Proof Complexity I:

Introduction to propositional proof complexity

Sam Buss

Caleidoscope Research School
Institute Henri Poincaré, Paris
June 17-18, 2019

Sam Buss Proof Complexity |



This talk discusses:

Proof systems:
Frege proofs, extended Frege proofs, abstract proof systems,
resolution, cutting planes, nullstellensatz, the polynomial calculus.

The extension rule:
Frege versus extended resolution (equivalent to extended Frege).
Resolution versus extended resolution

Interpolation and lower bounds:
Resolution.

Cutting planes.

Automatizability and conditional lower bounds.
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Propositional logic, satisfiability, tautologies

Propositional formulas:
@ Variables: Range over True/False.
@ Literal: Variables and negated variables.

@ Formulas: Formed from variables/literals, and propositional
connectives, such as A, V, —, .

@ CNF, DNF - Conjunctive/Disjunctive Normal Form Formulas.
Satisfiability and Validity:

@ A formula ¢ is a tautology iff every truth assignment makes
© true.

@ A formula ¢ is satisfiable iff some truth assignment makes ¢
true.

@ ( is unsatisfiable iff =@ is a tautology.
@ It is NP-hard to determine satisfiability/validity of ¢.

@ One way to establish unsatisfiability is to give a proof of —.
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The Frege proof system F is a “textbook-style” propositional
proof system with Modus Ponens as its only rule of inference.

Variables: x, y, z,... range over True/False.
Connectives: —, A, V, —.
Modus Ponens: So—qzﬂ

Axiom Schemes: ¢ — Y — ¢
(=) > (p—=v—=x)=(p—=X)
o= = pNY
A —
PNy =
and 5 more axiom schemes.

Defn: The size of a Frege proof is the number of symbols in the
proof. F I ¢ means ¢ has an F proof of size m.
The size of a formula is the number of symbols in the formula.
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Thm: F is sound and complete.
In fact: F is implicationally sound and implicationally complete.

Implicational Soundness and Completeness:
There is an F-proof of ¢ from hypotheses I iff ' E .
In particular, every tautology has an F-proof.

Pf idea: Formalize the method of truth tables; i.e., try all truth
assignments.

More generally, a Frege system is specified by any finite complete
set of Boolean connectives and finite set of axiom schemes and
rule schemes, provided it is implicationally sound and
implicationally complete.
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By completeness, every tautology has an Fproof.

Open problem: Is there a polynomial p(n) such that every
tautology ¢ has an F-proof of size < p(n), where n is the size of .
That is, is F polynomially bounded?

The answer is the same for all Frege systems, in that any two
Frege systems “p-simulate” each other.
[Reckhow'76; Cook-Reckhow'79]
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Defn: An abstract proof system is a polynomial time function f
mapping {0,1}* onto the set of tautologies.

w is an f-proof of ¢ iff f(w) = ¢.

The size of w is |w/, i.e. the length of w.

Example: For the Frege system F:

Fr(w) = the last line of w if w is an F-proof
T (x Vv x) otherwise

Similar constructions allow very strong systems, e.g. ZF set theory,
to be abstract proof systems.

Thm. [CR'79] There ia polynomially bounded abstract proof
system iff NP = CONDP.

Proof idea: The set of tautologies is CONP-complete.
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Defn: [ess. Tseitin '68] Extension allows introduction of new
variables for formulas; namely the extension rule:

zZ & p

where z is a variable not appearing in earlier lines the proof, in ¢,
or in the last line of the proof.

The extended Frege system (eF) is Frege (F) plus the
extension rule.

Thm. [Statman7] I 7 . Steps ¢, then ¢ has a eF-proof of size
O(m + |p|?), that is eF 1Clmtlel)

Thus the size of extended Frege proofs is essentially the same as
the number of lines in Frege proofs.

Proof idea: Introduce extension variables for the formulas in the
Frege proof; thereby reduce all lines to constant size with only a
linear increase in the number of lines in the proof. [J
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Using extension allows succinct representation of Boolean
circuits C, by introducing an extension variable for each gate in C.
Thus, in effect:

@ A Frege proof is a proof in which each line is a Boolean
formula.

@ An extended Frege proof is a proof in which each line is a
Boolean circuit.

It is conjectured that circuits cannot be converted into polynomial
size equivalent formulas; the corresponding conjecture is that F
does not (p-)simulate eF. [Cook-Reckhow'79]

There is no known direct connection between these conjectures:

@ Formulas might polynomially represent circuits, yet this might
not be provable with F proofs.

@ Conversely, F might simulate e by some other means.
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The pigeonhole principle as a propositional tautology

Let [n] ={0,...,n—1}.
Let i's range over members of [n+1] and j's range over [n].

Tot] = \/ xjj. “Total at "
J€ln]
Inji = /\ (X, j A Xppj).  “Injective at j"
0<ii<i<n
PHPIH! = (A Tot7 A A Injp).
i€[n+1] J€[n]

PHP”*! is a tautology.

Thm: PHP”! has polynomial size eF proofs. [Cook-Reckhow'79]
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Cook-Reckhow’s eF proof of PHP"'?

Code the graph of f : [n+ 1] — [n] with
variables x; ; indicating that f(i) = .

PHP?™1(X): “f is not both total and injective” "

Use extension to introduce new variables n—1e
£1<—>x \/(Ifl/\xf,_j) n—2e
fori </, j<{, wherex--<—>x,-,j.
Let PHPEJrl be over variables x,J i
Prove, for each ¢ that . 2
-PHP/™ (%) — —PHPY_,(x71). 1 o1
Finally derive PHP?™1(x) from PHP3(x!). O 0 0
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Theorem (Cook-Reckhow '79)

PHPZJrl has polynomial size extended Frege proofs.

Sam Buss Proof Complexity |



Theorem (Cook-Reckhow '79)

PHPZJrl has polynomial size extended Frege proofs.

Theorem (B '87)

PHP”*! has polynomial size Frege proofs.
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Theorem (Cook-Reckhow '79)

PHPZJrl has polynomial size extended Frege proofs.

Theorem (B '87)

PHP”*! has polynomial size Frege proofs.

Theorem (B '15)

PHP™! has quasipolynomial size Frege proofs.
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Polynomial size F proofs of PHP""* [B'86]

Proof is based on counting.

@ There are polynomial-size formulas for vector addition. For
m, n € N, input variables define the n bits of m integers. The
n + log m formulas CSA , , define the bits of their sum.
Based on carry-save-addition circuits.

@ F can prove elementary facts about sums of vectors of
integers as computed with CSA formulas and “2-3" adder
trees

Proof sketch: (F) Assume PHP”"! is false. Proceed by “brute
force induction” on i’ < n+ 1 to prove that

@ The number of j < n such that \/;,_,, pij is greater than or

equal to /.
@ The number of j < n such that Vigi/ pij is less than or equal
to i’
Conclude by obtaining a contradiction n+ 1 < n. O

Sam Buss Proof Complexity |



Cook-Reckhow's proof of PHP”*! as a Frege proof [B'15

]

Let G be the directed graph with: n
edges ((i,0), (j, 1)) such that x; ; holds, and
edges ((/, 1), (i+1,0)) such that i>¢ (blue edges).e
+1
For i</, j</¥, let gpﬁj express
“Range node (j, 1) is reachable
from domain node (i,0) in G*".

cpffj is a quasi-polynomial size formula via an NC2 i ¢ (
definition of reachability.

. 2
For each ¢, prove that ) -
—-PHP/ (&) — -PHP)_, (). . .

Finally derive PHP"*1(X) from PHP2(&').O
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Thus, PHP™™! no longer provides evidence for Frege not
quasipolynomially simulating eF.

[Bonet-B-Pitassi'94] “Are there hard examples for Frege?":
examined candidates for separating Frege and eF. Very few were
found:

@ Cook's AB =1 = BA =1, Odd-town theorem, etc.
Now known to have quasipolynomial size F-proofs, by proving
matrix determinant properties with NC? formulas.
[Hrubes-Tzameret'15; Tzameret-Cook' ?77]

@ Frankl’s Theorem
Also quasi-polynomial size F proofs. [Aisenberg-B-Bonet'15]

[Kotodziejczyk-Nguyen-Thapen'11]: Local improvement principles,
mostly settled by [Beckmann-B'14], RLI; still open.
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Abstract Proof Systems

Defn: Let f, g be abstract proof systems.

f simulates g if there is a polynomial g(n) s.t., whenever

g(w) = @, thereis a v, |v| < q(|w|) such that f(v) =

f p-simulates g if there is a polynomial-time computable h(w),
such that, whenever g(w) = ¢, we have f(h(w)) = ¢

f is polynomially bounded if, for some polynomial g(n), every
tautology ¢ has an f-proof w of size < q(|¢]).

1. Any two Frege systems p-simulate each other.

2. Any two eF systems p-simulate each other.

3. Extended Frege systems p-simulate Frege systems.

4. It is open whether F simulates eF.

5. It is open whether F of eF is polynomially bounded.

6. It is open whether there is an abstract proof system which
p-simulates all abstract proof systems.
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Frege systems with
substitution

T~ Tseitin

Frege systems
natural deduction
Gentzen with cut

Gentzen system
without cut

iresolut‘un

Systems below
this line have
provable non-
polynemial

proof lengths

regular resolution

Davis-Putnam
procedure

* Tseitin

~
M tree resolution
semantic trees

R.A. Reckhow, PhD thesis, 1975

am Buss

Cook’s Program: Prove NP#coNP
by proving there is no polynomially
bounded propositional proof system.

As of 1975: Systems above the line
were not known to not be
polynomially bounded.
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Frege systems with
As of 2015, proof systems
below the line are known to

not be polynomially bounded:

Tl Taeitin

Frege systems T
natural deduction
Gentzen with cut

¥

7 « 0
Gentzen system iresolutwn Constant-depth (AC") Frege
withsus sut [Ajtai’88: Pitassi-Beame-Impagliazzo*93:
Krajicek-Pudlak-Woods'95]

1
L}
I
1
L cssesssssss s st ssraReTa
[Haken'86] — i
|
I
I
1
|

Constant-depth Frege

with counting mod m axioms
[Ajtai'94:
Beame-Imp:
Impagliazzo-Krajicel
Grigoriev'98]

Systems below
this line have
provable non-
polynomial

proof lengths

regular resolution

tjicek-Pitassi-Pudlak'96; B-
udlak-Razborov-Sgall'96;

Davis-Putnam
procedure

* Fseitin Cutting Planes

[Pudlak’97]

~
M tree resolution
semantic trees

Nullstellensatz
[B-Impagliazzo-Krajicek- Pudlak-Razborov-Sgall 96;
Grigoriev'98]

Polynomial calculus

[Razborov'98; Impagliazzo-Pudlak-Sgall’99:
Ben-Sasson-Impagliazzo’99:

R.A. Reckhow, PhD thesis, 1975 B-Grigoriev-lmpagliazzo-Pitassi’ 96;
B-Impagliazzo-Krajicek- Pudlak-Razborov-Sgall'96;
Alekhnovich-Razborov'01]
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Resolution

Resolution is a refutation system, refuting sets of clauses. Thus,
resolution is a system for refuting CNF formulas, equivalently, a
system for proving DNF formulas are tautologies.

A literal is a variable x or a negated variable x.

A clause is a set of literals, interpreted as their disjunction
A set I of clauses is a CNF formula

x, C x, D

Resolution rule:
cubD

@ A resolution refutation of [ is a derivation of the empty
clause from clauses in T.

This allows resolution to be a proof system for DNF formulas.

Thm: Resolution is sound and complete (for CNF refutations)
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Defn: Extension rule for resolution: For x and y literals, and
letting z be a new variable, introduce z <+ (x A y) by adding the
clauses:

xy.zp  Azxp  {Zy}

Resolution as an abstract proof system: Given ¢, introduce
clauses I' for the extension variables z, for all subformulas 1) of .
A resolution proof of ¢ is a resolution refutation of Z,,I'.
Extended resolution is resolution augmented with unrestricted
use of the extension rule.

Thm: Extended resolution and extended Frege p-simulate each
other.
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Can the extension rule help resoution?

Yes, extension helps resolution; Since PHP”*! has polynomial
size eF proofs and since:

Thm: [Haken'86, Raz'02, Razborov'03, many others]
The pigeonhole principle (PHP) requires resolution proofs of size
2" (even PHPY for m > n).

For PHP”*1, a similar bound can be proved for constant-depth
Frege proofs.

Thm: [BIKPPW'92]
Depth d Frege proofs of PHPZJrl require size 2" where € = e(d).

Def’n Constant depth Frege proofs are formulated using the sequent calculus,
with only connectives A, V applied to literals.

The depth of a Boolean formula is the number of alternations of A's and V's.

The depth of a proof is the max depth of its formulas.
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Proof method for PHP""! resolution lower bound

Proof uses two ingredients.

Def’n. Let I' be an unsatisfiable set of clauses.

RESLEN(I) is the minimum number of steps in a resolution
refutation of I.

RESWIDTH(IN) is the minimum width of a resolution refutation
of I', where "width” is the maximum number of literals in any
clause.

Theorem (Ben-Sasson, Wigderson'01)

If T is a k-CNF over n variables, then

(RESWIDTH(I) — k)2)

ResLen(T") > exp (Q( -
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The RESLEN - RESWIDTH tradeoff cannot be used directly with
PHP”*1 since the Tot” clauses are large and thus force k to be
large.

But, sparse PHP can be used instead.
For G a bipartite graph on [n+ 1] & [n], replace Tot! with

G-Tot] := \/ x. “Totalati"
(ij)eG

For G a constant degree graph with suitable expansion properties,
we have RESWIDTH(G-PHP?1) is w(n).
[Ben-Sasson,Wigderson] Hence

Theorem (Haken'86, Ben-Sasson,Wigderson'01)

G-PHP™ and hence PHP*! requires resolution proofs of length
exp(Q(n)).
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Craig Interpolation

[Bonet-Pitassi-Raz'95, Razborov'95, Krajitek'97, Pudldk'97]

Defn: Suppose A(p, ) A B(q, F) is unsatisfiable, where A and B
depend only on the variables indicated.
A Craig interpolant for this formula is a predicate C(r) such that

o If =C(r), then A(p,r) is unsatisfiable.
o If C(r), then B(q, ) is unsatisfiable.
e Equivalently, A(p,r) — C(r) and C(r) — —B(q,r) are both
tautologies.
Thm: A Craig interpolant always exists when A(p, ) A B(g, 1) is
unsatisfiable.
Pf: Take C(r) to be either

@P)A(p, ) or  (V4)-B(d, 7).

However, the Craig interpolant may not be a feasible predicate of 7.
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Craig interpolant: (3P)A(p, 7) or (V§)—-B(q,r).

Theorem (Krajitek'97)

Suppose a set of clauses A(p, ), B(q,r) has a resolution refutation
of size m, and that variables " all appear only positively in the
clauses in A(p, r) or only negatively in the clauses in B(q,r).

Then, there is a Craig interpolant which is computed by a
monotone Boolean circuit of size O(m).

A monotone circuit is constructed from literals r;, 7 and A and V.
If the refutation is tree-like, the interpolant is a monotone Boolean
formula.

Application: The clique-coloring principles require exponential size
resolution refutations.

CLIQUE-COLORING PRINCIPLE: A graph cannot have both a size
m clique and a size m — 1 coloring.
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Proof of the Craig interpolation property:
A resolution refutation R transforms directly to a monotone circuit.

Each clause C in R corresponds to a gate gc.
Cisan A(p,r) clause gc =1
Cisa B(q,r) clause gc:=T
C,pi D,pi/ C,D  gcp = gcp V 8D
C,qi D,qi / C,D  gcp = &cp M 8Dpi
C,r;, D,vi/ C,D gcp = (ri V gcr;) N 8pr, or
gco = gcr; V (ri A\ ),

depending on whether 7 is
monotone in A or in B.

Invariant: gc computes an interpolant that is correct for any
assignment falsifying C. O
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Clique Coloring clauses

Variables: a € [m], c € [m—1], and i <j € n.
- Pa,i - node i is the a-th member of a clique.
* gj,c - node i has color c.
- rij - there is a edge joining edges i and j.

A(p, ) clauses: (Clique of size m)
-V, pa,i - for each a € [m]
- PaiVPai-fora<a e[m]ic]n]
- Pai V Py Vrij - for distinct a,a" € [m], distinct i, j € [n].

B(q, ) clauses: (Coloring of size m—1)
-V, Gic-forieln].
“Gic Vo - fora<c e[m=-1], i€ [n].
- Gi.c V@jc V Fij - for distinct ¢ € [m—1], distinct i < j € [n].

The monotonicity hypothesis holds for both A(p, ) and B(4, ).
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Theorem [Krajitek'97] Any resolution refutation of the

1/2

clique-coloring tautology for m = n*/< requires size guw(n®/*),

Proof: This is a corollary to the Craig interpolation theorem just
proved, and the known exponential lower bounds on the size of
monotone Boolean circuits that distinguish between graphs with
large cliques and graphs with large colorings.

[Razborov'85, Alon Boppana'87]

The variables 7" encode a graph G.

C(r) is false means: A(p, r) is unsatisfiable, i.e., G does not have
a clique of size m.

C(r) is true means: B(4, r) is unsatisfiable, i.e., G does not have
an m—1 coloring.

Any monotone Boolean circuit for C must be large. O
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Cutting planes proofs

Variables xi, x2, ... are 0/1 valued (0="False”, 1="True").

Lines in a cutting planes proof are linear inequalities with integer
coefficients:

aixy + asxo + -+ apxp = ap.

Clauses become inequalities: for example
xVyVzbecomes x+y+z>1, and
xVVyVzbecomes x —y+z>0.

Note that v is replaced with 1 — y.
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Cutting planes refutations

Cutting planes is a refutation system:
Initial lines are logical axioms,
or encode hypotheses (often obtained from clauses).

Logical axioms: x; > 0 and —x; > —1.
Valid inferences are Addition and Division.
Addition rule:

Y aixi > ap > bix; > bg
> (ai+bi)x; > ap+bo

Division rule: If ¢ > 0 and c|a; for all i > 0,

Y- aix; > ag

>.(ai/c)xi > [ao/c]
The final line of a refutation must be 0 > 1.
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Alternate formulation of Division

Sometime Division is reformulated:

Division’ rule: If c|a; for all i > 0,

Y- aixi > ag

>-lai/clxi > [ag/c]

The two formulations are equivalent in the presence of Addition.
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Example: Let [ contain the clauses
XVy and XVZ and yVZ
This expresses “No two of x, y, z are true”.

Cutting planes expresses these clauses as three inequalities:

—x—y>-1 and —x—z>-1 and —y—2z2>-1.

Addition gives: —2x+4 —2y —2z > —3.

Division by ¢ = 2 gives: —x—y—z>-1

l.e., x+ y + z < 1. This is a more succinct way of expressing that
no two of x, y, z are true.
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Theorem: Cutting planes has polynomial size refutations of the
PHP"*1 principle.

Proof idea: Use the totality axioms to derive ) _; jPij = n+l.

Use the injectivity axioms to prove Zu pij < n, similar to the
argument in the example.

Conclude 0 > 1. O

Hence: Resolution does not p-simulate cutting planes.

Also: Constant-depth Frege does not p-simulate cutting planes.
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Two simulations

Theorem: Cutting planes p-simulates resolution.

Proof idea: It is straightforward to simulate a single resolution
step with addition and division.

Thm: [Goerdt'92] Cutting planes is p-simulated by Frege systems.

Proof idea: Use carry-save-addition iterated integer division
formulas to express the lines in a cutting planes refutation.
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A cutting planes bound for Clique-Coloring

Thm: [Pudldk’97] Suppose a set of clauses A(p, r), B(g, ) has a
cutting planes refutation of m steps, and that the variables 7
appear only positively in the clauses in A(p, F) or negatively in the
clauses in B(q, 7). Then, there is Craig interpolant which is

computed by a monotone real circuit of size m9(1),

Corollary: (Using [Razborov'85, Alon-Boppana’87.) Cutting
Planes does not have polynomial size refutations of the
Clique-Coloring clauses expressing that a graph both is k-colorable
and has a k + 1 clique.

Open: Find methods other Craig interpolation for giving lower bounds to cutting planes proofs.
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Let x° denote x; and x? denote X;. Thus x} =1 — x?

i
Sometimes cutting planes lines are expressed as linear
combinations of literals with non-negative integer coefficients:

ax1 + alx] + adxo + asxa + - - + ax, 4+ aix%; > ag

where min{a%, a;, 1} = 0.
In CP-Saturation, the Division rule is replaced with Saturation.

Saturation rule: If c|a; for all i > 0,

g g
Zi,a aj - xi = ao

Z,-p min{a?,ap} - x7 > ap

CP-Saturation is particularly used in several SAT solvers based on
cutting planes [Chai-Kuehlmann'05]
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Saturation versus Division

Theorem (Gocht-Nordstrom-Yehudayoff'19)

o CP-Saturation does not simulate Cutting Planes.

@ A single Saturation inference can require superpolynomially
many steps to simulate in Cutting Planes.

In spite of the second part, it is open whether Cutting Planes
p-simulates CP-Saturation.
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Nullstellensatz and polynomial calculus

Work over a finite field, characteristic p.

Variables xi, x2, ... are 0/1 valued.
A polynomial f is identified with the assertion f = 0.

A set of initial polynomials {f;}; is refuted in the Nullstellensatz
system by polynomials gj, h; such that

> g+ 0 —xi) hi =1,

where equality indicates equality as polynomials.
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A polynomial calculus refutation uses the inferences of addition
and multiplication:

f g f

f+g f-g

A polynomial calculus refutation of a set of polynomials {f;}; is
a derivation of 1 from the f;'s and the polynomials (x? — x;).

It is more common to work with the degree of nullstellensatz or
polynomial calculus proofs, rather than their size. These systems
are known to not be simulated by resolution or bounded depth
Frege; conversely, several lower bounds are known.

One sample result:

Thm: [Razborov'98] Any polynomial calculus proof of PHP+1
must have degree Q(n).
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Automatizability

Defn: A proof system T is automatizable (in polynomial time) if
there is a procedure, which given a formula ¢, produces a T-proof
of ¢ in time bounded by a polynomial of the size of the shortest
T-proof of ¢ (if any).

Defn: A proof system T has feasible interpolation if there is
polynomial time procedure C(—, —) so that if P is a T-proof of
—(A(p, ) A B(g,r)), then C(P,r) is a Craig interpolant for
A(p,r) A B(g, 7).

Thm: [Bonet-Pitassi-Raz'00] If T is automatizable, then T has
feasible interpolation.
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Thm: [Krajitek-Pudldk'95, also B'97] The extended Frege system
eJF does not have feasible interpolation and thus is not
automatizable, unless the RSA encryption function, the discrete
logarithm encryption function, and the Rabin encryption function
can be inverted in polynomial time.

Thm: [Bonet-Pitassi-Raz'00] The Frege system F does not have
feasible interpolation and thus is not automatizable, unless Blum
integers can be factored in polynomial time.

Defn: Blum integers are products of two primes, each congruent
to 3 mod 4.

A related theorem holds for bounded depth Frege systems under a
stronger hardness assumption about Blum integers. [BDGMP'03].
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Thm: [Alekhnovich-Razborov'03] Resolution and tree-like
resolution are not automatizable unless the parameterized
hierarchy class W/[P] is fixed-parameter tractable via randomized
algorithms with one-sided error.

On the other hand:

Thm: [Beame-Pitassi'96; building on CEI'96]

Tree-like resolution is automatizable in time n'°€° where n is the
number of variables, and S is the size of the shortest tree-like
resolution refutation. (This is quasipolynomial time.)

Resolution is automatizable in time nvV"1og5 .

Open: Is resolution automatizable in quasi-polynomial time?
RECENT RESULT: It is NP-hard. [Atserias-Miiller'19]
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End of first part!
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