
Bounded Arithmetic I: Provably Total Functions

Sam Buss

Caleidoscope Research School
Institute Henri Poincaré, Paris

June 17-18, 2019

Sam Buss Bounded Arithmetic I:

A quote

Stephen Cook, 1975, Feasibly constructive proofs and the
propositional calculus

A constructive proof of, say, a statement ∀xA must provide
an effective means of finding a proof of A for each value
of x, but nothing is said about how long this proof is as a
function of x. If the function is exponential or super expo-
nential, then for short values of x the length of the proof
of the instance of A may exceed the number of electrons
in the universe.

In the paper introducing PV and the Cook translation

Sam Buss Bounded Arithmetic I:

Bounded arithmetic gives a rich perspective on and a different
approach to fundamental questions in computational complexity
from the point of view of mathematical logic.

It joins the study of

feasible computability and complexity

with questions about

provability and axiomatizability.

with close connections to

propositional proof complexity.

Sam Buss Bounded Arithmetic I:

Bounded Arithmetic Theories Si2 and Ti
2 and more.

Weak feasible fragments of Peano arithmetic, and Primitive
Recursive Arithmetic. Formulated with restricted induction
axioms.

Have close connections to “feasible” complexity classes (e.g.,
P, polynomial time; (non-)deterministic logspace, L,NL;
alternating log time, ALogTime), and near-feasible
complexity classes (e.g., Polynomial Local Search, PLS; the
polynomial time hierarchy or PSPACE).

Have close connections to propositional proof systems.

Have close connections to open problems in computational
complexity. (E.g., P versus NP, the polynomial time
hierarchy, the existence of pseudorandom number generators,
and the hardness of TFNP, Total NP search problems).

Sam Buss Bounded Arithmetic I:

First-/second-order
theories of

bounded arithmetic

Π2-consequences:
Provably total

functions

Π1-consequences:
Translations to

propositional logic

Sam Buss Bounded Arithmetic I:

First-/second-order
theories of

bounded arithmetic

Π2-consequences:
Provably total

functions

Π1-consequences:
Translations to

propositional logic

Computational
complexity

Propositional
proof complexity

Sam Buss Bounded Arithmetic I:

First-/second-order
theories of

bounded arithmetic

Π2-consequences:
Provably total

functions

Π1-consequences:
Translations to

propositional logic

Computational
complexity

Propositional
proof complexity

Propositional
proof search
(SAT solvers)

Sam Buss Bounded Arithmetic I:

First-/second-order
theories of

bounded arithmetic

Π2-consequences:
Provably total

functions

Π1-consequences:
Translations to

propositional logic

Computational
complexity

Propositional
proof complexity

Propositional
proof search
(SAT solvers)

Sam Buss Bounded Arithmetic I:

First-order bounded arithmetic, bounded quantifiers

Language of bounded arithmetic includes:

0, S , +, ·, ≤, |x |, ⌊12x⌋, x#y , MSP(x , i).

where

|x | := length of binary representation of x .

x#y := 2|x |·|y |; so |x#y | = |x | · |y |+ 1.
MSP(x , i) := ⌊x/2i ⌋. (“most significant part”)

Symbols for Peano Arithmetic plus:

x#y gives polynomial growth rate functions.

MSP gives simple sequence coding using binary
representation.

|x | and ⌊12x⌋ - facilitate “feasible” forms of induction.

Sam Buss Bounded Arithmetic I:

Definition

Bounded Quantifier: of the form (∀x≤t) or (∃x≤t).

Sharply Bounded Quantifier: of the form (∀x≤|t|) or
(∃x≤|t|).

Definition

A formula is bounded or sharply bounded provided all its
quantifiers are bounded or sharply bounded (resp.).

Definition (Quantifier alternation classes)

∆b

0 = Σb

0 = Πb

0 : Sharply bounded formulas
Σb

i+1: Closure of Πb

i under existential bounded quantification and
arbitrary sharply bounded quantification, modulo prenex
operations.

Πb

i+1 is defined dually.

Sam Buss Bounded Arithmetic I:

Connections with polynomial time and the polynomial time
hierarchy:

All terms t(x) have polynomial growth rate: |t(x)| = |x |O(1).

Sharply bounded formulas (∆b

0 = Σb

0 = Πb

0) are polynomial
time predicates.

Σb

1-formulas define exactly NP properties.

Πb

1-formulas define exactly coNP properties.

Σb

i - and Πb

i -formulas define exactly the predicates in the
classes Σp

i and Πp
i at the i -th level of the polynomial time

hierarchy.

Sam Buss Bounded Arithmetic I:

Why include # (smash)?

Gives terms of polynomial growth rate; hence connections
with the polynomial time hierarchy.

Gives the growth rate needed for convenient arithmetization
of metamathematics. (E.g., the operation of substitution
requires polynomial growth rate.)

Gives a quantifier exchange property (together with MSP)

(∀x<|t|)(∃y<s)A(x , y) → (∃w<t#s)(∀x<|t|)A(x , (w)x)

for suitable Gödel decoding function (·)x

Sam Buss Bounded Arithmetic I:

Axioms for bounded arithmetics:

Basic: A set of open (quantifier-free) statements defining simple
properties of the function symbols. For example,

x + (y + z) = (x + y) + z MSP(x ,S(i)) = ⌊12MSP(x , i)⌋.

Induction axioms: Letting A range over Φ-formulas,

Φ-IND: A(0) ∧ (∀x)(A(x) → A(x+1)) → (∀x)A(x).

Φ-PIND: A(0) ∧ (∀x)(A(⌊12x⌋) → A(x)) → (∀x)A(x).

Φ-LIND: A(0) ∧ (∀x)(A(x) → A(x+1)) → (∀x)A(|x |).

Φ-PIND and Φ-LIND are “polynomially feasible” versions of
induction.

Sam Buss Bounded Arithmetic I:

The theories Si2 and T
i
2

Definition (Fragments of bounded arithmetic, B’85)

Si2: Basic + Σb

i -PIND.
Ti
2: Basic + Σb

i -IND.

S2 = ∪iS
i
2 and T2 = ∪iT

i
2.

Note: T2 is essentially I∆0 +Ω1. [Parikh’71, Wilkie-Paris’87]

Theorem (B’85, B’90)

(a) S12 ⊆ T1
2 4∀Σb

2
S22 ⊆ T2

2 4∀Σb

3
S32 ⊆ · · ·

(b) Thus, S2 = T2.

Sam Buss Bounded Arithmetic I:

Proof that Ti
2 ⊃ S

i
2:

Lemma

Σb

i -PIND follows from Σb

i -LIND (over Basic, i ≥ 1).

Proof: (Sketch) To prove PIND for A(x), (with c a free variable)

A(0) ∧ (∀x)(A(⌊12x⌋) → A(x)) → A(c)

use LIND on B(i) := A(t(i)) for t(i) := MSP(c , |c |−i).
For this, note B(0) and B(|c |) are equivalent to A(0) and A(c).
Also, t(i) = ⌊12 t(i+1)⌋, so (∀i)(B(i) → B(i+1)) follows from
(∀x)(A(⌊12x⌋) → A(x)). �

Corollary

Si2 ⊂ Ti
2, for i ≥ 1.

Sam Buss Bounded Arithmetic I:

Provably total functions and Σb

i -definable functions

Definition

A function f : N → N is provably total in a theory R provided
there is a formula Af (x , y) satisfying

Af (x , y) defines the graph of f (x) = y

R proves (∀x)(∃!y)Af (x , y)

Af is polynomial time computable.

Definition

f is Σb

1-definable by R , provided there is a Σb

1-formula A(x , y)
such that

R ⊢ (∀x)(∃y≤ t)A(x , y) for some term t.

R ⊢ (∀x , y , y ′)(A(x , y) ∧ A(x , y ′) → y = y ′).

A(x , y) defines the graph of f .

“Σb

i -definable” is defined similarly, but allowing A ∈ Σb

i .

Sam Buss Bounded Arithmetic I:

Σb

1 -definability is more important than Σb

1-definability.

Theorem

Any Σb

1-definable function in Si2 or Ti
2 can be introduced

conservatively into the language of the theory with its defining
axiom, and be used freely in induction formulas.

Theorem (B’85)

S12 can Σb

1-define every polynomial time function.

(The converse holds too, as is discussed later.)

Hence, we can w.l.o.g. assume that all polynomial time functions
are present in the language of any bounded arithmetic theory
containing S12..

Similar definitions and results hold for predicates.

Sam Buss Bounded Arithmetic I:

Main Theorem for S12

The converses of the last theorems also hold: S12 can Σb

1-define
exactly the polynomial time functions.

Theorem (Main Theorem for S12, B’85)

Suppose f is Σb

1-defined by S12. Then f is computable in
polynomial time.

In fact, S12 can prove f is computed by a polynomial time Turing
machine.

The corresponding theorem for predicates:

Theorem

The ∆b

1-definable predicates of S12 are precisely the predicates that
are S12-provably in P.

These show S12 has proof-theoretic strength corresponding to
polynomial time computation.

Sam Buss Bounded Arithmetic I:

The proof of the “Main Theorem for S12” uses a “witnessing”
argument.

Applying cut elimination, there is a sequent calculus proof P
of the sequent

→(∃y≤t(c))A(c , y).

in which every formula is Σb

1 .

The sequent calculus proof P can be read as a computer
program for computing a y as a function c , together with a
proof of correctness of the program.

The program has polynomial runtime.

The PIND inferences in the proof P correspond to for-loops.

The next slides spell out some of the details....

Sam Buss Bounded Arithmetic I:

Intuition for the proof of the “Main Theorem for S12”

Using free-cut elimination, we have a proof in which every line
has the form Γ→∆:

A1,A2, . . . ,Ak→B1,B2, . . . ,Bℓ

in which every formula is Σb

1 .

Then prove that, for each such sequent, there is a polynomial
time function

f (u1, . . . , uk) = 〈j , v〉,

which given ui ’s witnessing the outer existential quantifiers of
the Ai ’, produces a pair (j , v) so that v witnesses the
outermost quantifier of Bj .

Sam Buss Bounded Arithmetic I:

It considerably simplifies the proof to work with special subclasses
of prenex formulas:

Strict Σb

i formulas (sΣb

i): Of the form

(∃x1≤t1)(∀x2≤t2) · · · (Qxi≤ti)B(~x),

where B is sharply bounded. (And subformulas of these.)

Sharply strict Σb

i formulas (ssΣb

i): Of the form

(∃x1≤t1)(∀x2≤t2) · · · (Qxi≤ti)(Qxi+1≤|ti+1|)B(~x),

where B is quantifier free. (And subformulas of these.)

Proposition:

Every Σb

i formula is equivalent to an ssΣb

i formula (provably
in S12).

Si2 may be equivalently formalized with ssΣb

i -PIND (i ≥ 1).

Sam Buss Bounded Arithmetic I:

To prove the witnessing theorem, by free-cut elimination, it suffices
to consider sequent calculus proofs in which every formula is an
ssΣb

1-formula.

Definition

Let A(~c) be ssΣb

1 . The predicate WitA(~c , u) is defined so that

If A is (∃x≤t)B(~c , x), B ∈ ∆b

0 , then WitA(~c , u) is the formula
u ≤ t ∧ B(~c , u).

If A is in ∆b

0 , then WitA(~c , u) is just A(~c).

We have immediately

Fact: A(~c) ↔ (∃u)WitA(~c , u).

Fact: WitA is a ∆b

0-formula (and thus polynomial time).

Sam Buss Bounded Arithmetic I:

Theorem (Witnessing Lemma for S12)

Suppose S12 proves sequent

A1,A2, . . . ,Ak→B1,B2, . . . ,Bℓ

of ssΣb

1 formulas with free variables ~c, then there is a Σb

1-definable
function f (~c , ~u) which is provably computable in polynomial time
such that S12 proves

If
∧

i
WitAi

(~c , ui) then f (~c , ~u) = 〈j , v〉 where WitBj
(~c , v).

I.e.,
∧

i
WitAi

(~c , ui)→
∨

j
[(f (~c , ~u))1=j ∧ Witj(~c , (f (~c , ~u))2)] .

(Subscripts “1” and “2” represent the Gödel beta function.)
The Witnessing Lemma will be proved by induction on the number
of lines in a free-cut free S12-proof P of Γ→∆.

The Main Theorem for S12 is an immediate corollary. (�)

Sam Buss Bounded Arithmetic I:

The Witnessing Lemma proof

Case (1): Last inference is ∃ ≤:right.

Γ→∆,A(~c , s)

s ≤ t, Γ→∆, (∃x ≤ t)A(~c , x)

The formula A is ss∆b

0 . The induction hypothesis gives a
function f , which accepts witnesses for Γ and produces a witness
either making a formula in ∆ true or indicating A(~c , s) true.
Modify f , so that in the latter case, it returns 〈ℓ, s〉.

g(~c , u) =

{

f (~c , cdr(u)) if (f (~c , cdr(u)))1 < ℓ

〈ℓ, s(~c)〉 if (f (~c , cdr(u)))1 = ℓ.

(The “cdr” operation strips the first entry from a sequence.)

Sam Buss Bounded Arithmetic I:

Case (2): Last inference is ∃ ≤:left.

b ≤ t,A(~c , b), Γ→∆

(∃x ≤ t)A(~c, x), Γ→∆

where A is ss∆b

0 . Let f be given by the induction hypothesis.
Define g by

g(~c , u) = f (~c , (u)1, 〈0〉 ∗ u)

(The “∗” operation is sequence concatenation: The “0” serves to
witness b ≤ t.)

Sam Buss Bounded Arithmetic I:

Case (3): Last inference is a Cut.

Γ→∆,C C , Γ→∆

Γ→∆

where C is an ssΣb

1-formula. The induction hypothesis gives two
functions f and g for the upper sequents. We compose them to
form

h(~c , ~u) =

{

f (~c , ~u) if (f (~c ,~)1 < ℓ)

g(~c , 〈(f (~c , ~u))2〉 ∗ ~u) otherwise

In other words, if the first function, f , gives a witness for C instead
of ∆, then this is used to apply the second function, g .

Sam Buss Bounded Arithmetic I:

Case (4): Last inference is PIND.

A(⌊12b⌋), Γ→∆,A(b)

A(0), Γ→∆,A(t)

where A ∈ ssΣb

1 . This is handled by iterating the construction for
Cut.

h(~c , b, u) =

{

h(~c , ⌊12b⌋, u) if (h(~c , ⌊12b⌋, u))1 < ℓ

f (~c , b, 〈(h(~c , ⌊12b⌋, u))2〉 ∗ cdr(u)) otherwise

and h(~c , 0, u) = 〈ℓ, (u)1〉. h can be defined by limited iteration on
notation and is polynomial time computable relative to f .
Then set g(~c , u) = h(~c , t(~c), u).

Other cases omitted; the only nontrivial case remaining is ∀:right.
Q.E.D. Witnessing Lemma and Theorem.

Sam Buss Bounded Arithmetic I:

Generalizations to i > 1.

Theorem (B’85)

Let i ≥ 1. Si2 can Σb

i -define every function which is polynomial
time computable with an oracle from Σp

i−1.

Recall that for i = 1 this gave just the polynomial time functions.

Conversely:

Theorem (Main Theorem for Si2, B’85)

Let i ≥ 1. Suppose f is Σb

i -defined by Si2. Then f is computable in

PΣp
i−1, that is, in polynomial time with an oracle for Σp

i−1.

Sam Buss Bounded Arithmetic I:

Recall:
S
1
2 ⊆ T

1
2 4∀Σb

2
S
2
2 ⊆ T

2
2 4∀Σb

3
S
3
2 ⊆ · · ·

Theorem (B’90)

Let i ≥ 1.

1. S
i+1
2 is ∀∃bi+1-conservative over Ti

2.

2. In particular, Ti
2 can Σb

i+1 define precisely the functions in

PΣb

i .

Proof idea:

First show that Ti
2 can Σb

i+1 define the functions in PΣb

i .

Second, show that Ti
2 can prove (each instance of) the

Witnessing Lemma for Si+1
2 .

Theorem (Kraj́ıček-Pudlák-Takeuti’91, B’95, Zambella’96)

If Ti
2 = S

i+1
2 , then the polynomial time hierarchy collapses

(provably) — to Σp
i+1/poly and to B(Σb

i+2).

Sam Buss Bounded Arithmetic I:

Pause

Next: The Σb

1-definable functions of T1
2 are the PLS functions.

Sam Buss Bounded Arithmetic I:

Polynomial Local Search (PLS)

Inspired by Dantzig’s algorithm and other local search algorithms:

Definition (JPY’88.)

A PLS problem consists of polynomial time functions: N(x , s),
i(x), and c(x , s), polynomial time predicate F (x , s), and

polynomial bound b(x) ≤ 2|x |
O(1)

such that

0. ∀x(F (x , s) → s ≤ b(x)).

1. ∀x(F (x , i(x))).

2. ∀x(N(x , s) = s ∨ c(x ,N(x , s)) < c(x , s)).

3. ∀x(F (x , s) → F (x ,N(x , s))).

The input is x .
A solution is a point s such that F (x , s) and N(x , s) = s.

i - initial point. c - cost function. N - neighbor function.
A solution is a local minimum where F holds.

Sam Buss Bounded Arithmetic I:

Polynomial Local Search (PLS) — and more generally, any
Σb

1-definable function of a theory of bounded arithmetic —
are special kinds of TFNP, Total NP Search, Problems:

Definition (Poljak-Turźık-Pudlák’82, JPY’88, Papadimitriou’94)

TFNP, the class of Total NP Functions is the set of polynomial
time relations R(x , y) such that R(x , y) implies |y | = |x |O(1) and
such that R is total, i.e., for all x , there exists y s.t. R(x , y).

Sam Buss Bounded Arithmetic I:

T
1
2 and PLS [B-Kraj́ıček’94]

A Polynomial Local Search PLS is formalized in S12 provided its
feasible set, initial point function, neighborhood function, and cost
function are Σb

1-defined (as polynomial time functions).

Theorem

T1
2 can prove that any (formalized) PLS problem is total.

Proof: By Σb

1-minimization, T1
2 can prove there is a minimum cost

value c0 satisfying

(∃s ≤ b(x))(F (x , s) ∧ c(x , s) = c0).

Choosing s that realizes the cost c0 gives either a solution to the
PLS problem or a place where the PLS conditions are violated. �

Sam Buss Bounded Arithmetic I:

Theorem (B-Kraj́ıček’94)

If A ∈ Σb

1 and T1
2 ⊢ (∀x)(∃y)A(x , y), then there is a PLS

problem R such that T1
2 proves

(∀x)(∀y)(R(x , y) → A(x , (y)1)).

If A ∈ ∆b

1 , then can replace “(y)1” with just “y”.

This gives an exact complexity characterization of the
∀Σb

1-definable functions of T1
2, in terms of PLS-computability.

Namely:

Theorem

The Σb

1-definable (multi)functions of T1
2 are precisely the

projections of PLS functions.

Open: Can T1
2 witness PLS problems using single-valued

Σb

1-definable functions?

Sam Buss Bounded Arithmetic I:

Theorem (Witnessing Lemma)

If Γ→∆ is a T1
2-provable sequent of ssΣb

1 formulas with free
variables ~c, then there is a PLS problem R(〈~c , ~u〉, v) so that T1

2

proves
WitΓ(~c , ~u) ∧ R(〈~c , ~u〉, v) → Wit∆(~c , v).

Proof idea: Use a free-cut free T1
2-proof, proceed by induction on

number of inferences in the proof. Arguments are similar to to
what was used to prove the witnessing lemma for Si2 (i = 1 case).
Most cases just require closure of PLS under polynomial time
operations. However, induction (Σb

1-IND inference) now requires
exponentially long iteration: this is handled via the exponentially
many possible cost values. �

Sam Buss Bounded Arithmetic I:

Pause

Sam Buss Bounded Arithmetic I:

Second order theories U1
2 and V1

2

For polynomial space and exponential time

Sam Buss Bounded Arithmetic I:

We now consider theories of bounded arithmetic formulated in a
second-order language.

Second-order variables X ,Y ,Z , . . . or α, β, γ, These range
over sets of integers.

Viewed computationally, such an X can be viewed as an
oracle.

Notation: t∈X is usually written as X (t).

Second-order variables implicitly have polynomial bounds on
their members. This corresponds to the fact that there is a
polynomial upper bound on the size of oracle queries to X .

Sam Buss Bounded Arithmetic I:

Relativized versions of Si2 and Ti
2

Definition (Σb

i (α) and Πb

i (α))

Σb

i (α) and Πb

i (α) are defined exactly like Σb

i and Πb

i but now
allowing atomic formulas α(t).

Definition

Si2(α) is: Basic + Σb

i (α)-PIND.

Ti
2(α) is: Basic + Σb

i (α)-IND.

S2(α) = T2(α) = ∪iT
i
2(α).

Theorem

The Σb

1(α)-definable functions of S12(α) are precisely the
functions in P

α (so α is an oracle).

The Σb

1(α)-definable functions of T1
2(α) are precisely the

projections of PLSα functions.

Sam Buss Bounded Arithmetic I:

A Hierarchy of Second-Order Formulas.

Definition (B’85)

The Σ1,b
0 = Π1,b

0 formulas are the formulas with bounded first
order quantifiers, but no unbounded quantifiers and no
second-order quantifiers.

(For i ≥ 0.) The class of Σ1,b
i+1 contains the formulas of the

form (∃~X)A(~X) for A in Π1,b
i . We also close under

conjunction and disjunction.

The class of Π1,b
i+1-formulas is defined dually.

Informally: We count second-order quantifiers, disregard
first-order quantifiers, and disallow unbounded quantifiers.

Remark: The Σ1,b
1 -formulas define exactly the predicates in

NEXPTIME (nondeterministic exponential time).

Sam Buss Bounded Arithmetic I:

The theories U1
2 and V

1
2

Definition (B’85)

U1
2 is Basic+Σ1,b

0 -CA + Σ1,b
1 -PIND.

V1
2 is Basic+Σ1,b

0 -CA + Σ1,b
1 -IND.

where Σ1,b
0 -CA (Comprehension on bounded formulas) is

(∃α)[(∀x)(α(x) ↔ A(x , ~y , ~β))],

for all Σ1,b
0 -formulas A(x , ~y , ~β).

Theorem (B’85)

The Σ1,b
1 -definable functions

of U1
2 are precisely the PSPACE-functions,

of V1
2 are precisely the EXPTIME-functions.

Sam Buss Bounded Arithmetic I:

Summary of theories above

Definability
Theory Axioms Definable functions type

S12 Σb

1-PIND Poly. time (P) Σb

1-definable
T1
2 Σb

1-IND Poly. Local Search (PLS) Σb

1-definable

U1
2 Σ1,b

1 -PIND PSPACE Σ1,b
1 -definable

V1
2 Σ1,b

1 -IND EXPTIME Σ1,b
1 -definable

Si2 Σb

i -PIND P
Σb

i−1 Σb

i -definable

Ti
2 Σb

i -IND PLS
Σb

i−1 Σb

i -definable

S
i+1
2 and Ti

2 have the same Σb

i -definable functions and the same
Σb

i+1-definable functions.

Sam Buss Bounded Arithmetic I:

Second order theories VNC
1, VL and VNL

For ALogTime, L and NL

Sam Buss Bounded Arithmetic I:

Weak second-order theories for weaker complexity
[Takeuti’91, Ignjatovic’95, Zambella’96, ..., Cook-Nguyen’10]
These second-order theories use
(a) first-order objects playing the role of sharply bounded objects,
(b) second-order objects playing the role of inputs and outputs.
Base theory V0 has comprehension and induction for bounded
first-order formulas (with second order free variables).

Theories for ALogTime (uniform NC
1): [CT, A, CM, CN]

Complexity class NC
1 - properties expressible by polynomial

size Boolean formulas.

VNC
1 - is V0 plus axioms asserting the totality of the

Boolean Formula Value Problem or log-bounded tree
recursion. These are in NC

1 [B] and complete for NC
1.

Provably total functions are precisely the functions of
polynomial growth rate with NC

1 bit graph.

Sam Buss Bounded Arithmetic I:

Theories for L (log space) [Z, P, CN]

VL - is V0 plus axioms asserting the totality of log-bounded
recursion.

Provably total functions are precisely the log-space
computable functions.

Theories for NL (nondeterministic log space) [CK, P, CN]

VNL - is V0 plus axioms asserting the existence of a distance
predicate for graph reachability.

Provably total functions are precisely the polynomial growth
rate functions with NL bit graph.

Sam Buss Bounded Arithmetic I:

End of third part!

Fourth part will discuss: Translations to propositional proofs.

Sam Buss Bounded Arithmetic I:

