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Abstract

This paper, firstly, discusses the relationship between Buss’s
definition and Cook and Urquhart’s definition of BASIC axioms
and of IS1

2 . The two definitions of BASIC axioms are not
equivalent; however, each intuitionistically implies the law of the
excluded middle for quantifier-free formulas. There is an
elementary proof that the definitions of IS1

2 are equivalent which
is not based on realizability or functional interpretations.

Secondly, it is shown that any negated positive consequence of S1
2

is also a theorem of IS1
2 . Some possible additional axioms for IS1

2

are investigated.

1. Introduction and Definitions

In [1, 2] we introduced a hierarchy of formal theories of arithmetic called

collectively Bounded Arithmetic; these theories were shown to have a very

close connection to the computational complexity of polynomial time, the

levels of the polynomial hierarchy, polynomial space and exponential time. Of

particular interest is theory called S1
2 which has proof-theoretic strength

closely linked to polynomial time computability. Later we introduced an

intuitionistic version of this theory called IS1
2 and proved a feasibility result

for this theory based on a realizability interpretation using a notion of
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polynomial time functionals [3]. Recently, Cook and Urquhart [7, 6] have

given an alternative definition of IS1
2 . They also gave an improved treatment

of polynomial time functionals, introduced new powerful theories using

lambda calculus, strengthened the feasibility results for IS1
2 , and reproved the

‘main theorem’ for S1
2 as a corollary of their results for IS1

2 .

The work in the first part of this paper was motivated by an desire to clarify

the relationship between these two definitions of IS1
2 ; more precisely, while

reading Cook and Urquhart’s paper I tried to verify their assertion that the

bootstrapping argument for S1
2 could be followed to bootstrap their version

of IS1
2 . As it turned out, there is a general reason why their assertion in true

(Corollary 12) and it was not necessary to trace the bootstrapping argument

step-by-step to formalize it in IS1
2 . We show below that the BASIC axioms of

Cook and Urquhart are not equivalent to the BASIC axioms of Buss; however,

we also give an elementary proof that the different definitions of IS1
2 are

equivalent (a fact already proved by Cook and Urquhart based on their

Dialectica interpretation).

In the last part of this paper we show that S1
2 is conservative over IS1

2 in the

following sense: If A is a positive formula and B is an HΣb
1 formula and if

S1
2 ` A ⊃ B then IS1

2 also proves A ⊃ B . This generalises the fact that S1
2

and IS1
2 have the same HΣb

1 -definable functions. As a corollary, if A is a

positive formula and S1
2 ` ¬A then IS1

2 ` ¬A . An intuitionistic theory IS1+
2

which is apparently stronger that IS1
2 is defined by allowing PIND on

formulas of the form A(b) ∨ B where A ∈ HΣb
1 and B is an arbitrary formula

in which the induction variable b does not appear. The theory IS1+
2 is shown

in [5] is shown to be the intuitionistic theory which is valid in every S1
2 -normal

Kripke model; we prove here a proof-theoretic theorem needed in [5].

We presume familiarity with the first part of chapter 2 of Buss [2], with the

definitions of IS1
2 in Buss [3] and in section 1 of Cook-Urquhart [7], and with

the sequent calculus. The realizability and functional interpretations of IS1
2

are not needed.

Buss [2] and Cook-Urquhart [7] use a finite set of BASIC axioms which form a



base theory to which induction axioms are later added. However, the two

definitions of BASIC are different; for reference, we list all 32 BASIC axioms

of Buss and all 21 BASIC axioms of Cook and Urquhart in a table below.

We briefly review some definitions; see [2, 3, 7] for the full definitions. A

bounded quantifier is one of the form (Qx ≤ t) and it is sharply bounded if t is

of the form |s| . A (sharply) bounded formula is one in which every quantifier is

(sharply) bounded. The class Σb
0 = Πb

0 = ∆b
0 is the set of sharply bounded

formulas. The classes Σb
i and Πb

i are sets of bounded formulas defined by

counting alternations of bounded quantifiers, ignoring the sharply bounded

quantifiers. The class HΣb
1 of hereditarily Σb

1 formulas is the set of formulas A

such that each subformula of A is Σb
1 . A positive formula is one that contains

no implication or negation signs. A formula is Σb+
1 if and only if it is positive

and is Σb
1 . Clearly every Σb+

1 -formula is HΣb
1 .

We now define two variants of IS1
2 , denoted IS1

2B and IS1
2CU in this paper.

We shall actually prove they are equivalent and hence the preferred name for

either theory is just IS1
2 . IS1

2B is the theory called IS1
2 in [3] and called

IS1
2B by Cook-Urquhart [7], whereas IS1

2CU is the theory called IS1
2 in [7].

Both theories are formulated with PIND axioms which are (universal closures

of) axioms of the form

A(0) ∧ (∀x)(A(b1
2
xc) ⊃ A(x)) ⊃ (∀x)A(x).

Definition The theory IS1
2B is the intuitionistic theory which has axioms

(a) All formulas of the form

B1 ∧ B2 ∧ · · · ∧ Bk ⊃ Bk+1

with each Bi a HΣb
1 -formula, which are consequences of the (classical)

theory S1
2 ,

(b) The PIND axioms for each HΣb
1 formula A .



Buss’s BASIC axioms Cook-Urquhart’s BASIC axioms
(B-1) y ≤ x ⊃ y ≤ Sx
(B-2)¬x = Sx (CU-1) x = Sx ⊃ A
(B-3) 0 ≤ x (CU-2) 0 ≤ x
(B-4) x ≤ y ∧ ¬x = y ↔ Sx ≤ y (CU-3) x ≤ y ⊃ (x = y ∨ Sx ≤ y)
(B-5)¬x = 0 ⊃ ¬2x = 0
(B-6) y ≤ x ∨ x ≤ y (CU-6) y ≤ x ∨ x ≤ y
(B-7) x ≤ y ∧ y ≤ x ⊃ x = y (CU-5) x ≤ y ∧ y ≤ x ⊃ x = y
(B-8) x ≤ y ∧ y ≤ z ⊃ x ≤ z (CU-4) x ≤ y ∧ y ≤ z ⊃ x ≤ z
(B-9) |0| = 0 (CU-7) |0| = 0

(B-10)¬x = 0 ⊃ |2x| = S(|x|)∧ (CU-8) 1 ≤ x ⊃ |2x| = S(|x|)
|S(2x)| = S(|x|) (CU-9) |S(2x)| = S(|x|)

(B-11) |1| = 1
(B-12) x ≤ y ⊃ |x| ≤ |y| (CU-10) x ≤ y ⊃ |x| ≤ |y|
(B-13) |x#y| = S(|x| · |y|) (CU-11) |x#y| = S(|x| · |y|)
(B-14) 0#y = 1 (CU-12) 1#1 = 2
(B-15)¬x = 0 ⊃ 1#(2x) = 2(1#x)∧

1#(S(2x)) = 2(1#x)
(B-16) x#y = y#x (CU-13) x#y = y#x
(B-17) |x| = |y| ⊃ x#z = y#z
(B-18) |x| = |u| + |v| ⊃ (CU-14) |x| = |u| + |v| ⊃

x#y = (u#y) · (v#y) x#y = (u#y) · (v#y)
(B-19) x ≤ x + y
(B-20) x ≤ y ∧ ¬x = y ⊃

S(2x) ≤ 2y ∧ ¬S(2x) = 2y
(B-21) x + y = y + x
(B-22) x + 0 = x (CU-15) x + 0 = x
(B-23) x + Sy = S(x + y) (CU-16) x + Sy = S(x + y)
(B-24) (x + y) + z = x + (y + z) (CU-17) (x + y) + z = x + (y + z)
(B-25) x + y ≤ x + z ↔ y ≤ z (CU-18) x + y ≤ x + z ↔ y ≤ z
(B-26) x · 0 = 0 (CU-19) x · 1 = x
(B-27) x · (Sy) = (x · y) + x
(B-28) x · y = y · x
(B-29) x · (y + z) = (x · y) + (x · z) (CU-20) x · (y + z) = (x · y) + (x · z)
(B-30) 1 ≤ x ⊃ (x · y ≤ x · z ↔ y ≤ z)
(B-31)¬x = 0 ⊃ |x| = S(|b1

2xc|) (CU-21) x = (b1
2xc + b1

2xc)∨
(B-32) x = b1

2yc ↔ (2x = y ∨ S(2x) = y) x = S(b1
2xc + b1

2xc)



Definition The theory IS1
2CU is the intuitionistic theory which has axioms

(a) The BASIC axioms of Cook and Urquhart,

(b) The PIND axioms for each Σb+
1 formula A .

Similar definitions can be formulated for intuitionistic theories ISi
2 ; however,

we shall only consider the case i = 0 since the complications in

‘bootstrapping’ apply mainly to BASIC and IS1
2 . V. Harnik [8] has

generalized Cook and Urquhart’s work to ISi
2 for i > 1.

I wish to thank Stephen Cook and Alasdair Urquhart for making their

unpublished notes on bootstrapping IS1
2CU available to me.

2. Consequences of the BASIC Axioms

We shall show that both formulations of the BASIC axioms imply the law of

the excluded middle for atomic formulas. However, the two formulations are

not equivalent: Buss’s BASIC axioms imply Cook-Urquhart’s BASIC axioms

but not vice-versa. For the rest of this paper we let BBASIC denote the 32

BASIC axioms of Buss and CUBASIC denote the 21 BASIC axioms of Cook

and Urquhart.

Proposition 1 The following formulas are intuitionistic consequences of both

BBASIC and CUBASIC:

(a) x ≤ x

(b) x ≤ Sx

(c) ¬Sx ≤ x

(d) Sx ≤ y ⊃ ¬y ≤ x

(e) 0 6= Sx



We are adopting the convention that a formula with free variables is a

consequence of a theory iff its generalization (universal closure) is. So “x = x”

means “(∀x)(x = x)”, etc.

Proof Formula (a) follows from (B-6) or (CU-6). Formula (b) follows from

(a) and (B-1), while (B-1) follows from (CU-15), (CU-16), (CU-18) and

(CU-2). Formula (c) follows from (b), (B-7) and (B-2) or, equivalently, from

(b), (CU-5) and (CU-1). Formula (d) follows from (c) and either (B-8) or

(CU-4). Finally (e) follows from (a), (b), (B-8) or (CU-4), and (c). 2

Theorem 2 (Cook-Urquhart [7]) CUBASIC intuitionistically implies the law

of the excluded middle for atomic formulas.

Proof The axiom (CU-6) states that x ≤ y ∨ y ≤ x ; this plus (CU-3)

intuitionistically implies x = y ∨ Sx ≤ y ∨ Sy ≤ x . Now formulas (d) and (a)

imply x = y ∨ ¬x = y . Also from (CU-6) and (CU-3) we get

y ≤ x ∨ x = y ∨ Sx ≤ y ; so by (d) and (a) and equality axioms,

y ≤ x ∨ ¬y ≤ x . 2

The BBASIC axioms were originally formulated for a classical theory so no

attempt was made to ensure that they were appropriate for intuitionistic

theories; however, the next theorem shows that the BBASIC axioms do indeed

imply the law of the excluded middle for atomic formulas.

Theorem 3 BBASIC intuitionistically implies the law of the excluded middle

for atomic formulas.

Proof We prove a series of claims:

Claim (B-i): BBASIC intuitionistically implies x ≤ y ↔ Sx ≤ Sy and

x = y ↔ Sx = Sy .

Proof: Note that (B-22), (B-23) and (B-21) imply that S0 + x = Sx . Now

x ≤ y ↔ Sx ≤ Sy follows from (B-25). From this, (B-6) and (B-7) imply

x = y ↔ Sx = Sy .



Claim (B-ii): BBASIC intuitionistically implies x + x ≤ y + y ⊃ x ≤ y .

Proof: It is easy to prove that x + x = 2 · x and y + y = 2 · y using

(B-26)-(B-28). Now the claim follows from axiom (B-30) since by (b) of

Proposition 1, 1 ≤ 2.

Claim (B-iii): BBASIC intuitionistically implies x + x ≤ y + y + 1 ⊃ x ≤ y .

Proof: Now we need to show that 2 · x ≤ 2 · y + 1 ⊃ x ≤ y . Let’s argue

informally intuitionistically from BBASIC. By (B-6) either Sy ≤ x or x ≤ Sy

or both. If Sy ≤ x then Sy + Sy ≤ x + x ≤ y + y + 1 and hence

S(y + y + 1) ≤ y + y + 1 which contradicts formula (c) of Proposition 1. So

x ≤ Sy . (This a valid intuitionistic use of proof-by-contradiction.) Now

x 6= Sy , else x = Sy implies Sy ≤ x which we just showed implied

S(y + y + 1) ≤ y + y + 1. (Again, it is intuitionistically valid to prove x 6= Sy

by assuming x = Sy and obtaining a contradiction; however, it would not be

valid to prove x = Sy by deriving a contradiction from x 6= Sy .) Thus

x ≤ Sy ∧ x 6= Sy so Sx ≤ Sy by (B-4) and thus x ≤ y by (B-i ).

Claim (B-iv): BBASIC intuitionistically implies

y ≤ x ∧ x ≤ Sy ⊃ x = y ∨ x = Sy.

Proof: To prove this, note that axiom (B-32) implies that either

y = b1
2
yc + b1

2
yc or y = S(b1

2
yc + b1

2
yc). Let’s first assume that the first case

holds. Another use of axiom (B-32) shows that b1
2
(Sy)c = b1

2
yc . Now we

further split into two subcases depending on whether x = b1
2
xc + b1

2
xc or

x = b1
2
xc + b1

2
xc + 1; one of these subcases holds by yet another use of (B-32).

In either subcase we can use Claim (B-ii) or (B-iii), respectively, to show that

b1
2
yc ≤ b1

2
xc . A similar argument shows that b1

2
xc ≤ b1

2
Syc . Hence

b1
2
xc = b1

2
yc . Now by axiom (B-32) again, x = y ∨ x = Sy .

For the second case, assume that y = S(b1
2
yc + b1

2
yc). Then

Sy = Sb1
2
yc + Sb1

2
yc so Sb1

2
yc = b1

2
(Sy)c . And Sy ≤ Sx ≤ S(Sy). We can



now use the first case to see that Sx = Sy ∨ Sx = S(Sy), thus by (B-i),

x = y ∨ x = Sy .

Claim (B-v): BBASIC intuitionistically implies x ≤ y ∨ ¬x ≤ y .

Proof: By (B-6) twice, x ≤ y ∨ Sy ≤ x ∨ (y ≤ x ∧ x ≤ Sy). By (B-iv), this

implies x ≤ y ∨ Sy ≤ x∨ x = y ∨ x = Sy ; so x ≤ y ∨¬x ≤ y by (a) and (d) of

Proposition 1.

Claim (B-vi): BBASIC intuitionistically implies x = y ∨ x 6= y .

Proof: By claim (B-v) twice, (x ≤ y ∧ y ≤ x) ∨ ¬x ≤ y ∨ ¬y ≤ x and thus by

axiom (B-7) and by (a) of Proposition 1, x = y ∨ x 6= y .

Q.E.D. Theorem 3

Theorem 4 BBASIC intuitionistically implies CUBASIC.

Proof Because BBASIC and CUBASIC are (generalizations of) atomic

formulas and because BBASIC intuitionistically implies the law of the

excluded middle, it is actually sufficient to show that BBASIC classically

implies CUBASIC. The only CUBASIC axioms that do not immediately

follow from BBASIC are (CU-3) and (CU-12). (CU-3) is a classical

consequence of (B-4) and thus follows by the law of the excluded middle for

the formula x = y . (CU-12) is the axiom 1#1 = 2. To derive this, use (B-15)

with x = 1 to show 1#2 = 2 · (1#1) then use (B-18) with x = 2 and

u = v = y = 1 to derive 2#1 = (1#1) · (1#1). Now by use of (B-16) and

(B-28), (1#1)#(1#1) = (1#1) · 2 and by using (B-30) twice, 1#1 = 2 is

derived (note that 1#1 6= 0 by (B-13), (B-11), and (B-12)). 2

The converse to Theorem 4 does not hold; before we prove this we show that

adding three additional axioms to CUBASIC is sufficient to make it equivalent

to BBASIC.

Theorem 5 Let CUBASIC+ be the the axioms of CUBASIC plus the axioms

(B-21), (B-28) and (B-30). Then CUBASIC+ intuitionistically implies the



BBASIC axioms.

Proof (B-1) follows from formula (b) of Proposition 1 and (CU-4). (B-4) is an

immediate consequence of (CU-3) and (b) and (c) of Proposition 1. To show

CUBASIC+ |= (B-5), first note that x 6= 0 ⊃ 1 ≤ x by (CU-2) and (CU-3);

hence x 6= 0 ⊃ 0 6= |2x| by (CU-8) and (e) of Proposition 1 and finally, by

(CU-7), x 6= 0 ⊃ 2x 6= 0. Axiom (B-19) follows from (CU-15), (CU-18) and

(CU-2). (B-10) and (B-11) are consequences of (CU-8) and (CU-9).

By (CU-11) and (e) of Proposition 1, x#y 6= 0 is a consequence of

CUBASIC+ . By (CU-14) with x = u = v = 0, 0#y = (0#y) · (0#y) and by

(CU-19) and (B-30), 0#y = 1, which is (B-14). It is straightforward to derive

(B-15) from (B-10), (B-11), (CU-12) and (CU-14). Also, (B-17) is implied

by (CU-14) and the fact that |0| = 0 and 0#z = 1.

To derive (B-20), first use (B-28) and (CU-19) and (CU-20) to show that

S(2x) = x + x + 1. Now, if x ≤ y ∧ x 6= y then by (B-4), Sx ≤ y . And by

(B-28) and (B-30), 2(Sx) ≤ 2y . Thus S(2x) < 2(Sx) ≤ 2y .

(B-26) follows readily from (CU-19) and (CU-20); (B-27) is an immediate

consequence of (CU-20) with the aid of x · 1 = x and Sy = y + 1. Finally to

derive (B-32) from (CU-21) it will suffice to show that x + x = y + y ⊃ x = y .

Suppose that x + x = y + y and x 6= y ; then w.l.o.g. Sx ≤ y and so (B-20)

yields a contradiction. And (B-31) follows from (B-32), (CU-8) and (CU-9). 2

Theorem 6 The CUBASIC axioms do not (classically) imply the BBASIC

axioms.

Proof We shall prove this by constructing a model of CUBASIC in which

multiplication is not commutative, violating axiom (B-28). Let M be a model

of S1
2 in which exponentiation is not total and in which the function

x 7→ 2|x|#|x| is total. Let M be the universe of M . We shall say that m ∈ M

is large if and only if there is no n ∈ M with m = |n| , i.e., m is large if and

only if 2m does not exist. An object is small if and only if it is not large. Note

that the small elements are closed under # since x 7→ 2|x|#|x| is total. Let N



be the substructure of M with universe N the set of objects that can be

expressed as a · 2b + c with b and c small and with 2b large. Clearly N is

well-defined as a substructure since N is closed under all the functions

of CUBASIC. Since CUBASIC consists of universal formulas, N |= CUBASIC

(since M is a model of CUBASIC).

Pick some fixed large a0 ∈ N which is not a power of two. Form a

structure N ∗ from N with the same universe as N and with all functions and

relations, other than multiplication, unchanged. For multiplication, any

product of the form a0 · (a · 2b + c) with c small and 2b large is defined to be

equal to a0 · c . Any other product a · b with a 6= a0 is equal to its product in N
(and in M). It is easy to see that N ∗ still satisfies all the CUBASIC axioms:

since a0 is not small, (CU-11) still holds, and since a0 is not a power of two,

(CU-14) is unaffected. Obviously (CU-19) and (CU-20) hold in N ∗ . But

multiplication is not commutative in N ∗ so N is not a model of BBASIC. 2

Another way that multiplication could have been defined in N ∗ would be to

let a0 · (a · 2b + c) be equal to m · a · 2b + a0 · c for some arbitrary m in M .

3. Equivalence of the Definitions of IS1
2

Next we show that the two definitions IS1
2CU and IS1

2B of IS1
2 are

equivalent. There are three steps necessary for this: first, we must show that

IS1
2CU implies all the BBASIC axioms; second, that IS1

2CU implies the

HΣb
1 -PIND axioms; and third, that IS1

2CU implies all the axioms of IS1
2B .

All three of these steps are done by Cook and Urquhart in [7]; our new

contribution here is to give a simple proof of the third step that does not

depend on the realizability or functional interpretations of IS1
2 . Our simple

proof for the third step allows one to reduce the bootstrapping of IS1
2CU to

the bootstrapping of S1
2 .

Theorem 7 (Cook-Urquhart [7]) IS1
2CU |= BBASIC . In fact, PIND on

open formulas is sufficient to derive the BBASIC axioms from the CUBASIC

axioms.

Proof (Sketch) By Theorem 5 it will suffice to show that (B-21), (B-28) and



(B-30) are consequences of IS1
2 . We sketch the steps in the proof, leaving the

details to the reader: (This derivation is only slightly different from Cook and

Urquhart’s original unpublished proof.)

1. Prove 0 + x = x by PIND on x .

2. Prove 1 + x = x + 1 by PIND on x .

3. Prove x + y = y + x by PIND on x . This is (B-21).

4. Prove x · 0 = 0. No PIND necessary, derive the equality

x + 0 = x + x · 0 and use (CU-18).

5. Prove 0 · x = 0 by PIND on x .

6. Prove (y + y) · x = y · x + y · x by PIND on x.

7. Prove (y + y + 1) · x = y · x + y · x + x by PIND on x.

8. Prove x · y = y · x by PIND on x . This is (B-28).

9. Prove x + x ≤ y + y ↔ x ≤ y without use of induction. This follows

from the fact that if x < y then x + x < x + y = y + x < y + y which

can be derived from (CU-18).

10. Prove 1 ≤ x ⊃ (x · y ≤ x · z ↔ y ≤ z) by PIND on x . This is (B-30).

2

The next theorem is relatively simple to prove; see Lemma 1.3 through

Theorem 1.7 of [7].

Theorem 8 (Cook-Urquhart [7])

(1) IS1
2CU proves A ∨ ¬A for A a Σb

0 -formula.

(2) IS1
2CU proves that every HΣb

1 -formula is equivalent to a Σb+
1 -formula.

(3) IS1
2CU implies the HΣb

1 -PIND axioms.



The next lemma will aid in the proof that IS1
2CU proves all the axioms

of IS1
2B .

Lemma 9 The following are intuitionistically valid:

(a) A ⊃ A ∨ B

(b) (A ∨ C) ∧ (B ∨ C) ⊃ (A ∧ B) ∨ C

(c) (B ⊃ A ∨ C) ⊃ (¬A ∧ B ⊃ C)

(d) (A ∨ ¬A) ⊃ (A ∧ B ⊃ C) ⊃ (B ⊃ ¬A ∨ C)

(e) (B ⊃ A ∨ C) ∧ (A ∧ B ⊃ C) ⊃ (B ⊃ C)

(f) (B ∨ ¬B) ⊃ (B ∧ C ⊃ A ∨ D) ⊃ (C ⊃ (B ⊃ A) ∨ D)

(g) (C ⊃ A ∨ D) ∧ (C ∧ B ⊃ D) ⊃ (C ∧ (A ⊃ B) ⊃ D)

(h) A(s) ∧ s ≤ t ⊃ (∃x ≤ t)A(x)

The proof of Lemma 9 is straightforward.

Theorem 10 (Cook-Urquhart [7]) All axioms of IS1
2B are consequences of

IS1
2CU .

A generalization of Theorem 10 is presented in section below.

Proof Recall that S1
2 is a classical theory of Bounded Arithmetic with the

BBASIC axioms and Σb
1 -PIND rules. We shall show that any sequent of

HΣb
1 -formulas which is a theorem of S1

2 is also a consequence of IS1
2CU .

More precisely, if Γ→∆ is a sequent containing only HΣb
1 -formulas and is a

theorem of S1
2 then the formula (

∧
Γ) ⊃ (

∨
∆) is a consequence of IS1

2CU .

(Frequently intuitionistic logic is formulated in the sequent calculus by

restricting succedents to have only one formula; however, it still makes sense

to talk about a sequent with more than one succedent formula being a

theorem of an intuitionistic system. The way to do this is to think of the

formulas in the succedent as being disjoined into a single formula.) By



classical prenex operations, any Σb
1 -formula is equivalent to an HΣb

1 -formula

so S1
2 may be equivalently formulated with the HΣb

1 -PIND rule instead of

Σb
1 -PIND. Thus if S1

2 proves a sequent Γ→∆ containing only HΣb
1 -formulas,

then there is an S1
2 -proof in which every induction formula is a HΣb

1 -formula.

Now, by free-cut elimination, there is an S1
2 proof of Γ→∆ such that every

formula in the proof is an HΣb
1 -formula.

Given an S1
2 proof of Γ→∆ in which every formula is a HΣb

1 -formula, we

prove that every sequent in the proof is a theorem of IS1
2CU by beginning at

the initial sequents (axioms) and proceeding inductively on the number of

inferences needed to derive a sequent. The initial sequents are logical axioms,

equality axioms or BBASIC formulas and are consequences of IS1
2CU by

Theorem 7. For the induction step, suppose for example that a ¬:right

inference
A, Π→Λ

Π→Λ,¬A

has its upper sequent a theorem of IS1
2CU ; then since both A and ¬A are

HΣb
1 -formulas, A is actually a Σb

0 formula, and by Theorem 8(1) and

Lemma 9(d), the lower sequent is also a theorem of IS1
2 . The fact that

∨:right, ∧:right, ¬:left, Cut, ⊃:right, ⊃:left, and ∃ ≤:right inferences

preserve the property of being a theorem of IS1
2 follows in a similar manner

from Lemma 9(a)-(c),(e)-(h), respectively. The structural inferences and the

other left inference rules are even easier to handle.

The ∀ ≤:right and HΣb
1 -PIND inference rules remain. Suppose that the

upper sequent of
b ≤ t, Π→A(b), Λ

Π→(∀x ≤ t)A(x), Λ

is a theorem of IS1
2CU (recall b must not appear in the lower sequent). Since

(∀x ≤ t)A(x) is a HΣb
1 -formula, the indicated quantifier must be sharply

bounded and the term t must be of the form t = |s| . Then IS1
2 also proves

b ≤ t, Π,
[
(∀x ≤ |(b1

2
bc)|)A(x) ∨

(∨
Λ

)]→ [
(∀x ≤ |b|)A(x) ∨

(∨
Λ

)]

and now it is easy to use HΣb
1 -PIND on the formula in square brackets with

respect to the variable b to show that the lower sequent of the ∀ ≤:right

inference is a theorem of IS1
2CU .



Finally, suppose that the upper sequent of a HΣb
1 -PIND inference

A(b1
2
bc), Π→A(b), Λ

A(0), Π→A(t), Λ

is a theorem of IS1
2CU . It follows that

Π, A(b1
2
bc) ∨

(∨
Λ

)→A(b) ∨
(∨

Λ
)

is also a consequence of IS1
2CU , from whence, by an intuitionistic use of

HΣb
1 -PIND,

Π, A(0) ∨
(∨

Λ
)→A(t) ∨

(∨
Λ

)

which intuitionistically implies the lower sequent of the inference.

Q.E.D. Theorem 10

Corollary 11 (Cook-Urquhart [7]) The systems IS1
2CU and IS1

2B are

equivalent.

Corollary 12 (Cook-Urquhart [7]) Any Σb
1 -definable function of S1

2 is

Σb+
1 -definable in IS1

2CU .

Corollary 13 (Cook-Urquhart [7]) IS1
2 is closed under Markov’s Rule for

HΣb
1 -formulas. In other words, if A is an HΣb

1 -formula and if IS1
2 ` ¬¬A

then IS1
2 ` A.

4. On the Choice of Axioms for IS1
2

We have shown that although the BBASIC axioms and the CUBASIC axioms

are not equivalent, the different definitions of IS1
2 by Buss and by Cook and

Urquhart are equivalent. It is worth asking what is the best or right definition

of these systems. The original BASIC axioms (the BBASIC axioms) were

defined to serve as a base theory for a number of theories of bounded

arithmetic: we stated in [2] that any “sufficiently large” set of universal

axioms would suffice as the BASIC axioms. Although the CUBASIC axioms

are sufficient as a base theory for IS1
2CU they may well not be strong anough

for other (weaker) theories. Let us formulate five general criteria for the choice

of BASIC axioms: (1) The BASIC axioms should be universal, true formulas.

(2) The BASIC axioms should be strong enough to prove elementary facts



about the non-logical symbols. (3) The BASIC axioms should not be too

strong; for example, they should not state something equivalent to the

consistency of Peano arithmetic. (4) Let Im be a term with value equal to m

and length linear in |m| . Then for any fixed term t(~x) there should be

polynomial size BASIC proofs of t(I~n) = It(~n) for all natural numbers ~n . More

generally, if A(~x) is a fixed Σb
1 -formula then for all ~n ∈ N , if A(~n) is true

there should be a free-cut free BASIC proof of A(I~n). In addition, this

statement should be formalizable in IS1
2 or S1

2 (this is Theorem 7.4 of [2]).

(5) For every term t(~x), there should be a term σt(~x) such that the BASIC

axioms imply (without induction) that

∀~x∀~y((
k∧

i=1

xi ≤ yi) ⊃ t(~x) ≤ σt(~y)).

This fifth condition states that BASIC is a “sufficient” theory in the

terminology of [4]. Note that the remark at the very end of section 2 can be

used to show that the CUBASIC axioms are not sufficient. It is important

that a theory be sufficient in order to be able to introduce new function

symbols and use them freely in terms bounding quantifiers and it seems

expedient that the BASIC axioms themselves be sufficient (without any

induction). In addition, Theorem 4.10 of [2] seems to depend crucially on the

fact that that BASIC axioms are sufficient.

Thus we prefer the BBASIC axioms, or equivalently and slightly more

elegantly, the CUBASIC axioms plus (B-21), (B-28) and (B-30), over just the

CUBASIC axioms.

Finally let’s consider consider the axiomatizations of IS1
2CU and IS1

2B .

Since IS1
2CU proves that any HΣb

1 -formula is equivalent to a Σb+
1 -formula,

the choice of HΣb
1 -PIND versus Σb+

1 -PIND is unimportant‡. Of more

significance is the choice of non-induction axioms. The theory IS1
2B is defined

with a set of consequences of S1
2 as its non-induction axioms, whereas, IS1

2CU

has just the CUBASIC axioms as non-induction axioms. In the former case,

Buss thus required the “main theorem” for S1
2 to prove that every definable

function of IS1
2B is polynomial time computable; but in the latter case, Cook

‡Cook and Urquhart use Σb+
1 -formulas to simplify the bootstrapping.



and Urquhart are able to obtain the main theorem for S1
2 as a corollary to

their Dialectica interpretation of the intuitionistic systems. By using our

simplified proof of Theorem 11 above, the main theorem for S1
2 follows already

from the corresponding theorem for IS1
2B or IS1

2CU without requiring the

Dialectica interpretation. Thus Cook and Urquhart’s use of BASIC axioms as

a base theory is a nice improvement over using the sequents of HΣb
1 -formulas

which are consequences of S1
2 .



5. Conservation Results for S1
2 over Intuitionistic Theories

In this section, an extension of IS1
2 called IS1+

2 is defined; actually, it is open

whether IS1
2 and IS1+

2 are distinct. We are interested in IS1+
2 because it

allows a rather general extension of Theorem 10 and because IS1+
2 arises

naturally in the study of Kripke models for intuitionistic Bounded Arithmetic.

First we state a generalization of Theorem 10 that still applies if IS1
2 .

Theorem 14

(a) If A is a positive formula and S1
2 ` ¬A then IS1

2 ` ¬A.

(b) If A is a positive formula and B is an HΣb
1 -formula, then if S1

2 ` A ⊃ B

then IS1
2 ` A ⊃ B .

Corollary 15 A positive sentence is classically consistent with S1
2 if and only

if it is intuitionistically consistent with IS1
2 .

Proof The proof of Theorem 14 is almost exactly like the proof the

Theorem 10. First note that (b) implies (a) by taking B to be 0 = 1, so it

suffices to prove (b). By using free-cut elimination and by restricting

induction in the S1
2 -proof to PIND on HΣb

1 -formulas, there is an S1
2 -proof P

of the sequent A→B such that every formula in the antecedent of a sequent

in P is either positive or an HΣb
1 -formula and such that every formula in the

succedent of a sequent in P is an HΣb
1 -formula. Now the rest of the proof of

Theorem 10 applies word-for-word. 2

Definition An HΣb∗
1 -formula with distinguished variable b is a formula of the

form A(b,~c) ∨ B(~c) where A is an HΣb
1 -formula, B is an arbitrary formula

and b does not occur in B(~c). The variables ~c will act as parameters.

Definition IS1+
2 is the intutionistic theory axiomatized as IS1

2 plus the

PIND axioms for HΣb∗
2 -formulas with respect to their distinguished variables.

Note that S1
2 implies (classically) all the axioms of IS1+

2 since it can

classically consider the two cases B(~c) and ¬B(~c). However, we don’t know if

IS1
2 implies IS1+

2 . The main reason for our interest in IS1+
2 is that it is the



intuitionistic theory which is valid in Kripke models in which every world is a

classical model of S1
2 . This fact is proved in Buss [5] and depends crucially on

the next theorem.

Definition Let A be a positive formula and let B be an arbitrary formula.

The formula AB is obtained from A by replacing every atomic subformula C

of A by (C ∨ B). (We are using the conventions of Gentzen’s sequent

calculus: there are distinct free and bound variables and hence free variables

in B can not become bound in AB .)

Theorem 16 Let A be a positive formula and suppose S1
2 ` ¬A. Then, for

any formula B , IS1+
2 ` AB ⊃ B .

Proof As argued above, if S1
2 ` ¬A then there is a tree-like, free-cut free

S1
2 -proof P of the sequent A→ in which every formula is either (a) in an

antecedent, positive and an ancestor of the formula A in the endsequent, or

(b) is an HΣb
1 -formula which is an ancestor of a cut formula. Form another

“proof” P ∗ by replacing every formula C in P of type (a) by the formula CB ,

and, for any sequent in which such a replacement is made, adding the

formula B to the succedent. P ∗ ends with the sequent AB→B ; although

P ∗ is not quite a valid IS1+
2 -proof, we claim that all the “inferences” in P are

sound for IS1+
2 .

To prove this claim, consider the ways that P ∗ may fail to be an IS1+
2 -proof.

Initial sequents in P contain only atomic formulas, so in P ∗ each initial

sequent is either (a) unchanged from P or (b) has at least one formula, say D ,

in the antecedent replaced by D ∨ B and has B added as an additional

formula in the succedent. In either case, the initial sequent of P ∗ is a

consequence of IS1+
2 (and of IS1

2 ). Just as in the proof of Theorem 10, any

¬:right, ∨:right, ∧:right, ¬:left, Cut, ⊃:right, ⊃:left, ∃ ≤:left, ∨:left, ∧:left

and structural inferences in P become IS1+
2 sound “inferences” in P ∗ . It

remains to consider the cases of ∀ ≤:right and PIND. These latter two cases

are handled similarly to the corresponding cases in the proof of Theorem 10.

Suppose, for instance, that P contains the inference

b ≤ t, Π→A(b), Λ
Π→(∀x ≤ t)A(x), Λ



where b is the eigenvariable and does not occur in the lower sequent. Since

(∀x ≤ |t|)A(x) is an HΣb
1 -formula, the indicated quantifier must be sharply

bounded and t = |s| for some term s . In P ∗ , this inference is either

unchanged or becomes

b ≤ t, Π∗→A(b), Λ, B
Π∗→(∀x ≤ t)A(x), Λ, B

where Π∗ represents Π with one or more formulas C replaced by C ∨ B . We

claim that if the upper sequent of this latter “inference” is IS1+
2 -provable,

then so is the lower inference. This is because if the upper sequent is provable,

then IS1+
2 proves

b ≤ t, Π∗,
[
(∀x ≤ |(b1

2
bc)|)A(x) ∨ (

∨
Λ) ∨ B

]→→ [(∀x ≤ |b|)A(x) ∨ (
∨

Λ) ∨ B] .

The formula in square brackets is an HΣb∗
1 -formula since every formula in Λ

is in HΣb
1 -formula. Hence IS1+

2 can use its PIND axioms on this formula to

prove the lower sequent.

Similarly, any induction inference in P corresponds to an IS1+
2 -sound

inference in P ∗ ; this is shown as in the proof of Theorem 10, except again the

(
∨

Λ) may become (
∨

Λ) ∨ B .

Q.E.D. Theorem 16

There are several open problems regarding axiomatizations of IS1
2 . As noted

above, we don’t know if IS1+
2 is equivalent to IS1

2 . Also, S. Cook asked

whether Πb+
1 -PIND is a consequence of IS1

2 . Current techniques (feasible

realizability or functional interpretations) can not be used to show that

Πb+
1 -PIND is not a consequence of IS1

2 since the Πb+
1 -PIND axioms are

polynomial-time realizable. Likewise, it is open whether the Σb
1 -PIND axioms

are consequences of IS1
2 . Again, the Σb

1 -PIND axioms are polynomial-time

realizable.

One final observation: if S1
2 can prove that P = NP then any bounded

formula is IS1
2 -provably equivalent to a Σb+

1 -formula and IS1
2 would have



PIND and the law of the excluded middle for all bounded formulas. By S1
2

proving P = NP we mean that there is a ∆b
1 -definable, polynomial-time

predicate which, provably in S1
2 , is equivalent to some NP-complete problem

(such as SAT). Hence it is expected to be difficult to show that, say Πb+
1 -PIND

is not a consequence of IS1
2 since this would require proving that S1

2 does not

prove P = NP. Similarly, it is expected to be difficult to show that IS1
2 is not

equal to IS2
2 or, more generally, to show that the hierarchy of intuitionistic

theories of Bounded Arithmetic is proper.
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