frege proofs.

Recall PHP/*1:

n
i=0

Propositional variables p; j correspond to truth values of a(x,y).

n— -1 n

1 n n—1
pij — \V  V(pijrpig)
0

j= i=0 i'=i+1 j=0
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On the other hand, [A,BPI,KPW],
Thm: PHP"! requires exponential size AC°-Frege proofs.

Proof idea: apply a Hastad-style switching lemma, to reduce to a
proof in which all formulas are decision trees.

Corollary: Neither /A nor [Ag(#) proves the pigeonhole
principle.

But, [PWW,MPW], ..

Thm: [Ag(#) proves the weak pigeonhole principle (replacing
“Jy<a’ with “Jy<a/2").

Corollary: The propositional weak pigeonhole principle PHP%” has
quasipolynomial size AC°-Frege proofs.
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Theories of arithmetic for Paris-Wilkie translations

A hierarchy of fragments of /Ay(#): [B]
o T% - induction for £ predicates (the i-th level of the
polynomial time hierarchy).
° Sé - length induction for Z],? predicates.
® 53 C T3 <yxp S3.C T3 <uxy 83 C T3 <ym

Thm: [KPT]
o If Té = Séﬂ, then the polynomial time hierarchy collapses.
@ In fact, if Té ;<sz+2 S;H, then the polynomial time hierarchy
collapses.

o Th(a) # S5 (a); i.e., relative to an oracle.
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S3(a) € T3(a) <vEb(a) S5(a) C T3(a) Svsb(a)

Paris-Wilkie translation

Formal Propositional Total
Theory Proof System [K] Functions
T3(), S5(e) ok <., (PLS())
T3(a), S3(a) res(log) <,1(CPLS(a))

Th(), Sit'()  depth (i—3)-Frege <, (LLI;(c))

Depth (n+3)-Frege means LK proofs with formulas having at most
n+1 alternations, the bottom level having only logarithmic fanin.
res(log) = depth %—Frege.

Sample application: T3 - PHP2". Hence, the bit-graph weak PHP
has res(log) refutations of quasipolynomial size. Likewise, any
sparse instance of the weak PHP. [MPW]
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Open problem:
(4) Do the theories Th(x) have distinct (increasing)
VEp(a)-consequences?
- Note this would not have any (known) computational
complexity implications.
(5) For i > 1, does depth i-Frege quasipolynomially simulate
depth (i+1)-Frege with respect to refuting sets of clauses?
- Note that this is the nonuniform version of Question (4).

For (5): Best results to-date are a superpolynomial separation,
based on upper and lower bounds for the pigeonhole principle. [IK]

Hastad switching lemma gives exponential separation of

expressibility in depth i versus depth i+1. (1)
(5) asks: Does this extra expressiveness allow shorter proofs?
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Pause
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TFENP, Provably total functions

It is also interesting to study the VZ'f—consequences of the theories
T5. These define a subset of the TFNP problems:

Definition: [MP, P] A Total NP Search Problem (TFNP) is a
polynomial time relation R(x, y) so that R is

@ Total: For all x, there exists y s.t. R(x,y),

@ Polynomial growth rate:
If R(x,y), then |y| < p(|x|) for some polynomial p.

@ The TFNP problem is:
Given an input x, output a y s.t. R(x,y).

Note the solution y may not be unique!
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TFNP classes need to come with a proof of totality, usually either
a combinatorial principle or a formal proof.

Pigeonhole Principle (PPP) [P]
Input: x € N and a purportedly injective f : [x] — [x—1].
Output: a, b € [x] s.t. either f(a) ¢ [x—1] or f(a) = f(b).

Parity principle (PPAD) [P]

Input: A directed graph G with in- and out-degrees < 1,
and a vertex v of total degree 1.

Output: Another vertex v/ of total degree 1.

Polynomial Local Search (PLS) [JPY]
Input: A directed graph with out-degree < 1, and a nonnegative
cost function which strictly decreases along directed edges
Output: A sink vertex.
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Proofs in bounded arithmetic also establish TFNP problems:

PLS - same as before
CPLS - PLS with a Herbrandized coNP (M%) accepting condition.

RAMSEY
Input: an undirected graph on n nodes.
Output: a clique or co-clique of size % log n.

But, now the inputs are coded with a second-order object a.
The output is a first-order object.

Thm. The PLS function is provably total in T3(a), and is
many-one complete for the provably total relations of T3(«a). [BK]

Thm. The same holds for CPLS and T3(a). [KST]
Thm. T3(a) proves the totality of RAMSEY. [P]

See also: Game Induction [ST], Local Improvement [KNT,BB], ...
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Open problems:

(6) Do the YZ®(«) consequences (or, the provably total
functions) of T% form a proper hierarchy (for i = 2,3,4,...)7

(7) Does T3(«) prove the totality of RAMSEY?

The T3(a) proof of RAMSEY is essentially a refinement of the
usual inductive combinatorial proof of the Ramsey theorem (via a
reduction to the pigeonhole principle). It appears that proving
RAMSEY in T3(«) would require a new method proof for
Ramsey's theorem.

See also related results and questions for the theory of approximate
counting, APC?. [J,KT]
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TFNP problems for stronger theories:

Consistency search problem for Frege proofs: [BB]
Input: A (purported) Frege proof of L.
Output: A local error in the proof.

Also introduced as the Wrong proof search problem [GP].

Thm.

@ The Frege Consistency Search problem is provable in U3(a)
and many-one complete for its provably total functions. [BB]

@ The same holds for extended Frege and V3(a). [K, BB]

Here the input is coded by a second-order object; i.e., algorithms
have oracle access to the Frege “proof” and seek a local error.

The “standard” TFNP problems are all included in the Consistency
Search/Wrong Proof search classes for all these theories. [BB, GP]
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Finis
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Finis

Thank you!
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