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This talk discusses:
DPLL and CDCL SAT solvers.

CDCL solvers can be remarkably successful in solving very
large instances of SAT, routinely solving SAT instances with
100,000’s or even 1,000,000’s of variables.
When CDCL solvers find an instance of SAT to be
unsatisfiable, they (mostly) implicitly find a resolution
refutation.
See [Beame-Kautz-Sabharwal’04] for an introduction.
Also, the survey “Proof Complexity” [B-Nordström, in Handbook of
Satisfiability, 2nd edition]

DRAT and related inference systems.
These extend CDCL solvers to potentially the full strength of
extended resolution which is strictly stronger than
resolution.

“SAT” = “Satisfiability” of CNF formulas
“CDCL” = “Conflict Driven Clause Learning”
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CNF Formulas and Resolution
Resolution is a refutation system, refuting sets of clauses. Thus,
resolution is a system for refuting Conjunctive Normal Form (CNF)
formulas, equivalently, a system for proving DNF formulas are
tautologies.

Variables x, y, . . . can have value True or False
A literal is a variable x or a negated variable x.
A clause is a set of literals, interpreted as their disjunction
A set Γ of clauses is a CNF formula

Resolution rule: x,C x,D
C ∪ D

A resolution refutation of Γ is a derivation of the empty
clause from clauses in Γ.

Thm: Resolution is sound and complete (for CNF refutations)

Sam Buss CDCL, DRAT and extensions



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Resolution refutation — example

Refutation of (x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (y ∨ z)

1. x ∨ y Hyp
2. x ∨ y ∨ z Hyp
3. x ∨ z Hyp
4. y ∨ z Hyp
5. y ∨ z Hyp
6. z Res
7. x Res
8. x ∨ y Res
9. x Res

10. ⊥ Res
First five lines are
hypotheses;
Last five inferred
by resolution. ⊥

xx

x ∨ y

z

y ∨ zy ∨ z

x ∨ z

x ∨ y ∨ z

x ∨ y
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SAT Solvers (Satisfiability Solvers)

Problem: Given a set Γ of clauses representing a CNF formula,
determine whether Γ is satisfiable.

CDCL SAT Solvers are built on four principal components:
DPLL proofs: A depth-first search for (tree-like) resolution
refutations.
Unit propagation guides the depth-first search and underpins
clause learning.
Clause learning infers new clauses that help prune the search
space.
Restarts interrupt a depth-first search, and start a new one.
and many more optimizations!
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DPLL search procedure

Named after Davis-Putnam-Logemann-Loveland [DP’60, DLL’62]

Input: Γ, a set of clauses.
Goal: A satisfying assignment ρ for Γ or a refutation of Γ

The DPLL algorithm performs a depth-first search
Setting literals one-by-one to form a partial truth
assignment ρ,
Backtracking when a clause is falsified.

Initialization: Set ρ to be the empty assignment.
Then: Use a recursive procedure (next slide)...
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DPLL Recursive Procedure:
if the partial assignment ρ falsifies some clause of Γ then

return False;
end
if ρ satisfies Γ then

Output ρ as a satisfying assignment and terminate.
end
Pick some unset literal, x, the “decision literal”;
Extend ρ to set x true;
Call this DPLL procedure recursively;
Update ρ to set x false;
Call this DPLL procedure recursively (again);
return False;

Either
Terminates with a satisfying assignment, or
Terminates with “False” – unsatisfiable.
Implicitly finding a tree-like resolution proof.
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A tree-like refutation from DPLL search.

⊥

xx

x ∨ y
z

y ∨ zy ∨ zy ∨ z

x ∨ z

x ∨ y ∨ z

x ∨ y

Decision literals: (left-to-right, depth-first traversal)
x, z, ⊥; z, y, ⊥; y, ⊥; x, y, z, ⊥; z, ⊥; y, ⊥; ⊥;
“⊥” means, returning False and backtracking.
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Unit Propagation

Unit Propagation
Suppose C is a clause in Γ and ρ has all but one of the literals
in C false.
Then any satisfying assignment (extending ρ) must set the
remaining literal in C true.

DPLL with UP (unit propagation): DPLL algorithm, but all
possible unit propagations are carried out before choosing a
decision literal. (See next slide.)
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DPLL with Unit Propagation - recursive procedure

ρ0 ← ρ;
Extend ρ by unit propagation for as long as possible; ⇐ NEW
if ρ falsifies some clause of Γ then

ρ← ρ0;
return False;

end
if ρ satisfies Γ then

Output ρ as a satisfying assignment and terminate.
end
Pick some literal x not set by ρ (the decision literal);
Extend ρ to set x true;
Call this DPLL procedure recursively;
Update ρ to set x false;
Call this DPLL procedure recursively (again);
ρ← ρ0;
return False;
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Conflict Directed Clause Learning (CDCL)
CDCL algorithms form the core of most of the modern successful
SAT solvers. [Marques-Silva, Sakallah’94; MMZZM’01]
Underlying idea:

Conflicts (falsified clauses) are found after unit propagation.
Unit propagation gives rise to clauses that can be derived
(“learned”) by resolution.
These learned clauses are saved with Γ and used for future
proof search.
The learned clauses help prune the search space, in effective,
reducing the need to re-traverse the same area of the search
space.

An important feature is that the learned clauses help compensate
for poor choices of decision literals.
Fast backtracking (backjumping) allows backtracking past decision
literals that did not participate in the clause learning.
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L← 0 ; // L is the decision level
ρ← empty assignment;
loop

Extend ρ by unit propagation for as long as possible;
if ρ satisfies Γ then

return ρ as a satisfying assignment;
end
if ρ falsifies some clause of Γ then

if L == 0 then
return “Unsatisfiable”;

end
Learn one or more clauses C and add them to Γ; ⇐ NEW
Choose a backjumping level L′ < L; ⇐ NEW
Unassign all literals set at levels > L′;
L← L′;

else
Pick some unset literal x (the decision literal);
Extend ρ to set x true;
L← L + 1;

end
continue (with the next iteration of the loop);

end loop
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Example of a conflict graph and first-UIP learning

x
z

y
t

u

v

w ⊥

s

a b c

Γ contains x ∨ a ∨ z, x ∨ z ∨ y, y ∨ t, y ∨ v, y ∨ a ∨ u, y ∨ u ∨ v,
u ∨ b ∨ c ∨ w, t ∨ v ∨ w and a ∨ b ∨ c.
x is the top-level decision literal.
a, b, c were set at lower decision levels.
The first-UIP literal is y.
The learned clause is a ∨ b ∨ c ∨ y.
(Clause minimization based on self-subsumption [Sorensson-Biere’09,Han-Somenzi’09]
can learn the smaller clause a ∨ b ∨ y.)

Once x, a, b, c have been set, unit propagation gives successively z,
y, t, s, u, v, w, and finally ⊥.
By backtracking to the maximum decision level of a, b, c, the learned
clause a∨ b∨ c∨ y becomes asserting, allowing y to be inferred by
unit propagation.
This in turn can trigger further unit propagation.
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Example of a conflict graph and first-UIP learning

x
z

y
t

u

v

w ⊥

s

a b c

Γ contains x ∨ a ∨ z, x ∨ z ∨ y, y ∨ t, y ∨ v, y ∨ a ∨ u, y ∨ u ∨ v,
u ∨ b ∨ c ∨ w, t ∨ v ∨ w and a ∨ b ∨ c.

x is the top-level decision literal.
a, b, c were set at lower decision levels.
The first-UIP literal is y.
The learned clause is a ∨ b ∨ c ∨ y.
(Clause minimization based on self-subsumption [Sorensson-Biere’09,Han-Somenzi’09]
can learn the smaller clause a ∨ b ∨ y.)

Once x, a, b, c have been set, unit propagation gives successively z,
y, t, s, u, v, w, and finally ⊥.

By backtracking to the maximum decision level of a, b, c, the learned
clause a∨ b∨ c∨ y becomes asserting, allowing y to be inferred by
unit propagation.
This in turn can trigger further unit propagation.
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Example of a conflict graph and first-UIP learning

x
z

y
t

u

v

w ⊥

s

a b c

Γ contains x ∨ a ∨ z, x ∨ z ∨ y, y ∨ t, y ∨ v, y ∨ a ∨ u, y ∨ u ∨ v,
u ∨ b ∨ c ∨ w, t ∨ v ∨ w and a ∨ b ∨ c.

x is the top-level decision literal.
a, b, c were set at lower decision levels.
The first-UIP literal is y.
The learned clause is a ∨ b ∨ c ∨ y.
(Clause minimization based on self-subsumption [Sorensson-Biere’09,Han-Somenzi’09]
can learn the smaller clause a ∨ b ∨ y.)

Once x, a, b, c have been set, unit propagation gives successively z,
y, t, s, u, v, w, and finally ⊥.

By backtracking to the maximum decision level of a, b, c, the learned
clause a∨ b∨ c∨ y becomes asserting, allowing y to be inferred by
unit propagation.
This in turn can trigger further unit propagation.
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Restarts
A restart backtracks the CDCL proof search back to level
zero, where no decision literals have been.
Learned clauses can be maintained after a restart.
Perhaps surprisingly, restarts are extremely effective in the
practical use of CDCL SAT solvers.

Theorem (Pipatsrisawat-Darwiche,11; Atserias-Fichte-Thurley’11;
Beame-Kautz-Sabharwal’04)
CDCL + Restarts can p-simulate resolution.

Caveat: The CDCL+Restarts must make the correct
(nondeterministic) choices to p-simulate resolution. It is not known
how to do this in general. (This is a topic of current research.)
Conversely,

Theorem
Resolution can p-simulate CDCL(+restarts).
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Proof Traces (Refutations from SAT solvers)

As CDCL solvers become more complicated, soundness is a serious
problem. Even without “bugs”, solvers use many techniques, many
optimizations; they interact in subtle ways that can be unsound.

Hence: desirable for SAT solvers to output refutations that can be
verified independently.

[Van Gelder’03; Goldberg-Novikov’08] Output a (synopsis of a)
resolution refutation as sequence of RUP clauses C1, . . . ,Ck:

Each Ci is derivable from Γ and earlier Cj’s by resolution.
This can be checked easily via unit propagation.
Ci is thus a “Reverse Unit Propagation” (RUP) clause.

A “Deletion-RUP” (DRUP) proof allows deleting learned clauses.
This can greatly improve the verification time of proofs.
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Non-implicational inferences

CDCL solvers also frequently infer clauses C that are not implied
by Γ. For example:

Pure literal: If p appears in Γ but p does not, then infer p.

Extension rule: For a new variable x infer three new clauses
expressing x↔ q ∧ r:

q ∨ r ∨ x, q ∨ x, r ∨ x.

A useful way to think about these are as “wlog” inferences.
[Rebola-Pardo,Suda’18]
Namely, “wlog p is true” or “wlog x↔ q ∧ r holds”.

Equisatisfiability: These inferences do not change the
(un)satisfiability of the set of clauses.
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Blocked Clauses – the inference rule

[Kullmann’99]

Definition (Blocked Clause (BC))
Let C := C′ ∨ p. Then C is BC wrt p and Γ if, for each clause
p ∨ D′ in Γ, the resolvent C′ ∨ D′ is a tautology.

Definition (BC inference )
If C is BC w.r.t. Γ, then C may be inferred by a BC inference.

Theorem (Equisatisfiability under BC)
In this case, Γ is satisfiable iff Γ ∪ {C} is satisfiable.

Proof idea: Consider the first step of the Davis-Putnam procedure
(applied to p).
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RAT - Resolution Asymmetric Tautology

[Heule-Hunt-Wetzler’13]

Definition (Resolution Asymmetric Tautology (RAT))
Let C := C′ ∨ p. Then C is RAT wrt p and Γ if, for each clause
p ∨ D′ in Γ, the resolvent C′ ∨ D′ is an “asymmetric tautology”;
i.e., Γ �1 C′ ∨ D′. (I.e., follows from unit propagation reasoning)

Definition (RAT inference )
If C is RAT w.r.t. Γ, then C may be inferred by a RAT inference.

Theorem (Equisatisfiability under RAT)
In this case, Γ is satisfiable iff Γ ∪ {C} is satisfiable.

Proof idea: Consider the first step of the Davis-Putnam procedure
(applied to p).
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Proof Traces [HHW’13, WHH’14]

DRAT Proof Trace system:

DRAT (= ’D’ + ’RAT’) Proof Trace (Refutation) consists of a
sequence of clauses updating the current set Γ of clauses with two
rules:

RAT inferences: Introduce C by RAT.
Deletion (D): Remove any clause C.

Inferences preserve satisfiability, so the system is sound.

Often takes longer to verify refutations than generate them. (!)
Deletions help prune the unit propagation search space.
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THE LARGEST MATH PROOF
[Heule-Kullmann-Marek’16]

Resolved the Boolean Pythogorean Triples Problem (false for
n = 7825)
DRAT proof size 200TB; compressed to 14TB (clause
compression plus bzip2), then to 68GB by special encoding.
Run time: 2 days wall clock time, 37100 CPU hours.
Verification time: About 16000 CPU hours.
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BC ≡ RAT ≡ Extended Resolution
Theorem (BC simulates ER [Kullmann’99])
An extension rule can be polynomially simulated by BC inferences.
Hence also by RAT inferences.

Proof: To introduce x↔ q ∨ r, for x a new variable, add the
extension clauses:

q ∨ r ∨ x, q ∨ x, r ∨ x.

These three clauses are blocked via x. �
Theorem ([Kiesl–Rebola-Pardo–Heule’18])
Extended resolution polynomially simulates RAT proofs.

Proofs:
(1) [KRPH’18] give a direct simulation. Or
(2) The bounded arithmetic theory S1

2 proves that RAT inferences preserve
satisfiability. The theorem follows by Cook’s theorem about translations from
PV to eF .

Sam Buss CDCL, DRAT and extensions



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

PR, SPR - (Subset) Propagation Redundancy

For next definitions:
Γ is a set of clauses.
C := p ∨ C′ is a clause.
α is C: the minimal partial assignment falsifying C.

Definition (PR - Propagation Redundant [Heule-Kiesl-Biere’17])
C is Propagation Redundant (PR) wrt Γ if, for some partial
assignment τ ,

Γ�α �1 ({C} ∪ Γ)�τ.

Notation: Γ �1 ∆ means that, for each D ∈ ∆, Γ �1 D.

Definition (SPR - Subset Propagation Redundant [HKB’17])
C is Subset Propagation Redundant (SPR) wrt Γ if, it is PR with
dom(τ) = dom(α).
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SR - Substitution Redundancy

Recall C := p ∨ C′ is a clause, and α is C.

Definition (SR - Substitution Redundant [B.-Thapen’19])
C is Substitution Redundant (SR) wrt Γ if, for some partial
substitution τ ,

Γ�α �1 ({C} ∪ Γ)�τ.

A substitution maps variables to 0 or 1 or to a literal x.

Theorem
BC, RAT, SPR, PR, SR are increasing in applicability.
They all preserve (un)satisfiability.
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Proof systems

Using the inference rules BC, RAT, SPR, PR, SR, define proof
systems

Without deletion:

BC, RAT, SPR, PR, SR

With deletion (D):

DBC, DRAT, DSPR, DPR, DSR.

Theorem
All of these systems are polynomially equivalent to extended
resolution.

Proof: BC is the weakest, and polynmomially simulates extended
resolution. Conversely, S1

2 proves the soundness of DSR. �
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Not using new variables

The strength of extended resolution depends strongly on the ability
to introduce new variables.

Likewise the simulations of extended resolution by systems BC
through DSR depend on the ability to introduce new variables.

However, for practical SAT solvers, we do not yet have any good
heuristics for how to introduce new variables with extension.

This raises the question: What are the power of systems such
as BC, RAT, etc. when restricted to not allow new variables
to be introduced?

Notation: BC−, RAT−, SPR−, PR−, SR− denote the systems
restricted to not use new variables.
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Theorem ([Kiesl-Rebola-Pardo-Heule’18])
Without new variables, DBC− polynomially simulates DRAT−.

Proof requires introducing and deleting clauses to make the
“blocked” condition hold, then undoing the extra introductions and
deletions. �

Theorem ([B.-Thapen’19])
Without new variables, DRAT− polynomially simulates DPR−.

Proof idea: Use one step of the Davis-Putnam procedure to
eliminate the use of one variable from a PR refutation. Then use a
simulation of [Heule-Biere’18]. Resulting refutation is complex, but
still polynomial size. �

Corollary (p-simulations without new variables)
DBC−DRAT−DSPR−DPR−DSR−ER−
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Short proofs without new variables

Theorem ([Heule-Kiesl-Biere’17])
The PHP (pigeonhole principle) clauses have polynomial size
refutations in PR−.

Theorem ([B.-Thapen’19])
The following have short proofs in SPR− (hence DBC−):

Parity principles
Clique-Coloring principles
Tseitin tautologies on degree d expander graphs
Bit pigeonhole principles (Bit-PHP, BPHP)
Or-ification and Xor-ification.

These cover nearly all of the propositional principles for which
lower bounds are known for constant depth Frege. Hence these
systems without new variables are very strong.
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Some lower bounds without Deletion

Theorem ([Kullmann’99])
BC− requires exponential size refutations for PHPn+1

n .

Theorem ([B.-Thapen’19])
RAT− requires exponential size refutations for BPHPn+1

n .

BPHP is the “bit” pigeonhole principle with the variables
representing the bit graph of the pigeon-hole mapping This gives
an exponential separation between SPR− and RAT−.

Proof idea: A random restriction applied to a short RAT−
refutation gives a narrow width refutation. In a narrow refutation,
RAT− inferences can be replaced by narrow width resolution
derivations. This is not possible for BPHPn+1

n (the “bit”
pigeonhole principle). �
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Open Questions

Can DSR− (without new variables) polynomially simulate
extended resolution? Or, give exponential lower bounds on
DSR− refutations.
Find general methods for exploiting the power of BC, SPR,
SR, etc. to improve SAT solver performance in general
situations.
E.g.,[Heule-Kiesl-Seidel-Biere’17] have been able to
automatically generate short refutations of the PHP using
SDSL (Satisfaction-Driven Clause Learning). Can this method
be made more broadly applicable?
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Thank you!

Sam Buss CDCL, DRAT and extensions


