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Abstract
This paper studies propositional proof systems in which lines are sequents of decision trees or
branching programs, deterministic or non-deterministic. Decision trees (DTs) are represented by
a natural term syntax, inducing the system LDT, and non-determinism is modelled by including
disjunction, _, as primitive (system LNDT). Branching programs generalise DTs to dag-like
structures and are duly handled by extension variables in our setting, as is common in proof
complexity (systems eLDT and eLNDT).

Deterministic and non-deterministic branching programs are natural nonuniform analogues of
log-space (L) and nondeterministic log-space (NL), respectively. Thus eLDT and eLNDT serve as
natural systems of reasoning corresponding to L and NL, respectively.

The main results of the paper are simulation and non-simulation results for tree-like and dag-like
proofs in LDT,LNDT, eLDT and eLNDT. We also compare them with Frege systems, constant-depth
Frege systems and extended Frege systems.
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1 Introduction

Propositional proof systems are widely studied because of their connections to feasible
complexity classes and their usefulness for computer-based reasoning. The first connections
to computational complexity arose largely from the work of Cook and Reckhow [11, 16, 17],
showing a connection to the NP-coNP question. These results, building on the work of
Tseitin [33] initiated the study of the relative efficiency of propositional proof systems.
The present paper is introduces propositional proof systems that are closely connected to
log-space (L) and nondeterministic log-space (NL).

Our original motivation for this study was to investigate propositional proof systems
corresponding to the first-order bounded arithmetic theories VL and VNL for L and NL,
see [15]. This follows a long line of work defining formal theories of bounded arithmetic that
correspond to computational complexity classes, as well as to provability in propositional
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12:2 Proof complexity of systems of (non-deterministic) decision trees and branching programs

proof systems. The first results of this type were due (independently) to Paris and Wilkie [30]
who gave a translation from I∆0 to constant-depth Frege (AC0-Frege) proofs and to Cook [11]
who gave a translation from PV to extended Frege (eF) proofs. Since the first-order bounded
arithmetic theory S1

2 is conservative over the equational theory PV, Cook’s translation also
applies to the bounded arithmetic theory S1

2 [7]. As shown in the table below, similar
propositional translations have since been given for a range of other theories, including
first-order, second-order and equational theories.

Formal Propositional Complexity

Theories Proof Systems Class

PV, S1
2 eF P [11, 7]

PSA, U1
2 QBF PSPACE [18, 7]

Ti
2, Si`1

2 Gi, G˚i`1 PΣp
i [27, 28, 7]

VNC0 Frege (F) ALogTime [14, 15, 1]

VL GL˚ L [31, 15]

VNL GNL˚ NL [32, 15]

For an introduction to these and related results, see the books [7, 15, 25, 26]. A hallmark of
the table above is that the lines in the propositional proofs express (nonuniform) properties
in the corresponding complexity class. For instance, lines in a Frege proof are propositional
formulas, for which the evaluation problem is complete for alternating log-time (ALogTime),
cf. [8]. Likewise, lines in an eF proof are (implicitly) Boolean circuits, for which the evaluation
problem is complete for P, cf. [29].

This paper’s main goal is to define alternatives for the proof systems GL˚ and GNL˚

corresponding to log-space and nondeterministic log-space (see [31, 32, 12, 13]). GL˚ restricts
cut formulas to be “ΣCNFp2q” formulas; the subformula property then implies that proofs
contain only ΣCNFp2q formulas when proving ΣCNFp2q theorems. GNL˚ similarly restricts
cut formulas to be “ΣKrom” formulas.1 ΣCNFp2q and ΣKrom do have expressive power
equivalent to nonuniform L and NL respectively [22, 19], but they are are somewhat ad
hoc classes of quantified formulas, and their connections to L and NL are indirect. In
this paper, we propose new proof systems, eLDT and eLNDT, as alternatives for GL˚

and GNL˚ respectively. The lines in eLDT and eLNDT proofs are sequents of formulas
expressing branching programs and nondeterministic branching programs, respectively. This
follows an earlier unpublished suggestion of S. Cook [10], who gave a system for L based on
branching programs via “Prover-Liar” games (see [9]). The advantage of our systems is that
deterministic and nondeterministic branching programs correspond directly to nonuniform
L and NL respectively and do not require the use of quantified formulas. (See [34] for a
comprehensive introduction to branching programs.)

To design the proof systems eLDT and eLNDT, we need to choose representations for
branching programs. For this, we use a formula-based representation, as this fits well into
the customary frameworks for proof systems. Since formulas only represent tree-structures,
we first define the systems LDT and LNDT for decision trees and non-deterministic decision
trees, respectively. From here dag-like structures are described using extension variables,

1 A ΣKrom formula has the form if it has the form D~zφp~z, ~xq, where φ is a conjunction C1^C2^ ¨ ¨ ¨ ^Cn

with each Ci a disjunction of any number of x-literals and at most two z-literals.
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allowing us to abbreviate complex formulas by fresh variables, yielding the systems eLDT
and eLNDT. An example this is given in Figure 2 on page 12. This is similar to the way the
extension variables in extended Frege proofs allow circuits to be expressed by small formulas.

We start in Section 2 describing proof systems LDT and LNDT that work with just
deterministic and nondeterministic decision trees (without extension variables). Deterministic
decision trees are represented by formulas using a single “case” or ‘if-then-else” connective,
written in infix notation ApB, which means “if p is false, then A, else B”. The condition p is
required to be a literal, but A and B are arbitrary formulas. The system LDT is a sequent
calculus system in which all formulas are decision trees. Nondeterministic decision trees may
further be composed by disjunctions, allowing formulas of the form pA_ Bq. The system
LNDT is a sequent calculus in which all formulas are nondeterministic decision trees. LDT
and LNDT are weak systems; in fact, they are both polynomially simulated by depth-2 LK
that is, by the sequent calculus LK with all formulas are depth two, allowing proofs to be
dag-like. Figure 1 shows the equivalences between systems as currently established; those
that concern LDT and LNDT are given in Section 4. Section 5 introduces the proof systems
eLDT and eLNDT for branching programs and nondeterministic branching programs.

One issue in designing these proof systems is the treatment of isomorphic or bisimilar
branching programs. One approach is to allow proofs to freely replace any branching program
with any isomorphic or bisimilar branching program by means of additional axioms, e.g.
as done by Jeřábek [21] for the reformulation of extended Frege using Boolean circuits as
lines. The problem with using isomorphism or bisimilarity axioms is that these problems (for
branching programs) are in NL but not known to be in L. Such axioms are thus undesirable,
at least for eLDT, as it is a proof system for log-space. We instead adopt a more conservative
approach: the equivalence of bisimilar branching programs must be proved explicitly.

Since formulas in eLDT and eLNDT proofs express nonuniform L and NL properties,
respectively, they are intermediate in expressive power between Boolean formulas (expressing
NC1 properties) and Boolean circuits (expressing nonuniform P properties). Thus it is not
surprising that, as shown in Figure 1, these two systems are between Frege and extended
Frege in strength. In addition, since NL properties can be expressed by quasipolynomial size
formulas, it is not unexpected that Frege proofs can quasipolynomially simulate eLNDT,
and hence eLDT. These results are given in Section 6.

We include only brief proof sketches in this paper, due to space constraints, but full
proofs may be found in [5].

2 Decision tree formulas and LDT proofs

This section describes decision tree (DT) formulas, and the associated sequent calculus proof
system LDT. All our proof systems are propositional proof systems with variables x, y, z . . .
intended to range over the Boolean values False and True. We use 0 and 1 to denote the
constants False and True, respectively. A literal is either a propositional variable x or a
negated propositional variable x. We use use variables p, q, r, . . . to range over literals.

The only connective for forming decision tree formulas (DT formulas) is the 3-ary “case”
function, written in infix notation as pApBq where A and B are formulas and p is required
to be a literal. This informally means “if p is false, then A, else B”. Formally:

§ Definition 1. Decision tree formulas, or DT formulas, are inductively defined as follows:

1. any literal p is a DT formula, and
2. if A and B are DT formulas and p is a literal, then pApBq is a DT formula. We call p

the decision literal of this formula.

CSL 2020
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Tree-1-LK

Tree-LDT

Tree-2-LKÐÑ
Thm 18

Tree-LNDTÐÑ
Thm 17

LDTThm 13
ÐÑ
Thm 14

1-LK

2-LKÐÑ
Thm 18

LNDT

Frege ÐÑLKÐÑTree-LK

eLDT

eLNDT

eLKÐÑTree-eLK

Thm 13
qp

Thm 14

Thm 29

qp
Thm 30

Figure 1 Relations between proof systems. Ñ means ‘polynomially simulates’; Ñqp means
‘quasipolynomially simulates’; 99K means ‘exponentially separated from’. d-LK is the system of
dag-like LK proofs with only depth d formulae occurring (atomic formulae have depth 0) By default,
all proof systems allow dag-like proofs, unless they are labeled as “Tree”.

The size of a DT formula A is the number of occurrences of atomic formulas in A.

Suppose α is a 0-1-truth assignment to the variables; the semantics of DT formulas is
defined by extending α to be a truth assignment to all DT formulas by inductively defining:

αpxq “ 1´ αpxq (1)

αpApBq “

#

αpAq if αppq “ 0
αpBq otherwise.

It is important that only literals p serve as the case distinctions in DT formulas. Notably,
for C a complex formula, an expression pAC Bq, which evaluates to A if C is true and to B
if C is false, would in general denote a decision diagram rather than a decision tree.

Although there is no explicit negation of DT formulas, we informally define the negation
A of a DT formula inductively by letting x denote x, and letting ApB denote the formula
ApB. Of course A is a DT formula whenever A is, and A correctly expresses the negation
of A. Notice also that negative decision literals are ‘syntactic sugar’, since Ap̄B is equivalent
to BpA. Nonetheless the notation is useful for making later definitions more intuitive.

Our definition of DT formulas is somewhat different from the usual definition of decision
trees. The more common definition would allow 0 and 1 as atomic formulas instead of
literals p as in condition 1 of Definition 1. We call such formulas 0{1-DT formulas; they are
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equivalent to DT formulas in expressive power. The constants 0 and 1 are equivalent to ppp
and ppp, for any literal p. More generally, 0pA, 1pA, Ap0 or Ap1 are equivalent to ppA, ppA,
App, or App, respectively. Conversely, a literal p, when used as atom, is equivalent to 0p1.
§ Remark 2 (Expressive power of decision trees). It is easy to decide the validity or satisfiability
of a DT formula with a log-space algorithm. To check satisfiability, for example, one examines
each leaf in the formula tree (each atomic subformula p) and verifies whether the path of
literals from the root to the leaf is consistent with some truth assignment.

A DT formula A of size n can be expressed as a DNF formula of size Opn2q with at most
n disjuncts, defined formally in Section 3. Informally this DNF is formed by taking the
disjunction of terms (a.k.a conjunctions of literals) corresponding to paths from the root to a
leaf. A dual construction expresses a DT formula A as a CNF formula of size Opn2q with at
most n conjuncts. It is folklore that the construction can be partially reversed: namely any
Boolean function that is equivalently expressed by a DNF ϕ and a CNF ψ can be represented
by a DT formula of size quasipolynomial in the sizes of ϕ and ψ. This bound is optimal, as
[23] proves a quasipolynomial lower bound.

We next define the proof system LDT for reasoning about DT formulas. Lines in an LDT
proof are sequents, hence they express disjunctions of DT’s. Thus lines in LDT proofs can
express DNF properties, whose validity problem is non-trivial, indeed coNP-complete.

§ Definition 3. A cedent, denoted Γ, ∆ etc., is a multiset of formulas; we often use commas
for multiset union, and write Γ, A for the multiset Γ, tAu. A sequent is an expression Γ Ñ ∆
where Γ and ∆ are cedents. Γ and ∆ are called the antecedent and succedent, respectively.

The intended meaning of Γ Ñ ∆ is that if every formula in Γ is true, then some formula in ∆
is true. Accordingly, Γ Ñ ∆ is true under a truth assignment α iff αpAq “ 0 for some A P Γ
or αpAq “ 1 for some A P ∆. A sequent is valid iff it is true for every truth assignment.

§ Definition 4. The sequent calculus LDT is a proof system in which lines are sequents of
DT formulas. The valid initial sequents (axioms) are, for p any literal,

pÑ p p, pÑ Ñ p, p.

The rules of inference are:

Contraction rules: A,A,Γ Ñ ∆
c-l:

A,Γ Ñ ∆
Γ Ñ ∆, A,Ac-r:
Γ Ñ ∆, A

Weakening rules: Γ Ñ ∆w-l:
A,Γ Ñ ∆

Γ Ñ ∆w-r:
Γ Ñ ∆, A

Cut rule: Γ Ñ ∆, A A,Γ Ñ ∆
cut: Γ Ñ ∆

Decision rules: Γ, AÑ p,∆ Γ, p, B Ñ ∆
dec-l: Γ, ApB Ñ ∆

Γ ÑA, p,∆ Γ, pÑB,∆
dec-r: Γ ÑApB,∆

Proofs are, by default, dag-like. I.e. a proof of a sequent S in LDT is a sequence pS0, . . . , Snq

such that S is Sn and each Sk is either an initial sequent or is the conclusion of an inference
step whose premises occur amongst pSiqiăk. The subsystem where proofs are restricted to be
tree-like (i.e. trees of sequents composed by inference steps) is denoted Tree-LDT.

The size of a proof is the sum of the sizes of the formula occurrences in the proof.

CSL 2020



12:6 Proof complexity of systems of (non-deterministic) decision trees and branching programs

The inference rules that are new to LDT are the two decision rules, dec-l and dec-r. Since
ApB is equivalent to pA _ pq ^ pp _ Bq, the lower sequent of a dec-r is true (under some
fixed truth assignment) iff both upper sequents are true under the same assignment, i.e. the
rule is sound and invertible. Similarly, since ApB is also equivalent to pA^ pq _ pp^Bq, the
dec-l rule is also sound and invertible.
§ Remark 5 (Cut-free completeness). The invertibility properties also imply that the cut-free
fragment of LDT is complete. To prove this by induction on the complexity of sequents, start
with a valid sequent Γ Ñ ∆; choose any non-atomic formula ApB in Γ or ∆, and apply the
appropriate decision rule dec-l or dec-r that introduces this formula. The upper sequents of
this inference are also valid and, furthermore, they have logical complexity strictly less than
the logical complexity of Γ Ñ ∆. The base case of the induction is when Γ Ñ ∆ contains
only atomic formulas; in this case, it can be inferred from an initial sequent with weakenings.
Note that this shows in fact, that any valid sequent can be proved in LDT using only decision
rules, weakenings, and initial sequents. The system also enjoys a ‘local’ cut-elimination
procedure, via standard techniques, but that is beyond the scope of this work.

§ Proposition 6. The following have polynomial size, cut-free, Tree-LDT proofs:

(a) AÑA

(b) ÑA,A

(c) A,AÑ

(d) AÑ p,ApB

(e) p,B ÑApB

(f) ApB ÑA, p

(g) ApB, pÑB

3 Comparing DT proof systems and LK proof systems

LK is the usual Gentzen sequent calculus for Boolean formulas over the basis ^ and _. The
Boolean formulas are defined inductively by

Any literal p is a Boolean formula, and
If A and B are Boolean formulas, then so are pA_Bq and pA^Bq.

The proof system LK has the same initial sequents (axioms) as LDT, its inference rules are
the contraction rules c-l and c-r, the weakening rules w-l and w-r, the cut rule, and the
following Boolean rules:

A,B,Γ Ñ ∆
-̂l:

A^B,Γ Ñ ∆
Γ Ñ ∆, A Γ Ñ ∆, B-̂r:

Γ Ñ ∆, A^B

A,Γ Ñ ∆ B,Γ Ñ ∆
_-l:

A_B,Γ Ñ ∆
Γ Ñ ∆, A,B

_-r:
Γ Ñ ∆, A_B

Recall that a clause is a disjunction of literals and a term is a conjunction of literals.

§ Definition 7. A Boolean formula is depth one if it is either a clause or a term. 1-LK
is the fragment of LK in which all formulas appearing in sequents are depth one formulas.
Tree-1-LK is the same system with the restriction that proofs are tree-like.

If ~p is a vector of literals, we write
Ž

~p to denote a disjunction of the literals ~p, taken in
the indicated order. The notation

Ź

~p is defined similarly. The nesting of disjunctions and
conjunctions can be arbitrary, so

Ž

~p denotes any formula of the form p
Ž

~p 1q_p
Ž

~p 2q where
~p 1 and ~p 2 denote p1, . . . , pk and pk´1, . . . , p` for some 1 ď k ď `. Although these notations
are ambiguous about the nesting of disjunctions or conjunctions, this makes no difference in
this work, since if A and B are both of the form

Ž

~p but with different orders of applications
of _’s, then there are polynomial size, cut-free Tree-1-LK proofs of AÑB and B ÑA.
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Later theorems will compare the proof theoretic strengths of various fragments and
extensions of LDT to fragments of LK. Since these theories use different languages, we need
to establish translations between cedents of DT formulas and (depth one) Boolean formulas.

§ Definition 8. For a (nonempty) sequence of literals ~p we define the DT formulas Conjp~pq
and Disjp~pq by induction on the length of ~p as follows:

Conjppq :“ p

Conjpp, ~pq :“ pppConjp~pqq
Disjppq :“ p

Disjpp, ~pq :“ pDisjp~pqppq

In other words, if ~p “ pp1, . . . , p`q, for ` ą 1, we have:

Conjp~pq “ pp1p1pp2p2p¨ ¨ ¨ pp`´2p`´2pp`´1p`´1p`qq ¨ ¨ ¨ qqq

Disjp~pq “ ppp¨ ¨ ¨ ppp`p`´1p`´1qp`´2p`´2q ¨ ¨ ¨ qp2p2qp1p1q.

It is not hard to verify that Conj and Disj correctly express the conjunction and disjunction
of the literals ~p. This is borne out by the next proposition.

§ Proposition 9. The following sequents have polynomial size, cut-free Tree-LDT proofs.

(a) Conjp~p, ~qqÑ Conjp~pq
(b) Conjp~p, ~qqÑ Conjp~qq
(c) Conjp~pq,Conjp~qqÑ Conjp~p, ~qq

(d) Disjp~pqÑ Disjp~p, ~qq
(e) Disjp~qqÑ Disjp~p, ~qq
(f) Disjp~p, ~qqÑ Disjp~pq,Disjp~qq

For the converse direction of simulating LDT (and its supersystems) by LK, we need to
express DT formulas A as Boolean formulas in both CNF and DNF forms. For this we define
TmspAq as a multiset of terms (i.e., a multiset of conjunctions) and ClspAq as a multiset of
clauses (i.e., a multiset of disjunctions) so that A is equivalent to both the DNF

Ž

TmspAq
and the CNF

Ź

ClspAq.

§ Definition 10. Let A be a DT-formula. The terms and clauses of A are the multisets
TmspAq and ClspAq inductively defined by letting Tmsppq and Clsppq both equal p, and letting

TmspBpCq :“ tpp^Dq : D P TmspBqu Y tpp^Dq : D P TmspCqu (2)

ClspBpCq :“ tpp_Dq : D P ClspBqu Y tpp_Dq : D P ClspCqu. (3)

For example, if A is p1p2pp3p4p5q then TmspAq is tp2 ^ p1, p2 ^ p4 ^ p3, p2 ^ p4 ^ p5u, and
ClspAq is equal to tp2 _ p1, p2 _ p4 _ p3, p2 _ p4 _ p5u.

The equivalence between A,
Ž

TmspAq and
Ź

ClspAq is witnessed by simple proofs:

§ Proposition 11. There are polynomial size, cut-free Tree-LK-proofs of:

(a) C ÑD, for each C P TmspAq and D P ClspAq.
(b) (i) ClspApBqÑD, p, for each D P ClspAq;

(ii) p,ClspApBqÑD, for each D P ClspBq.
(iii) ClspAqÑD, p, for each D P ClspApBq.
(iv) p,ClspBqÑD, for each D P ClspApBq.

(c) (i) C Ñ p,TmspApBq, for each C P TmspAq;
(ii) p, C Ñ TmspApBq, for each C P TmspBq.
(iii) C Ñ p,TmspAq, for each C P TmspApBq.
(iv) p, C Ñ TmspBq, for each C P TmspApBq.

CSL 2020



12:8 Proof complexity of systems of (non-deterministic) decision trees and branching programs

Proof sketch. Part (a) of the lemma is proved by induction on the complexity of A. Parts
(b) and (c) are trivial once the definitions are unwound. For example, (b.i) follows from the
fact that ClspApBq contains the formula p_D. This allows (b.i) to be derived from the two
sequents pÑ p and DÑD. The former is an axiom, and the latter has a tree-like cut-free
proof by Proposition 6(a). The other cases are similar. đ

The next definition shows how to compare proof complexity between proof systems that
work with DT formulas and ones that work with Boolean formulas.

§ Definition 12. Let P be a proof system for sequents of Boolean formulas (or at least,
sequents of depth one Boolean formulas), and Q be a proof system for sequents of DT
formulas. We say that P polynomially simulates Q if there is a polynomial time procedure
which, given a Q-proof of

A0, . . . , Am´1 ÑB0, . . . , Bn´1, (4)

where the Ai’s and Bi’s are DT-formulas, produces a P -proof of

ClspA0q, . . . ,ClspAm´1qÑ TmspB0q, . . . ,TmspBn´1q. (5)

The system Q polynomially simulates P if there is a polynomial time procedure which, given
a P -proof of

ł

~a0, . . . ,
ł

~am´1 Ñ
ľ

~b0, . . . ,
ľ

~bn´1, (6)

where the ~ai’s and ~bi’s are sequences of literals, produces a Q-proof of

Disjp~a0q, . . . ,Disjp~am´1qÑ Conjp~b0q, . . . ,Conjp~bn´1q. (7)

The systems P and Q are polynomially equivalent if they polynomially simulate each other.
(5) is called the Boolean translation of (4). (7) is called the DT-translation of (6). Quasipoly-
nomial simulation and equivalence are defined in the same way, but using quasipolynomial
time (time 2logOp1q n) procedures.2

3.1 1-LK and LDT
Our first results compare the weakest systems considered in this work, operating with just
DT formulas or with just terms and clauses.

§ Theorem 13. LDT polynomially simulates 1-LK. Tree-LDT polynomially simulates
Tree-1-LK.

Proof sketch. We may replace terms
Ź

~a and clauses
Ž

~a occurring in a 1-LK proof by
DT-formulas Conjp~aq or Disjp~aq respectively. The result can be adapted into a correct LDT
proof using cuts against proofs from Proposition 9. đ

A converse result holds too, but we have only a quasipolynomial simulation in the tree-like
case. It is open whether this can be improved to a polynomial simulation.

2 It turns out that all stated quasipolynomial simulations in this work (Theorems 14 and 30) take time
nOplog nq

“ 2Oplog2 nq.
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§ Theorem 14. 1-LK polynomially simulates LDT. Tree-1-LK quasipolynomially simulates
Tree-LDT.

Proof sketch. In a given LDT proof, we may replace every DT A in an antecedent by the
multiset ClspAq and every DT A in a succedent by TmspAq. The result can be adapted into
a correct 1-LK proof using cuts against proofs of the truth conditions from Proposition 11.

In the tree-like case, when simulating the cut rule we must copy one subproof polynomially
many times (such copying is unnecessary when proofs are dag-like). However it turns out we
may freely choose which of the two subproofs to duplicate, so we may just take the smaller
one, which has size at most half that of the original proof. Doing this recursively yields a
nOplog nq “ 2Oplog2 nq bound on the size of the resulting Tree-1-LK proof. đ

4 Nondeterministic decision tree formulas and LNDT proofs

This section defines nondeterministic decision tree (NDT) formulas, and the associated
sequent calculus LNDT. The NDT formulas have two kinds of connectives; the 3-ary case
function ApB and the Boolean OR-gate (_). Formally:

§ Definition 15. The nondeterministic decision tree formulas, or NDT formulas for short,
are inductively defined by

Any literal p is a NDT formula;
If A and B are NDT formulas and p is a literal, then pApBq is a NDT formula;
If A and B are NDT formulas, then pA_Bq is an NDT formula.

A nondeterministic gate in a decision tree accepts just when at least one of its children
is accepting. This corresponds exactly to an _ gate, which yields True exactly when at
least one input is True. One of our motivations in defining LNDT that is will serve as a
foundation for our later definition eLNDT, which will capture a logic for nondeterministic
branching programs, and hence a logic for nonuniform NL.

§ Definition 16. The sequent calculus LNDT is a proof system in which lines are sequents
of NDT formulas. Its initial sequents (axioms) and rules are the sames as those of LDT,
along with the two _ inferences, _-l and _-r, of LK as described on page 6.

For α a 0-1-truth assignment, the semantics of NDT formulas is defined extending the
definition of the semantics of DT formulas, in equations 1, to include

αpA_Bq “

#

1 if αpAq “ 1 or αpBq “ 1
0 otherwise.

It is straightforward to verify that LNDT is sound and complete for sequents of NDT formulas,
by a similar argument to that of Remark 5.

4.1 LDT and tree-like LNDT are equivalent
Next we turn to the relative complexity of LDT and LNDT. Naturally the latter subsumes
the former, but this can be strengthened as follows:

§ Theorem 17. Tree-LNDT is polynomially equivalent to LDT over DT-sequents.

We will soon see that this also refines the known polynomial equivalence between 1-LK and
Tree-2-LK (see [2, 3]), by virtue of Theorems 14 and 18.

CSL 2020



12:10 Proof complexity of systems of (non-deterministic) decision trees and branching programs

Proof sketch. To show that Tree-LNDT polynomially simulates LDT we notice that lines
of an LDT proof (i.e. sequents of DT formulas) may be expressed as NDT formulas. From
here one may use an adaptation of a standard technique for showing that tree-like LK is
equivalent to dag-like LK, carefully managing the complexity of formulas occurring.

To show that LDT polynomially simulates Tree-LNDT, we first notice that each NDT
formula may be written as a disjunction of DT formulas (‘normal form’), and further-
more that LNDT proofs may be written in a way that operates with only such formu-
las with only polynomial blowup. Now we convert a normal form Tree-LNDT proof π
of

Ž

Π1, . . . ,
Ž

Πk Ñ
Ž

Λ1, . . . ,
Ž

Λl to a (dag-like) LDT derivation π1 of the sequent
Ñ Λ1, . . . ,Λl from extra hypotheses tÑ Πiu

k
i“1. This is proved by induction on the struc-

ture of the proof tree and takes polynomial time. Now, when π derives a DT sequent, notice
that π1 is just a LDT proof of the same sequent. đ

4.2 Equivalence of LNDT and 2-LK
A Boolean formula is depth two if it is depth one, or if it is a conjunction of clauses or a
disjunction of terms. 2-LK is the fragment of LK in which all formulas occurring are depth
two formulas. Tree-2-LK is the same system with the restriction that proofs are tree-like.

§ Theorem 18. LNDT and 2-LK are polynomially equivalent. Tree-LNDT and Tree-2-LK
are polynomially equivalent.

This is not so surprising a result, since NDTs have equivalent expressive power to DNFs, so
depth two sequents may be written as NDT sequents and vice-versa.

Proof sketch. A (two-sided) 2-LK proof is simulated in LNDT by simply replacing every
DNF

Ž

i

Ź

~pi with the NDT
Ž

i Conjp~piq and locally repairing the proof using cuts against
proofs from Proposition 8. In the other direction we work with ‘normal form’ LNDT proofs
(as in the proof of Theorem 17). From here the translation to DNFs is straightforward,
since DT formulas already have small DNFs, cf. Definition 10. Again, we use cuts against
proofs of the appropriate truth conditions. Both simulations map tree-like proofs to tree-like
proofs. đ

5 Proof systems for branching programs

5.1 Formulas and proofs with extension variables
We now describe the systems eLDT and eLNDT which reason about deterministic and
nondeterministic branching programs respectively.3 Formulas can now include extension
variables, usually denoted by e1, e2, etc. It is important that the extension variables are
explicitly distinguished from the propositional variables we have thus far used.

The purpose of extension variables is to serve as abbreviations for more complex formulas.
Thus, proofs that use extension variables will be accompanied by a set of extension axioms
tei Ø Aiuiăn, where each formula Ai may use any literals p but is restricted to use only the
extension variables ej for j ă i. The intent is that ei is an abbreviation for the formula Ai.

§ Definition 19. Extended decision tree formulas (eDT formulas) are defined as follows:

(1) Any literal p is an eDT formula.

3 These systems could equally well be called LBP and LNBP, using “BP” for “branching programs’.
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(2) Any extension variable e is an eDT formula.
(3) If A and B are eDT formulas and p is a literal, then pApBq is a DT formula.

In particular, a decision literal p in a formula ApB is not allowed to be an extension variable.
The intuition is that the extension variables may ‘name’ nodes in a branching program.

§ Definition 20. Extended nondeterministic decision tree formulas (eNDT formulas) are
defined by the closure conditions (1)-(3) above (replacing “eDT” by “eNDT”) and:

(4) If A and B are eNDT formulas, then pA_Bq is an eNDT formula.

A set of extension axioms is a set A “ tei Ø Aiuiăn where e0, . . . , en´1 are extension
variables such that the only extension variables appearing in Ai are e0, . . . , ei´1, for i ă n.
We identify A with the set of sequents consisting of ei ÑAi and Ai Ñ ei, for i ă n. eDT and
eNDT formulas have truth semantics only relative to a set of extension axioms tei Ø Aiuiăn.
Namely, for α a truth assignment, the definition of truth is extended by setting αpeiq “ αpAiq.

§ Definition 21. An eLDT proof is a pair pπ,Aq where A “ tei Ø Aiuiăn is a set of
extension axioms where each Ai is an eDT formula, and π is an LDT derivation which is
allowed to use initial sequents from A. eLNDT proofs are defined similarly, but with eLNDT
formulas Ai and eLNDT derivations.

Note that all formulas in an eLDT or eLNDT proof are based on a single set of extension
axioms tei Ø Aiuiăn.

Let us discuss how the extended formulas we have introduced may be used to represent
bona fide branching programs. A (deterministic) branching program is a directed acyclic
graph G such that (a) G has a unique source node, (b) sink nodes in G are labelled with
either 0 or 1, (c) all other nodes are labelled with a literal p and have two outgoing edges,
one labelled 0 and the other 1. G can be converted into an equivalent eDT formula with
associated extension axioms tei Ø Aiuiăn by introducing an extension variable for every
internal node in G. Conversely, as is described in more detail in Section 5.2, any eDT
formula A with extension axioms tei Ø Aiuiăn can be straightforwardly transformed into a
linear size deterministic branching program. For this, the nodes in the branching program
correspond to the extension variables ei and the subformulas of the formulas Ai.

Nondeterministic branching programs are defined similarly to deterministic branching
programs, but further allowing the internal nodes of G to be labelled with “_” as well as
literals (in this case the labelling of its outgoing edges is omitted). The semantics is that an
_-node is accepting provided at least one of its children is accepting. It is straightforward
to convert a nondeterministic branching program into an eLNDT formula with associated
extension axioms, and vice versa. A similar construction yields the folklore fact that ‘extended
Boolean formulas’ are as expressive as Boolean circuits.

§ Example 22. Consider the (deterministic) branching program G in Figure 2, on the left,
which returns 1 just if at least two out of the four input variables w, x, y, z are 1. Edges
labelled with 0 are here dotted (and always left outgoing) while edges labelled 1 are here
solid (and always right outgoing). In this particular case, the branching program is ordered
(or an OBDD), i.e. variables occur in the same relative order on each path from the source
to a sink. The program also happens to compute a monotone Boolean function.

To represent G in eLDT, we introduce extension variables for each internal node of the
program as follows. Write eij for the jth node of the ith layer, with i, j ranging from 0
onward, and introduce the extension axioms in Figure 2, on the right.4 Now G is represented

4 Formally, we are writing 0 and 1 as shorthand for ppp̄ and p̄pp respectively, for some/any literal p.
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w

x x

y y 1

0 z 1

0 1
e10 Ø e20xe21

e11 Ø e21x1
e20 Ø 0ye31

e21 Ø e31y1
e31 Ø 0z1

Figure 2 A branching program G, on the left, computing the 2-out-of-4 threshold function and
an encoding of its (internal) local conditions by extension variables, on the right. Dotted edges are
labelled 0 and solid edges are labelled 1. G is equivalent to the eDT formula e10we11.

by the eDT formula e10we11. Notice that the orderedness of the program is reflected in its
eLDT representation: writing px0, x1, x2, x3q for pw, x, y, zq, we have that xi is the root of
the formula that any eij abbreviates.

Other representations of G are possible, for instance by renaming the extension variables
or by partially unwinding the graph. In both these two latter cases, the eDT representation
obtained will be provably equivalent to the one above, by polynomial-size proofs in eLDT,
by virtue of Lemma 28 later.

5.2 Foundational issues and Boolean combinations
The fact that extension variables cannot be used as decision literals is a significant limitation
on the expressiveness of DT formulas. Recall for instance that the conjunction of p1 and p2
can be expressed with the DT formula Conjpp1, p2q, namely pp1p1p2q. However, it is not
permitted to form pe1e1e2q; in fact, it is not possible to express the conjunction e1 ^ e2
without taking the extension axioms defining e1 and e2 into account. If we could write
the conjunction of e1 and e2 by a generic formula Ape1, e1q, then we could introduce a
new extension variable representing Ape1, e2q. This would imply that eDT formulas are
as expressive as extended Boolean formulas; in other words, that deterministic branching
programs would be as expressive as Boolean circuits. This is a non-uniform analogue of
L “ P (i.e., log-space equals polynomial time) and, of course, is an open question.

Nonetheless, for any given extension variables e and e1, there is a formula Andpe, e1q
expressing the conjunction of e and e1 by changing the underlying set of extension axioms.
The intuition is that we start with the branching program G for e, but now with sink nodes
labelled with 0 or 1 instead of with variables. To form the branching program for e^ e1, we
take (an isomorphic copy) of the branching program G1 for e1, and modify G by replacing
each sink node labelled with 1 with the source node of G1 (in other words, each edge directed
into a sink “1” is modified to instead point to the root of G1). Since we do not actually have
0 and 1 in the language, we work modulo their encodings by literals:

§ Definition 23. Let C be an eDT or eNDT formula. Cr0{Bs is the formula obtained by
replacing (in parallel) each occurrence of a literal p as a leaf in C with the formula pB ppq.
Similarly, Cr1{Bs is the formula obtained by replacing each occurrence of a literal p as a leaf
in C with the formula pp pBq.

The point of Cr0{Bs is that pB ppq evaluates to 1 if p is true, and to B otherwise. Thus,
the intent is that Cr0{Bs is equivalent C _B. Likewise, we want Cr1{Bs to be equivalent
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C ^B. However, these equivalences hold only if the substitutions are applied not just in C
but instead throughout the definitions of the extension axioms used in C. This is done with
the following definition.

§ Definition 24. Let A be a set of extension axioms tei Ø Aiuiăn. Another set of extension
axioms Ar1{Bs is defined as follows. First, let te1iui be a set of new extension variables. Define
Air~e

1{~es to be the result of replacing each ej in Ai with e1j . Let A1i be pAir~e
1{~esqr1{Bs. Then

Ar1{Bs is the set of extension axioms te1i Ø A1iuiănYA. The set Ar0{Bs is defined similarly:
letting ~e 2 be another set of new extension variables, defining A2i to be pAir~e

2{~esqr0{Bs, and
letting Ar0{Bs be the set of extension axioms te2i Ø A2i uiăn YA.

Finally, if A and B are eDT or eNDT formulas defined using extension axioms A, then
AndpA,Bq is by definition Ar1{Bs relative to the extension axioms Ar1{Bs. The formula
OrpA,Bq for disjunction is defined similarly, namely, it is equal to Ar0{Bs relative to the
extension axioms Ar0{Bs.

Note the two formulas AndpA,Bq and OrpA,Bq introduced different sets of new extension
variables, so we may use both AndpA,Bq and OrpA,Bq without any clashes between
extension variables. More generally, we adopt the convention that the new extension variables
are uniquely determined by the Boolean combination being constructed. For instance, e1i
could have instead been designated ei,pA^Bq. When measuring proof size, we also need
to count the sizes of the subscripts on the extension variables. This clearly however only
increases proof size polynomially.

There are two other sources of growth of size in forming AndpA,Bq and OrpA,Bq. The
first is that formula sizes increase since copies of B is substituted in at many places in A and
A: this potentially gives a quadratic blowup in proof size. We avoid this quadratic blowup
in proof size, by always taking B to be a single variable (namely, an extension variable).
The construction of AndpA,Bq or OrpA,Bq also introduces many new extension variables,
namely it potentially doubles the number of variables. To control this, we will ensure that
the constructions of Andp¨, ¨q and Orp¨, ¨q are nested only logarithmically.

§ Example 25. Consider the formula Andpp1,Andpp2, p3qq, which is a translation of the
Boolean formula p1 ^ pp2 ^ p3q to a DT formula. To form Andpp2, p3q, start with pp2p21q
and substitute p3 for “1”, to obtain pp2p2p3q. Then Andpp1,Andpp2, p3qq is obtained by
forming pp1p11q and replacing “1” with Andpp2, p3q to obtain pp1p1pp2p2p3q. It is also the
same as Conjpp1, p2, p3q. A similar construction shows that Orpp1,Orpp2, p3q is equal to
ppp3p2p2qp1p1q. This is a translation of the Boolean formula p1 _ pp2 _ p3q to a DT formula,
and is equal to Disjpp1, p2, p3q.

§ Example 26. Let A be the formula pp1p2pe1p3e2qq and B be the formula pq1q2e2q in the
context of the extension axioms A

e1 Ø pr1r2e2q e2 Ø ps1s2s3q, (8)

where pi, qi, ri, si are literals. The formula Ar0{Bs is formed as follows. First Ap~e 1{~eq is
e11 Ø pr1r2e

1
2q, e12 Ø ps1s2s3q. Then Ar0{Bs contains the extension axioms of A as shown

in (8) plus the extension axioms e11 Ø ppBr1r1qr2e
1
2q, e12 Ø ppB s1 s1qs2pBs3s3qq. Finally,

Ar0{Bs is the DT formula ppBp1p1qp2pe
1
1pe

1
2qq, namely, pppq1q2e2qp1p1qp2pe

1
1pe

1
2qq, relative

to the four extension axioms in Ar0{Bs.

5.3 Truth conditions and renaming of extension variables
We show that, despite the delicate renaming of variables required for notions such as Ar0{Bs
and AndpA,Bq, for DT (respectively eNDT) formulas A,B, we may nonetheless realise their

CSL 2020



12:14 Proof complexity of systems of (non-deterministic) decision trees and branching programs

basic truth conditions by small eLDT (respectively eLNDT) proofs:

§ Lemma 27. Let A and B be eDT formulas (respectively, eNDT formulas) relative to
extensions axioms A. Then, the sequents (a)-(c) below have polynomial size, cut free eLDT
proofs (respectively, eLNDT proofs) relative to the extension axioms Ar0{Bs. The same holds
for the sequents (d)-(f) relative to Ar1{Bs.

(a) B ÑAr0{Bs
(b) AÑAr0{Bs

(c) Ar0{BsÑA,B

(d) Ar1{BsÑB

(e) Ar1{BsÑA

(f) A,B ÑAr1{Bs

Proof sketch. Parts (a)-(c) are proved by showing inductively that if C is a subformula of
Ar0{Bs or a subformula of any A1i in Ar0{Bs, then C ÑA,B and B ÑC and AÑC have
short eLDT (resp., eLNDT) proofs. The base cases are just the cases where C is is the form
pB ppq. The inductive cases are trivial. A similar argument proves cases (d)-(f). đ

The proofs of Lemma 27 seem to be inherently dag-like, and we do not know if there are
polynomial-size Tree-eLDT proofs for those sequents.

As discussed above, we assume that the choice of new extension variables ~e 1 or ~e 2 depends
explicitly on what formula AndpA,Bq and OrpA,Bq is being formed. In other words, each
e1i or e2i is a variable ei,AndpA,Bq or ei,OrpA,Bq. In the proof of Theorem 29 later, this
means that the translations of distinct occurrences of the same Boolean formula use the
same extension variables. However, this is not strictly necessary, as eLDT can prove the
equivalence of formulas after renaming extension variables:

§ Lemma 28. Suppose A is a DT formula w.r.t. extension axioms A “ tei Ø Aiui, and that
the extension variables ~f are distinct from the extension variables ~e. Let B equal Ar~f{~es
w.r.t. the extension axioms B “ tfi Ø Air~f{~esui. Then eLDT has a polynomial size, cut free
(dag-like) proofs of AÑB and B ÑA relative to the extension axioms AY B.

Lemma 28 has a straightforward proof that proceeds inductively through all subformulas of
the formulas Ai and A.

6 Simulations for eLDT, eLNDT and LK

We compare the systems eLDT and and eLNDT with LK, showing that they are all quasi-
polynomially related in terms of proof size, constituting the upper half of Figure 1.

6.1 eLDT polynomially simulates LK
The intuition for the next simulation is that the formulas in an LK proof are Boolean and
may be evaluated in log-space. Thus they may be expressed by polynomial-size eDT formulas
(under appropriate extension axioms).

§ Theorem 29. eLDT (and so also eLNDT) polynomially simulates LK.

Proof sketch. We assume the given LK proof is written in balanced form, i.e. with only
Oplognq-depth Boolean formulas occurring. Once again we proceed by replacing each formula
occurrence by an eDT formula representing it, by virtue of the constructions of And and
Or from Definition 24. (We appeal to the logarithmic depth of Boolean formula occurrences
in order to control the complexity of this translation). From here we locally simulate each
step of the LK proof by cutting against the truth conditions from Lemma 27. đ
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6.2 LK quasipolynomially simulates eLNDT
The intuition for the next simulation is that eNDT formulas define nondeterministic logspace
properties, and these are expressible with quasipolynomial size Boolean formulas.

§ Theorem 30. LK quasipolynomially simulates eLNDT (and so also eLDT).

Proof sketch. We work from the observation that NL predicates have quasipolynomial-size
(in fact nOplog nq-size) Boolean formulas. Moreover, there is an evaluator for non-deterministic
branching programs with quasipolynomial-size Boolean formulas for st-connectivity in graphs,
whose basic properties were shown to have quasipolynomial-size LK proofs in [4]. Once the
basic truth conditions of this evaluator are given appropriate LK proofs, we may proceed by
duly replacing every eNDT formula occurrence in an eLNDT proof π by the corresponding
Boolean formula evaluating the non-deterministic branching program it represents. We cut
against proofs of the truth conditions to locally simulate each step of π. đ

7 Conclusions

We presented sequent-style systems LDT, LNDT, eLDT and eLNDT that manipulate decision
trees, nondeterministic decision trees, branching programs (via extension) and nondetermin-
istic Branching Programs (via extension) respectively. The systems eLDT and eLNDT serve
as natural systems for log-space and nondeterministic log-space reasoning, respectively. We
examined their relative proof complexity and also compared them to (low depth) Frege
systems (more precisely their representations in the sequent calculus LK).

We did not compare the proof complexity theoretic strength of our systems eLDT and
eLNDT with the systems GL˚ for L and GNL˚ for NL in [31, 32]. In future work we intend
to show that our systems correspond to the bounded arithmetic theories VL and VNL in the
usual way. Namely, proofs of Π1 formulas in VL translate to families of small eLDT proofs
of each instance, and, conversely, VL proves the soundness of eLDT. (Similarly for VNL
and eLNDT.) This would render our systems polynomially equivalent to GL˚ and GNL˚,
respectively, by the analogous results from [31, 32], though this remains work in progress.

Two natural open questions arise from this work.

Ź Question 31. Does Tree-1-LK polynomially simulate Tree-LDT, or is there a quasipolyno-
mial separation between the two?

Ź Question 32. Does Tree-eLDT polynomially simulate eLDT? Similarly for eLNDT.

While well-defined, the systems Tree-eLDT and Tree-eLNDT do not seem very robust, in
the sense that it is not immediate how to witness branching program isomorphisms with
short proofs. Nonetheless, it would be good to settle their proof complexity theoretic status.

There has been much recent work on the proof complexity of systems that may manipulate
OBDDs [24, 6, 20], branching programs where propositional variables must occur in the
same relative order on each path through the dag. In fact, we could also define an ‘OBDD
fragment’ of eLDT by restricting lines to eDT formulas expressing OBDDs, as alluded to in
Example 22. It would be interesting to examine such systems from the point of view of proof
complexity in the future, in particular comparing them to existing OBDD systems.
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