
Propositional Branching Program Proofs
and Logics for L and NL

Sam Buss
U.C. San Diego

Logic Seminar
Prague IM-CAS via Zoom

December 14, 2020

(joint work with Anupam Das and Alexander Knop)

Sam Buss Propositional Branching Program Proofs & Logics for L and NL



This talk

Propositional and second-order systems for logspace and
non-deterministic log space.

Motivation is for use for propositional translations from
bounded arithmetic.

Main portion of the talk will describe different propositional
proof systems, including new systems that can work with
formulas expressing (non-uniform) L and NL properties.

Sam Buss Propositional Branching Program Proofs & Logics for L and NL



First-order
theories of

bounded arithmetic

Π2-consequences:
Provably total

functions

Π1-consequences:
Translations to

propositional logic

Sam Buss Propositional Branching Program Proofs & Logics for L and NL



First-order
theories of

bounded arithmetic

Π2-consequences:
Provably total

functions

Π1-consequences:
Translations to

propositional logic

Computational
complexity

Propositional
proof complexity

Sam Buss Propositional Branching Program Proofs & Logics for L and NL



First-order
theories of

bounded arithmetic

Π2-consequences:
Provably total

functions

Π1-consequences:
Translations to

propositional logic

Computational
complexity

Propositional
proof complexity

Propositional
proof search

(SAT solvers)

Sam Buss Propositional Branching Program Proofs & Logics for L and NL



First-order
theories of

bounded arithmetic

Π2-consequences:
Provably total

functions

Π1-consequences:
Translations to

propositional logic

Computational
complexity

Propositional
proof complexity

Propositional
proof search

(SAT solvers)

Sam Buss Propositional Branching Program Proofs & Logics for L and NL



First-order
theories of

bounded arithmetic

Π2-consequences:
Provably total

functions

Π1-consequences:
Translations to

propositional logic

Computational
complexity

Propositional
proof complexity

Propositional
proof search

(SAT solvers)

Sam Buss Propositional Branching Program Proofs & Logics for L and NL



Propositional proof systems (general)

A proof system is always defined relative to some language of
formulas. Formulas will use variables and connectives from

Input variables: p1, p2, . . ., which appear in proved formulas.
Other free variables: a, b, . . . and bound variables x , y , . . . (in
quantified propositional logics)
Extension variables: e1, e2, . . ..
Negation (¬A or p)
Disjunction (∨), Conjunction (∧)
Decision (a.k.a “Case” or “Select”):

(ApB) means “If p then B else A”

Lines in a proof will be sequents of (multisets of) formulas

A1, . . . , Ak −→ B1, . . . , Bℓ

meaning
∧

i Ai →
∨

j Bj .

Proofs may be allowed to be dag-like or required to be
tree-like.

Sam Buss Propositional Branching Program Proofs & Logics for L and NL



Proof systems in this talk use the sequent calculus, with initial
axioms including A→ A for A atomic.
They all allow structural rules:

Γ −→ ∆
weak-l

A, Γ −→ ∆
Γ −→ ∆

weak-r
Γ −→ ∆, A

A, A, Γ −→ ∆
contract-l

A, Γ −→ ∆

Γ −→ ∆, A, A
contract-r

Γ −→ ∆, A

Γ −→ ∆, A A, Γ −→ , ∆
Cut

Γ −→ ∆

Sam Buss Propositional Branching Program Proofs & Logics for L and NL



Extended Frege proofs [Cook, Reckhow’75, ’76, ’79]

Extended Frege proofs allow connectives ¬, ∨, ∧.

Allows extension axioms (initial sequents)

ei ↔ Ai , i = 1, . . . , ℓ

where ei does not appear in Aj for j ≥ i .1

The sequent calculus formulation eLK has rules of inferences:

A, B, Γ −→ ∆
∧-l

A ∧ B, Γ −→ ∆

Γ −→ ∆, A Γ −→ ∆, B
∧-r

Γ −→ ∆, A ∧ B

A, Γ −→ ∆ B, Γ −→ ∆
∨-l

A ∨ B, Γ −→ ∆

Γ −→ ∆, A, B
∨-r

Γ −→ ∆, A ∨ B

Γ −→ ∆, A
¬-l
¬A, Γ −→ ∆

A, Γ −→ ∆
¬-r

Γ −→ ∆,¬A

1
ei ↔ Ai denotes the two sequents ei −→ Ai and Ai −→ ei .

Sam Buss Propositional Branching Program Proofs & Logics for L and NL



Properties of eLK proofs:

Tree-eLK p-simulates eLK. [Kraj́ıček]

Best lower bounds known for eLK proofs for sequents of
length n are Ω(n2). [c.f. B’95] Thus, it is open whether eLK

has polynomial size proof for all tautologies.

Polynomial-size formulas with extension variables effectively
represent polynomal size (Boolean) circuits. Thus eLK-proofs
are able to reason about (non-uniform) polynomial-time
properties.

Correspondingly, theorems of the equational theory PV and
∀Πb

1-theorems of the first-order theory S1
2 have propositional

translations to eLK-formulas which have polynomial size eLK

proofs. [Cook’75, ...]

Sam Buss Propositional Branching Program Proofs & Logics for L and NL



The Circuit-Frege proof system (CF) is a variant of the extended
Frege proof system in which circuits in are used (in sequents)
instead of formulas. [Jerábek’04].
CF is defined similarly to eLK, but:

CF uses circuits instead of formulas. Circuits are represented
straightforwardly with labelled acyclic directed graphs.

Extension variables are not permitted.

The similarity inferences are allowed:

A, Γ −→ ∆

A′, Γ −→ ∆

Γ −→ ∆, A

Γ −→ ∆, A′

where A and A′ are similar as circuits.

“Similar” circuits are ones that can equated by identifying
equivalent gates. Similarity in is coNL ⊆ P.
(Assuming gate inputs are ordered?)

Hence: Recognizing valid eLK or valid CF proofs is in P.

Sam Buss Propositional Branching Program Proofs & Logics for L and NL



Frege proofs

Frege proofs are defined like extended Frege proofs, but disallowing
the use of extension variables.

LK is the sequent calculus formulation of Frege proofs.

LK is defined exactly like eLK but disallowing the extension
rule initial sequents.

Recognizing valid LK proofs can be done in alternating logarithmic
time (Alogtime), i.e., in NC

1 or with polynomial size formulas.

Sam Buss Propositional Branching Program Proofs & Logics for L and NL



Properties of LK proofs:

Tree-LK p-simulates LK. [Kraj́ıček]

Best lower bounds known for LK proofs for sequents of
length n are Ω(n2). [Buss’95] Thus, it is open whether LK

has polynomial size proof for all tautologies.

Also open: does LK p-simulate eLK?

The Boolean formula value problem is complete for Alogtime.
Thus LK-proofs are able to reason about NC

1 (nonuniform
Alogtime) properties.

Correspondingly, ∀ΣB
0 -theorems of the second-order theory

VNC
1 have propositional translations to LK-formulas which

have polynomial size LK proofs. [Cook-Morioka’05,
Cook-Nguyen’10]

Sam Buss Propositional Branching Program Proofs & Logics for L and NL



Constant depth Frege proofs

For integers d , the depth d LK-proof system, denoted d-LK, is
the system LK modified to

(a) allow negations to apply only to variables, and

(b) require all formulas appearing in sequents in the proof have
depth d .

Here,

Constant depth Frege proofs use connectives ∧ and ∨, and
negation only on variables, pi .

The depth of an LK-formula is the number of alternating
levels of ∧’s and ∨’s.
E.g., a conjunction of disjunction of literals has depth 2.

d-LK-proofs use sequents of depth d formulas, in essence, are
disjunctions of depth d formulas.

Sam Buss Propositional Branching Program Proofs & Logics for L and NL



Constant depth Frege proofs were first used for propositional
translations of bounded arithmetic proofs by [Paris-Wilkie’85], for
translation of the pigeonhole principle.

Properties of constant depth Frege proofs.

d-LK is p-equivalent to Tree-(d+1)-LK, for d ≥ 0 — for
sequents of depth d formulas. [Kraj́ıček, Razborov; see
Beckmann-B]

Proving a sequent of depth d formulas is equivalent to
refuting a set of depth d-formulas.

With aggressive encoding of the syntax of proofs, sequents
and formulas, the validity of a d-LK proof can be verified in
co-nondeterministic logarithmic time. (The same holds for all
of our systems, c.f. [Beckmann-B’17])
This is a uniform version of depth 11

2
formulas.

Sam Buss Propositional Branching Program Proofs & Logics for L and NL



Half-integer depths, or Σ depth [Kraj́ıček’94]

Let d be an integer.

Intuition: A depth (d+1
2
) formula is a depth d+1 formula, but

with the restriction that the fanins of gates at depth d+1 are
logarithmically bounded by the size S of the formula.

More formally: A depth (d+1
2
) formula A is a depth d+1 formula.

Its size is the maximum of the number of symbols in A and of 2f

for f the largest number of literals in any conjunction or
disjunction at depth (d+1) in A.

Propositional translations of the bounded arithmetic theory T d+1
2

or Sd+2
2 naturally yield Tree-(d+1

2
)-LK proofs, or (d− 1

2
)-LK

proofs. (For d ≥ 0.)
1
2
-LK proofs are more commonly known as Res(log) proofs.

Sam Buss Propositional Branching Program Proofs & Logics for L and NL



Stronger propositional theories

A number of stronger propositional theories have been proposed:

Quantified propositional logic. [Dowd’78] [Kraj́ıček-Pudlák’90]

Implicit proof systems [Kraj́ıček’04]

Q-EFF [Goldberg-Papadimitriou’17]

However, this talk will consider instead weaker systems.

Sam Buss Propositional Branching Program Proofs & Logics for L and NL



Part II: Proof systems for L and NL

A first proposal for logspace (L) was suggested by [Cook, unp.’01].
That system was based on Liar-Prover games [Pudlák-B’94]. In
Cook’s system, the Liar-Prover game was run on (dag-like)
branching programs.

Sam Buss Propositional Branching Program Proofs & Logics for L and NL



The theory GL
∗ for logspace [Perron’05]

GL
∗ is an extension of LK to quantified propositional logic,

allowing only Σ-CNF(2) formulas as cut formulas.

Def’n SAT(2) is the set of instances of SAT in which no variable
appears more than twice.
Thm. SAT(2) is logspace complete [Johannsen’04]

Def’n A pre-Σ-CNF(2) formula A is a purely existential, prenex,
quantified propositional formula, such the

The quantifier free part of A is a conjunction of clauses;

If a bound variable occurs in two clauses with the same
polarity, then the clauses clash on a free variable.

Defn. The Σ-CNF(2) formulas are the formulas that can be
obtained by substituting quantifier-free formulas into a
pre-Σ-CNF(2) formula.

Sam Buss Propositional Branching Program Proofs & Logics for L and NL



GL
∗ inference rules

GL
∗ proofs are tree-like.

Quantifier inference rules: (b is an eigenvariable)

A(b), Γ −→ ∆
∃-l
∃xA(x), Γ −→ ∆

Γ −→ ∆, A(B)
∃-r

Γ −→ ∆,∃xA(x)

A(B), Γ −→ ∆
∀-l
∀xA(x), Γ −→ ∆

Γ −→ ∆, A(b)
∀-r

Γ −→ ∆,∀xA(x)

Cuts are permitted only on (a) quantifier free formulas, and
(b) Σ-CNF(2) formulas which do not contain any variable
used as an eigenvariable.

(Without the restriction of (b), the system would simulate G∗

1 .)

[Perron’05]
Gives a faithful propositional translation from VL to GL

∗.

Sam Buss Propositional Branching Program Proofs & Logics for L and NL



The theory GNL
∗ for nondeterministic logspace [Perron’09]

Def’n A ΣKrom formula A is a purely existential, prenex,
quantified propositional formula, such the

The quantifier free part of A is a conjunction of
disjunctions Ci ;

Each Ci is a disjunction of at most two bound literals and of a
clause involving only free variables.

Thm The set of true ΣKrom formulas is NL-complete. [Grädel’92]

Defn. GNL
∗ proofs are quantified LK proofs such that

The proof is tree-like

Cuts are permitted only on (a) quantifier free formulas, and
(b) ΣKrom formulas which do not contain any variable used
as an eigenvariable.

Thm GNL
∗ provides a faithful propositional translation of VNL.

[Perron’09] (See also [Cook-Kolokolova’04])

Sam Buss Propositional Branching Program Proofs & Logics for L and NL



New propositional theories for L and NL [B-Das-Knop’20]

We formulate new propositional proof systems corresponding to L

and NL, based directly on branching programs. These are closer to
Cook’s suggestion of Liar-Prover games.

The propositional proof systems LDT and LNDT use

Decision trees (DT formulas), or
Non-deterministic decision trees (NDT formulas).

The propositional proof systems eLDT and eLNDT use

Branching programs (eDT formulas), or
Non-deterministic branching programs (eNDT formulas).

Notation: “DT” means “Decision Tree”. An “eDT” (“extension
Decision Tree”) allows also extension variables, which converts the
decision tree into a decision DAG, i.e., into a Branching Program
(BP). “N” means “non-deterministic” (∨ gates).

Sam Buss Propositional Branching Program Proofs & Logics for L and NL



DT formulas (Decision trees)

Defn. DT-formulas are inductively defined by:

Atomic DT formulas: p, p, optionally 0 and 1.

Decision (or case/if-then-else) connective: (ApB).
Meaning “if p then B else A” or “case(p,B,A)”.

Example:

p

q q

q r

0 1

0 1

p

q

1 0

q

0 r

0 1

0 1

0 1 0 1

0 1

These represent the equivalent formulas
q p (q q r), and (1q0) p (0 q (0r1)).

Sam Buss Propositional Branching Program Proofs & Logics for L and NL



A sequent calculus LDT for DT formulas:

Defn. LDT proofs use sequents of DT formulas.
Allowed inferences are:

Initial sequents: (No inference rules for negation.)

pi −→ pi and pi , pi −→ and pi −→ pi and −→ pi , pi

Structural inferences, cut rule, and

Decision connective rules:

A, Γ −→ ∆, p p, B, Γ −→ ∆
dec-l:

(ApB), Γ −→ ∆

Γ −→ ∆, A, p p, Γ −→ ∆, B
dec-r:

Γ −→ ∆, (ApB)

Sam Buss Propositional Branching Program Proofs & Logics for L and NL



eDT - Extension DT formulas; and proof system eLDT

Extension DT (eDT) formulas. Defined the same as DT

formulas, but allowing an extension variable ei as an atomic
formula. Extension variables e can be used — unnegated — as
atomic formulas, but cannot be used as decision literals:

Atomic eDT formulas: p, p, e.

Decision (or case/if-then-else) connective: (ApB).
Meaning “if p then B else A” or “case(p,B,A)”.

Defining equations for extension variables have the form {ei ↔ Ai}i
where Ai is an eDT formula and ei does not appear in Aj for j ≥ i .

eDT formulas, together with their defining equations, express
exactly (deterministic) branching programs.

Sam Buss Propositional Branching Program Proofs & Logics for L and NL



Remark: Whenever working with a set of eDT formulas or a
eLNDT proof, there is an implicit set of common extension
variables with defining equations.

Defn. The proof system eLDT uses sequents of eDT formulas and
has the initial sequents and inference rules of LDT plus the initial
axioms

ei −→ ei and ei −→ Ai and Ai −→ ei .

Remark #2: For eDT’s it is not important that extension variables
cannot be negated, since it is easy to form the negation of a DT

or an eDT formula.
Remark #3: It is important that extension variables cannot be
used as decision variables. Otherwise, we could form e1 ∧ e2 as the
formula (e1 e1 e2). With this construction, we could express any
eLK formula.

Sam Buss Propositional Branching Program Proofs & Logics for L and NL



NDT formulas (Nondeterministic decision trees)

Defn. The NDT formulas are inductively defined like DT formulas
but allowing also disjunction ∨ as a connective:

Atomic NDT formulas: p, p.

Decision (or case/if-then-else) connective: (ApB).
Meaning “if p then B else A” or “case(p,B,A)”.

Disjunction (∨) connective: (A ∨ B).

NDT formulas are non-deterministic decision trees.

Sam Buss Propositional Branching Program Proofs & Logics for L and NL



Example (Branching program as NDT/eNDT formula):

∨

∨ x

z y

0
∨

0 0
∨ y

w z
0 1

0 1 0 1

NDT formula: ((zzw)∨(yy(w∨z)))∨(xx((w∨z)∨y)).

eNDT formula: ((zzw)∨(yye1))∨(xx(e1∨y)) with the sole
extension axiom e1 ↔ (w∨z).

Sam Buss Propositional Branching Program Proofs & Logics for L and NL



eNDT formulas and eLNDT formulas

Defn. eNDT formulas are defined by adding extension variables to
the definition used for NDT formulas. Inductively, eNDT formulas
are defined as:

Atomic NDT formulas: p, p , e.

Decision (or case/if-then-else) connective: (ApB).
Meaning “if p then B else A” or “case(p,B,A)”.

Disjunction (∨) connective: (A ∨ B).

Extension axioms {ei ↔ Ai}i are as before, now allowing Ai to be
an eNDT formula.

Sam Buss Propositional Branching Program Proofs & Logics for L and NL



LNDT and eLNDT proof systems

Defn. The LNDT proof system uses sequents of NDT formulas.
It has the initial sequents of LDT and allows the structural,
decision and ∨ inferences rules.

Defn. The proof system eLNDT uses sequents of eNDT formulas.
It has the initial sequents of LDT and the initial sequents from
extension axioms. It allows the structural, decision and ∨
inferences rules.

Sam Buss Propositional Branching Program Proofs & Logics for L and NL



Thm. Solid arrows show
p-simulation or pq-simulation.
Dotted arrows show
exponential separation.
Simulations are relative to
sequents of DT formulas.
[B-Das-Knop’20]

Tree-1-LK

Tree-LDT

Tree-2-LK←→Tree-LNDT←→LDT←→1-LK

2-LK←→LNDT

Frege←→LK

eLDT

eLNDT

eLK

qp

qp

Sam Buss Propositional Branching Program Proofs & Logics for L and NL



Theorem ([BDK] - work in progress)

The ∀ΣB
0 -consequences of VL have natural propositional

translations which have polynomial size eLDT-proofs.

VL can prove the consistency of eLDT proofs.

Any propositional proof system which is VL-provably sound is

p-simulated by eLDT.

Theorem ([BDK] - work in progress)

The ∀ΣB
0 -consequences of VNL have natural propositional

translations which have polynomial size eLNDT-proofs.

VNL can prove the consistency of eLNDT proofs.

Any propositional proof system which is VNL-provably sound

is p-simulated by eLDT.

This includes (re)proving the Immerman-Szelepcsényi theorem that
NL = coNL in VNL. C.f. [Cook-Kolokolova’04, Perron’09].

Sam Buss Propositional Branching Program Proofs & Logics for L and NL



Thank you for the virtual invitation to Prague!

Sam Buss Propositional Branching Program Proofs & Logics for L and NL


