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Goal: Give definitions of feasible complexity classes that are

Analogous to complexity classes on bit strings,

Natural and intrinsic to sets

Reduce to standard complexity classes on hereditarily finite
sets with suitable encodings

Two approaches:
- Safe/normal recursion:

[Beckmann, B., Sy Friedman’??]; [Arai’15]
- Cobham recursion:

[Beckmann, B., Sy Friedman, Müller, Thapen], this talk.

Other approaches:
- Bounded set theory [Sazonov, ’97]
- Infinite time Turing machines

[Hamkins-Lewis’00; Friedman-Welch’07 ]
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Cobham-style definition of polynomial time (P): [1965]
Inputs and outputs are binary strings in {0,1}∗
Initial functions including

the empty string ǫ;
the two successor functions s ↦ si (for i = 0,1);
cond(a, c ,d) = c if a = ǫ and d otherwise;
a#b ∶= a∣b∣. (“Smash”, concatenate ∣b∣ many copies of a)

Closed under:
Composition, and
Limited Iteration on Notation:

f (ǫ, a⃗) = g(a⃗)
f (s0, a⃗) = h0(s, a⃗, f (s, a⃗))
f (s1, a⃗) = h1(s, a⃗, f (s, a⃗)).

provided ∣f (s, a⃗)∣ ≤ ∣t(s, a⃗)∣ for some #/successor term t.

or equivalently, ∣f (s, a⃗)∣ ≤ p(∣s ∣, ∣a⃗∣) for a polynomial p.
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In limited iteration on notation, the computation of f (s,a) uses
only ∣s ∣ rounds of iteration: this is needed to have polynomial time
computability.

But in addition, the polynomial bound on ∣f (s, a⃗)∣ is important to
maintain polynomial time computability.

For example:

f (ǫ,a) = a

f (si , a⃗) = f (s,a)#00 = f (s,a)f (s,a),
gives ∣f (s,a)∣ = 2∣s ∣∣a∣. This is exponential growth rate, and hence is
not polynomial time computable.
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The natural set-theoretic replacement for Cobham’s Limited
Iteration on Notation is ∈-recursion. However, first we need a new
kind of smash function (#) that operates on sets.

Definition (Set composition ⊙)

The set composition function a⊙b is defined by ∈-recursion as

∅⊙b = b

a⊙b = {x⊙b ∶ x ∈ a}, for a /= ∅
Example with Mostowski graphs for sets:

∅
1 = {∅}

2 = {∅,1}

(a) A = {∅,1}
∅

1

2

{1,2}

(b) B = {1,2} (c) A⊙B
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Definition (Set smash #)

The set smash function is the function a#b defined by ∈-recursion
on a as

a#b = b⊙{x#b ∶ x ∈ a}.
Mostowski graphs example:

∅
1

2

(a) A

∅
1

2

{1,2}

(b) B

(d) A#B
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Theorem

The set smash function # satisfies the following:

1. rank(a#b) + 1 = (rank(b) + 1)(rank(a) + 1).
2. ∣tc(a#b)∣ + 1 = (∣tc(a)∣ + 1)(∣tc(b)∣ + 1).

Equivalently, ∣tc+(a#b)∣ = ∣tc+(a)∣ ⋅ ∣tc+(b)∣,
where tc+(a) ∶= {a} ∪ tc(a).

Thus, the # function gives polynomial growth rate both for rank,
and for cardinality of the transitive closure (tc).
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A first attempt at generalizing Cobham limited iteration to sets is:

Use ∈-recursion instead of recursion on notation.

Requiring f (a, c⃗) to be a subset of an already constructed
function h(a, c⃗):

Definition ((Cobham Recursion⊆))

If g is an (n+1)-ary function and h is an n-ary function, then
(Cobham Recursion⊆) gives the n-ary function f :

f (a, c⃗) = g({f (b, c⃗) ∶ b ∈ a},a, c⃗) ∩ h(a, c⃗).

A more sophisticated size bound can be obtained by using
embeddings ....
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Definition (≼ embedding)

A set A is ≼-embedded into a set B , denoted A ≼ B , provided either

(a) There is injective τ ∶ tc(A)→ tc(B) s.t. for all x ∈ y ∈ tc(A),
we have τ(x) ∈ tc(τ(y)), or

(b) There is τ ∶ tc(A)→ P(tc(B)), s.t.
(i) if x /= y , then τ(x) /= ∅ and τ(x) ∩ τ(y) = ∅;
(ii) if x ∈ y ∈ tc(A) and u ∈ τ(y), then τ(x) ∩ tc(u) /= ∅.

(b) is the “multi-valued” version of (a), and generalizes (a).

The relation A ≼ B faithfully captures the intuition that A is
structurally “no more complex” than B .

Theorem

Suppose A ≼ B . Then rank(A) ≤ rank(B) and ∣tc(A)∣ ≤ ∣tc(B)∣.
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Cobham Set Recursion

Now we can state the full analogue of Cobham limited iteration on
notation for sets:

Definition ((Cobham Recursion≼))

If g is an (n+1)-ary function, h is an n-ary function and τ is a n-ary
function, then (Cobham Recursion≼) gives the n-ary function f :

f (a, c⃗) = g({f (b, c⃗) ∶ b ∈ a},a, c⃗),
provided that, for all a, c⃗ , we have τ(x ,a, c⃗) ∶ f (a, c⃗) ≼ h(a, c⃗).

Remark on “predicativity”: Note that τ does not have f (a, c⃗) as an
input. This condition can be relaxed.
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The initial functions for the Cobham Recursive Set Functions
(CRSF):

πn
j (a1, . . . ,an) = aj

pair(a,b) = {a,b}
null( ) = ∅

union(a) = ⋃a

cond∈(a,b, c ,d) = { a if c ∈ d
b otherwise
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(Composition) If g is an n-ary function and h⃗ is a vector of
n many m-ary functions, then (Composition) gives the m-ary
function f :

f (a⃗) = g(h⃗(a⃗)).
Definition (CRSF)

The Cobham Recursive Set Functions, CRSF, are the set functions
obtained from the initial functions and the set smash function # by
closing under (Composition) and (Cobham Recursion≼).
A relation R(a⃗) is in CRSF iff its characteristic function χR(a⃗) is
in CRSF.
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Theorem (Bootstrapping CRSF)

The CRSF functions include functions such as a ∖ b and a ∩ b

and ⟨a,b⟩ and ⋂ a and a⊙b.

The CRSF relations are closed under Boolean operations and
∆0 (bounded) quantification.

CRSF is closed under (Cobham Recursion⊆), (Separation),
(Bounded Replacement), and (Embedded Replacement).

(Separation) If g is an n-ary function, then (Separation) gives
the n-ary function f :

f (a⃗, c) = {b ∈ c ∶ g(a⃗,b) /= ∅}.
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(Bounded Replacement) If g is an n-ary function with n ≥ 3,
then (Bounded Replacement) gives the (n−1)-ary function f :

f (a⃗,b, c) = c ∩⋃{g(a⃗, x ,b, c) ∶ x ∈ b}.

(Embedded Replacement) If g is an (n+1)-ary function, h is an
n-ary function, and τ is an (n+1)-ary function, then (Embedded
Replacement) gives the n-ary function f :

f (a⃗,b) = {g(a⃗, x ,b) ∶ x ∈ b}
provided that, for all a⃗,b, we have τ(x , a⃗,b) ∶ f (a⃗,b) ≼ h(a⃗,b).
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Theorem

The function a ↦ rank(a) is in CRSF.

Proof sketch: Using (Cobham Recursion≼) and (Embedded
Replacement), define

rank+(a) = Succ(⋃{rank+(x) ∶ x ∈ a}),
where Succ(y) = y ⋃{y}. The bounding function is h(a) = a. The
(multivalued!) embedding τ is defined by

τ(x ,a) = {a′ ∈ tc(a) ∶ rank(a′) = rank(x)}.
This is a ≼ embedding, but we need to show that τ is in CRSF.
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Proof continued: τ(x ,a) ∶= {a′ ∈ a ∶ rank(a′) = rank(x)}.
To show τ ∈ CRSF, use the CRSF function RksLE(a,b) which
gives the set of y ∈ tc(a) with rank(y) ≤ rank(b), defined by
(Cobham Recursion⊆) and (Separation):

RksLE(a,b) = {a′ ∈ tc(a) ∶ a′ ⊆ ⋃{RksLE(a,b′) ∶ b′ ∈ b}}
So rank(a) ≤ rank(b) iff a ∈ RksLE({a},b).
Now define τ as a CRSF function by

τ(x ,a) = {a′ ∈ tc(a) ∶ RksLE({x},a′) ∧RksLE({a′}, x)}.
using (Cobham Recursion⊆). ◻
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A normal form for embeddings

Definition (# term)

Let v1, v2, v3, . . . be variables (ranging over sets). A #-term is a
term built up from variables, the constant symbol 1 = {∅}, and the
function symbols ⊙ and #.

Any #-term is a CRSF function. The #-terms give arbitrarily large
polynomially growth rate of ranks and of sizes of transitive closures.

Theorem (Bounding with #-terms)

Let f (a1, . . . ,ak) be in CRSF. Then there is a
#-term t(a1, . . . ,ak) and a CRSF function τ(x ,a1, . . . ,ak) such
that τ ∶ f (a1, . . . ,ak) ≼ t(a1, . . . ,ak).
(Proof omitted.) In fact CRSF would be equivalently defined if
(Cobham Recursion≼) was changed to require the bounding
function h(a, c⃗) to be an #-term.(!)

Sam Buss Polynomial Time Computability for Set Functions



Corollary (Polynomially bounding CRSF functions)

Let f (a⃗) be a CRSF function. Then there are polynomials p and q

so that

rank(f (a⃗)) ≤ p(maxi{rank(ai)}) and

∣tc(f (a⃗))∣ ≤ q(maxi(∣tc(ai)∣)).
This corollary is an indication that CRSF is a correct notion of
polynomial time computation for set functions.
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Unbounded Replacement

Theorem

CRSF is closed under (Replacement).

(Replacement) If g is an n-ary function with n ≥ 2, then
(Replacement) gives the (n−1)-ary function f :

f (a⃗,b) = {g(a⃗, x ,b) ∶ x ∈ b}.
Corollary

a × b is in CRSF.

Proof: Define, with two applications of (Replacement),

a × b = ⋃{{x} × b ∶ x ∈ a},
where {x} × b ∶= {⟨x , y⟩ ∶ y ∈ b}. ◻
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Course of values recursion

(Cobham RecursionCofV
≼ ) If n ≥ 1, g is an (n+1)-ary function,

h is an n-ary function and τ is an (n+1)-ary function, then
(Cobham RecursionCofV

≼ ) gives the n-ary function f :

f (a⃗, c) = g(a⃗, c , f↾tc(c)(a⃗,−)),
provided that, for all a, c⃗ , we have τ(x , a⃗, c) ∶ f (a⃗, c) ≼ h(a⃗, c).
Defn: f↾tc(c)(a⃗,−) equals the set of ordered pairs ⟨c ′, f (a⃗, c ′)⟩
such that c ′ ∈ tc(c).
Theorem

CRSF is closed under (Cobham RecursionCofV
≼ ).
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CRSF equals polynomial time on HF

There are several encodings of binary strings as hereditary sets, c.f.
[Sazonov’97], also [Beckmann, B., Sy Friedman; Arai].
A binary string w of length ℓ should be encoded by a set ν(w) of
rank O(ℓ) and ∣tc(ν(w))∣ = O(ℓ) (alternately, ℓO(1).)

Definition

If w = w0⋯wℓ−1 ∈ {0,1}∗, then

ν(w) = {i ∶ wi = 1} ∪ {ℓ}.
Definition

A function f ∶ ({0,1}∗)n → {0,1}∗ is represented by the n-ary set
function F (under the encoding ν) provided

F (ν(a1), . . . , ν(an)) = ν(f (a1, . . . ,an))
for all a1, . . . ,an ∈ {0,1}∗. When this holds, we write f = F ν .
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Theorem

Every polynomial time function is represented by a function in
CRSF under the encoding ν.

Proof idea: Show that Cobham limited iteration on notation can be
simulated by CRSF functions. ◻
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A little more detail on the proof:
Use induction on the definition of polynomial time functions with
composition and limited iteration.
The base cases, and closure under composition, are easy.
A few other easy-to-define set functions:

Pred(N) ∶= N ∸ 1 for N an integer

S↾X ∶= Restriction of S to domain X

Bit(i ,S) ∶= 1 if i ∈ S , 0 otherwise

(Think of S as both a set of bit positions and a coding of a binary
string. Thus S↾N ∶= (S ∩N) ∪ {N} is the first N bits of S)
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For f defined by limited iteration on notation:

f (ǫ, a⃗) = g(a⃗)
f (si , a⃗) = hi(s, a⃗, f (s, a⃗)) for i = 0,1.

Define F ′ so that, for N an integer,

F ′(N, ν(a1), . . . , ν(aℓ), ν(s)) = ν(f (a1, . . . ,aℓ, s↾N)).
Let G ,H0,H1 define g ,h0,h1.
Use (Cobham RecursionCofV

≼ ) to define:

F ′(N, A⃗,S) =
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

G(A⃗) if N = 0 or N ∉ ω
Hi(A⃗,F ′(Pred(N), A⃗,S),S↾Pred(N))

if N /= 0 and Bit(Pred(N),S) = i
for i = 0,1.

◻
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Theorem

Suppose F ∈ CRSF. Then f = F ν is polynomial time.

Proof sketch: Use induction on the definition of CRSF functions to
prove the following:

Suppose that F is a CRSF function. Then, there is a
polynomial time function FMos which, given Mostowski
graphs for hereditarily finite sets a⃗, computes the
Mostowski graph for F (a⃗).
In addition, there are polynomial time methods to convert
between binary strings and their Mostowski graphs. ◻

Remark: Binary strings are encoded by finite sets ν(w) with
cardinality ∣tc(ν(w)∣ of the transitive closure polynomially bounded
by rank(ν(w)).
Thus the proof only needs FMos for Mostowski graphs with
cardinality polynomially bounded by rank.
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Converse to the above proof fails: There are polynomial time
functions acting on general finite Mostowski graphs that do not
give CRSF functions.

Example: The function x ↦ ∣tc(x)∣,
sending x to the von Neumann integer ∣tc(x)∣.

This is contrast to the notion of polynomial time for bounded set
theory [Sazonov’97].
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Relation to PCSF
+

[Beckmann, B., S.Friedman] introduced a class of “safe recusive”
set functions SRSF based on a generalization, to set functions, of
Bellantoni and Cook’s safe/normal characterization of polynomial
time computable functions. [BC’92].

In the safe/normal approach, functions f (a⃗/b⃗) have two kinds of
inputs:

the inputs a⃗ are normal inputs, and

the inputs b⃗ are safe inputs.

The idea is that normal inputs can be used for recursion, whereas
safe inputs cannot.

Bellantoni and Cook’s motivation was to avoid the use of the
smash function to bound the values obtained by recursion.
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Theorem (Beckman, B, S. Friedman)

The SRSF functions, using the encoding ν, can compute precisely
the functions which are computable with alternating Turing
machines which use exponential time and polynomially many
alternations.
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Arai modified these definitions to obtain a class of predicatively
computable set functions, PCSF, which exactly captures
polynomial time.

Theorem (Arai)

The PCSF functions, using the encoding ν, can compute precisely
the polynomial time functions.

We obtain the class PCSF+ by adding closure under:

(Normal SeparationSN) If g is a m,n-ary function with n ≥ 1, then
normal separation gives the m,n-ary function f :

f (d⃗/a⃗, c) = {b ∈ c ∶ g(d⃗/a⃗,b) /= ∅}.

The same theorem holds for PCSF+ (by the same proof as for
PCSF).
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An equivalence of CRSF and PCSF
+

Theorem

Suppose f (a⃗/b⃗) is a PCSF+ function. Then there are CRSF
functions g(a⃗, b⃗) and τ(x , a⃗, b⃗), and an # term t(a⃗) such that, for
all a⃗, b⃗,

a. g(a⃗, b⃗) = f (a⃗/b⃗), and

b. τ ∶ f (a⃗/b⃗) ≼ t(a⃗)⊙{b⃗}.
c. τ is the identity on tc({b⃗}):

If z ∈ tc({b⃗}), then τ(z , a⃗, b⃗) = {z}.
If τ(z , a⃗, b⃗) ∩ tc({b⃗}) /= ∅, then z ∈ tc({b⃗}).

Part a. of the Theorem shows that CRSF includes PCSF+.

Parts b. and c. give strong bounds on the dependence of PCSF+

functions on their normal and safe inputs.
(Sharpens bounds of [Arai].)
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Second direction of the equivalence:

Theorem

If f (a⃗) is a CRSF function, then f (a⃗/) is a PCSF+ function.

Proof uses induction on the closure properties of CRSF functions,
and a very delicate analysis of how CRSF functions can be defined
in PCSF+.

Essential difficulty: CRSF is able to recurse on values obtained by
recursion; PCSF+ is not. We have to replace ∈-recursion on a set x
with ∈-recursion on a set u such that x ≼ u.
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Corollary

CRSF and PCSF+ are equivalent: For all set functions f ,

f (a⃗) is a CRSF function

iff

g(a⃗/) = f (a⃗) is a PCSF+ function.

Remark: Arai conjectures that PCSF+ is distinct from PCSF;
however, this is still open.
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Future directions.

Understand better how CRSF functions differ from the SRSF
functions. SRSF has characterizations in terms of the
relativized Gödel L and Jensen S hierarchies, and in terms of
polynomial time computation on infinite Turing machines.
[Beckmann-B-Sy Friedman]. E.g., CRSF cannot compute the
set of finite subsets of an infinite set; SRSF can.
Which class is more natural: SRSF or CRSF?

Are there interesting feasible complexity classes that arise
when CRSF functions are restricted to other types of
hereditarily finite sets. For instance, space bounded
complexity, alternating time, or other kinds of parallelism?

(Work in progress.) Develop a proof theory for CRSF, along
the lines of S1

2 (bounded arithmetic) or Rathjen’s theory for
primitive recursive computation on sets.

(Work in progress.) Develop a circuit model of computation
on sets.
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Thank you!

Спасибо!
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