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Abstract. We discuss recent results on the propositional proof complex-
ity of Frege proof systems, including some recently discovered quasipoly-
nomial size proofs for the pigeonhole principle and the Kneser-Lovász
theorem. These are closely related to formalizability in bounded arith-
metic.
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1 Introduction

The complexity of propositional proofs has been studied extensively both because
of its connections to computational complexity and because of the importance
of propositional proof search for propositional logic and as an underpinning for
stronger systems such as SMT solvers, modal logics and first-order logics. Frege
systems are arguably the most important fully expressive, sound and complete
proof system for propositional proofs: Frege proofs are “textbook” propositional
proof systems usually formulated with modus ponens as the sole rule of inference.
Extended Frege proofs allow the use of the extension rule which permits new
variables to be introduced as abbreviations for more complex formulas [27].

(This abstract cannot do justice to the field of propositional proof complexity.
There are several surveys available, including [25, 4, 12, 13, 5, 23].)

We will measure proof complexity by counting the number of symbols appear-
ing in a proof. We are particularly interested in polynomial and quasipolynomial
size Frege and extended Frege proofs, as these represent proofs of (near) feasible
size. Frege proofs are usually axiomatized with modus ponens and a finite set of
axiom schemes. However, there are a number of other natural ways to axiomatize
Frege proofs, and they are all polynomially equivalent [15, 24]. Thus, Frege proof
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systems are a robust notion for proof complexity. The same holds for extended
Frege proofs.

Formulas in a polynomial size Frege proof are polynomial size of course, and
hence express (nonuniform) NC1 properties. By virtue of the expressiveness of
extension variables, formulas in polynomial size extended Frege proofs represent
polynomial size Boolean circuits.1 Boolean circuits express nonuniform polyno-
mial time (P) predicates. It is generally conjectured NC1 6= P and that Boolean
circuits are more expressive than Boolean formulas, namely that converting a
Boolean circuit to a Boolean formula may cause an exponential increase in size.
For this reason, it is generally conjectured that Frege proofs do not polynomially
or quasipolynomially simulate extended Frege proofs:

Definition 1. The size |P | of a proof P is the number of occurrences of symbols

in P . Frege proofs polynomially simulate extended Frege proofs provided that

there is a polynomial p(n) such that, for every extended Frege proof P1 of a

formula ϕ there is a Frege proof P2 of the same formula ϕ with |P2| ≤ p(|P1|).
Frege proofs quasipolynomially simulate extended Frege proofs if the same

holds but with p(n) = 2lognO(1)

.

However, the connection between the proof complexity of Frege and extended
Frege systems and the expressiveness of Boolean formulas and circuits is only an
analogy. There is no known direct connection. It could be that Frege proofs can
polynomially simulate extended Frege proofs but Boolean formulas cannot poly-
nomially express Boolean circuits. Likewise, it could be that Boolean formulas
can express Boolean circuits with only a polynomial increase in size, but Frege
proofs cannot polynomially simulate extended Frege proofs.

Bonet, Buss, and Pitassi [7] considered the question of what kinds of com-
binatorial tautologies are candidates for exponentially separating proof sizes for
Frege and extended Frege systems, that is for showing Frege systems do not
polynomially or quasipolynomially simulate extended Frege systems. Surpris-
ingly, only a small number of examples were found. The first type of examples
were based on linear algebra, and included the Oddtown Theorem, the Graham–
Pollack Theorem, the Fisher Inequality, the Ray-Chaudhuri–Wilson Theorem,
and the AB = I ⇒ BA = I tautology (the last was suggested by S. Cook). The
remaining example was Frankl’s Theorem on the trace of sets.

The five principles based on linear algebra were known to have short extended
Frege proofs using facts about determinants and eigenvalues of 0/1 matrices.
Since there are quasipolynomial size formulas defining determinants over 0/1
matrices, [7] conjectured that all these principles have quasipolynomial size Frege
proofs. This was only recently proved by Hrubeš and Tzameret [16], who showed
that the five linear-algebra-based tautologies have quasipolynomial size Frege
proofs by showing that there are quasipolynomial size definitions of determinants
whose properties can be established by quasipolynomial Frege proofs.

1 See Jeřábek [18] for an alternative formulation of extended Frege systems based
directly on Boolean circuits.
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The remaining principle, Frankl’s Theorem, was shown to have polynomial
size extended Frege proofs by [7], but it was unknown whether it had polynomial
size Frege proofs. Recently, Aisenberg, Bonet and Buss [1] showed that it also has
quasipolynomial size Frege proofs. Thus, Frankl’s theorem does not provide an
example of tautologies which exponentially separate Frege and extended Frege
proofs.

Istrate and Crãciun [17] recently proposed the Kneser-Lovász Theorem as
a family of tautologies that might be hard for (extended) Frege systems. They
showed that the k = 3 versions of these tautologies have polynomial size ex-
tended Frege proofs, but left open whether they have (quasi)polynomial size
Frege proofs. However, as stated in Definition 3 and Theorem 5 below, [2] have
now given polynomial size extended Frege proofs and quasipolynomial size Frege
proofs for the Kneser-Lovász tautologies, for each fixed k. Thus these also do
not give an exponential separation of Frege from extended Frege systems.

Other candidates for exponentially separating Frege and extended Frege sys-
tems arose from the work of Ko lodziejczyk, Nguyen, and Thapen [19] in the
setting of bounded arithmetic [9]. They proposed as candidates various forms of
the local improvement principles LI, LIlog and LLI. The results of [19] include
that the LI principle is many-one complete for the NP search problems of V 1

2 ;
it follows that LI is equivalent to partial consistency statements for extended
Frege systems. Beckmann and Buss [6] subsequently proved that LIlog is prov-
ably equivalent (in S1

2) to LI and that the linear local improvement principle
LLI is provable in U1

2 . The LLI principle thus has quasipolynomial size Frege
proofs. Combining the results of [6, 19] shows that LIlog and LLI are many-one
complete for the NP search problems of V 1

2 and U1
2 , respectively, and thus equiv-

alent to partial consistency statements for extended Frege and Frege systems,
respectively.

Cook and Reckhow [14] showed that the partial consistency statements for
extended Frege systems characterize the proof theoretic strength of extended
Frege systems; Buss [11] showed the same for Frege systems. For this reason,
partial consistency statements do not provide satisfactory combinatorial prin-
ciples for separating Frege and extended Frege systems. The same is true for
other statements equivalent to partial consistency statements. (But, compare to
Avigad [3].)

This talk will discuss a pair of recently discovered families of quasipolynomial
size Frege proofs. The first is based on the pigeonhole principle; the second on
the Kneser-Lovász principle.

Definition 2. The propositional pigeonhole principle PHPn+1
n is the tautology

n
∧

i=0

n−1
∨

j=0

pi,j →
∨

0≤i1<i2≤n

n−1
∨

j=0

(pi1,j ∧ pi2,j).

Theorem 1. (Cook-Reckhow [15]) PHPn+1
n has polynomial size extended Frege

proofs.
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Theorem 1 was proved by a induction proof. Later, the following was proved
by using a “counting” proof:

Theorem 2. ([10]) PHPn+1
n has polynomial size Frege proofs.

Since the proofs of Theorems 1 and 2 were so different, this was sometimes
taken as evidence that Frege proofs cannot polynomially simulate extended Frege
proofs. However, recently the present author showed that the proof of Theorem 1
can be carried out with Frege proofs, and established a weaker result, but with
a proof based on the proof of [15]:

Theorem 3. ([8]) PHPn+1
n has quasipolynomial size Frege proofs.

This is weaker than Theorem 2: the point is that its proof shows that the con-
struction underlying the proof of Theorem 1 can be carried by quasipolynomial
size Frege proofs.

We next state the results about the Kneser-Lovász principle.

Definition 3. Fix k ≥ 1. Let
(

n
k

)

denote the set of subsets of [n] := {0, . . . , n−1}
of cardinality k. The (n, k)-Kneser graph is the undirected graph (V,E) where the
vertex set V is the set

(

n
k

)

, and E is the set of edges {A,B} such that A,B ∈
(

n
k

)

and A ∩B = ∅.

It is not hard to show that the (n, k)-Kneser graph can be colored with
n−2k+2 colors. (That is, so that no two adjacent vertices receive the same
color.) This is the optimal number of colors:

Theorem 4. (Lovász [21]) Let k ≥ 1 and n ≥ 2k. The (n, k)-Kneser graph

cannot be colored with n−2k+1 colors.

Note that the k = 1 case of the Theorem 4 is just the usual pigeonhole
principle.

It is straightforward to translate the Kneser-Lovász principle as expressed by
Theorem 4 into a family of polynomial size tautologies:

Definition 4. Let n ≥ 2k > 1, and let m = n − 2k + 1 be the number of

colors. For A ∈
(

n
k

)

and i ∈ [m], the propositional variable pA,i has the intended

meaning that vertex A of the Kneser graph is assigned the color i. The Kneser-

Lovász principle is expressed propositionally by

∧

A∈(n

k)

∨

i∈[m]

pA,i →
∨

A,B∈(n
k)

A∩B=∅

∨

i∈[m]

(pA,i ∧ pB,i) .

Theorem 5. ([2]) For each k ≥ 1, the tautologies based on the Kneser-Lovász

principle have polynomial size extended Frege proofs and quasipolynomial size

Frege proofs.



Propositional Proofs 5

The proof of Theorem 5 is based on a simple counting argument which avoids
the usual topologically-based combinatorial arguments of Matoušek [22] and
others.

As already discussed, we now lack many good combinatorial candidates for
super-quasipolynomially separating Frege and extended Frege systems, apart
from partial consistency principles or principles which are equivalent to partial
consistency principles. At the present moment, we have only a couple potential
combinatorial candidates. The first candidate is the rectangular local improve-
ment principles RLI2 (or more generally, RLIk for any constant k ≥ 2). For
the definitions of these in the setting of bounded arithmetic, plus characteriza-
tions of the logical strengths of the related principles RLI1, RLIlog and RLI, see
Beckmann-Buss [6]. RLI1 is provable in U1

2 and is many-one complete for the NP
search problems of U1

2 , and thus has quasipolynomial size Frege proofs (for the
latter connection, see Kraj́ıček [20]). RLIlog and RLI are provable in V 1

2 and are
many-one complete for the NP search problems of V 1

2 ; hence they are equivalent
to partial consistency statements for extended Frege. The second candidate is the
truncated Tucker lemma defined by [2]. These are actively under investigation
as this abstract is being written; some special cases are known to have extended
Frege proofs [Aisenberg-Buss, work in progress], but it is still open whether they
has quasipolynomial size Frege proofs.

It seems very unlikely however that Frege proofs can quasipolynomially sim-
ulate extended Frege proofs.

We thank Lev Beklemishev and Vladimir Podolskii for helpful comments.
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