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This talk discusses:

Proof systems:
Frege proofs, extended Frege proofs, abstract proof systems,
resolution, cutting planes, nullstellensatz, the polynomial calculus.

The extension rule:
Frege versus extended resolution (equivalent to extended Frege).
Resolution versus extended resolution

Interpolation and lower bounds:
Resolution.
Cutting planes.

Automatizability and conditional lower bounds.
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The Frege proof system F is a “textbook-style” propositional
proof system with Modus Ponens as its only rule of inference.

Variables: x , y , z , . . . range over True/False.
Connectives: ¬, ∧, ∨, →.

Modus Ponens:
ϕ ϕ→ ψ

ψ
.

Axiom Schemes: ϕ→ ψ → ϕ
(ϕ→ ψ) → (ϕ→ ψ → χ) → (ϕ→ χ)

and 8 more axiom schemes.

Defn: The size of a Frege proof is the number of symbols in the
proof. F m ϕ means ϕ has an F proof of size m.
The size of a formula is the number of symbols in the formula.
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Thm: F is (implicationally) sound and (implicationally) complete.

More generally, a Frege system is specified by any finite complete
set of Boolean connectives and finite set of axiom schemes and
rule schemes, provided it is implicationally sound and
implicationally complete.

By completeness, every tautology has an Fproof.

Open problem: Is there a polynomial p(n) such that every
tautology has an F-proof of size ≤ p(n)?
That is, is F polynomially bounded?

The answer is the same for all Frege systems, in that any two
Frege systems “p-simulate” each other.
[Reckhow’76; Cook-Reckhow’79]
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Defn: An abstract proof system is a polynomial time function f

mapping {0, 1}∗ onto the set of tautologies.
w is an f -proof of ϕ iff f (w) = ϕ. The size of w is |w |, i.e. the
length of w .

Example: For the Frege system F :

fF (w) =

{

the last line of w if w is an F-proof
(x ∨ ¬x) otherwise

Similar constructions allow very strong systems, e.g. ZF set theory,
to be abstract proof systems.

Thm. [CR’79] There ia polynomially bounded abstract proof
system iff NP = coNP.
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Defn: Let f , g be abstract proof systems.

f simulates g if there is a polynomial q(n) s.t., whenever
g(w) = ϕ, there is a v , |v | ≤ q(|w |) such that f (v) = ϕ.

f p-simulates g if there is a polynomial-time computable h(w),
such that, whenever g(w) = ϕ, we have f (h(w)) = ϕ.

f is polynomially bounded if, for some polynomial q(n), every
tautology ϕ has an f -proof w of size ≤ q(|ϕ|).

1. Resolution is not polynomially bounded.
2. Regular resolution does not simulate resolution.
2. Resolution does not simulate F .
3. Any two Frege systems p-simulate each other.
4. It is open whether F is polynomially bounded.
5. It is open whether there is a maximum abstract proof system
which p-simulates all abstract proof systems.
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Defn: [ess. Tseitin ’68] Extension allows introduction of new
variables for formulas; namely the extension rule:

z ↔ ϕ

where z is a variable not appearing in earlier lines the proof, in ϕ,
or in the last line of the proof.
The extended Frege system (eF) is Frege (F) plus the
extension rule.

Thm. [Statman’77] If F m steps ϕ, then ϕ has a eF -proof of size

O(m + |ϕ|2), that is eF O(m+|ϕ|2) ϕ.

Thus the size of extended Frege proofs is essentially the same as
the number of lines in Frege proofs.

Proof idea: Introduce extension variables for the formulas in the
Frege proof; thereby reduce all lines to constant size. �
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So:

A Frege proof is a proof in which each line is a Boolean
formula.

An extended Frege proof is a proofs in which each line is a
Boolean circuit.

It is conjectured that circuits cannot be converted into polynomial
size equivalent formulas; the corresponding conjecture is that F
does not (p-)simulate eF .
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Resolution

Resolution is a refutation system, refuting sets of clauses. Thus,
resolution is a system for refuting CNF formulas, equivalently, a
system for proving DNF formulas are tautologies.

Defn: Extension rule for resolution: For z a new variable, x
and y literals, introduce z ↔ (x ∧ y) by adding the clauses:

{x , y , z} {z , x} {z , y}.

Resolution as an abstract proof system: Given ϕ, introduce
clauses Γ for the extension variables zψ for all subformulas ψ of ϕ.
A resolution proof of ϕ is a resolution refutation of zϕ, Γ.
Extended resolution is resolution augmented with unrestricted
use of the extension rule.

Thm: Extended resolution and extended Frege p-simulate each
other.
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Can the extension rule help?

For resolution: Yes.

Thm: [Haken’86, BIKPPW’92, Raz’02, Razborov’03, many others]
The pigeonhole principle (PHP) requires resolution proofs of size
2n

ǫ

(even PHPm
n for m ≫ n).

Furthermore, depth d Frege proofs of PHPn+1
n require size 2n

ǫd .

Thm: [CR’79].
PHPn+1

n has extended resolution proofs of polynomial size.
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Can extension rule help?

For Frege: Open question.

Thm: [B’86]. PHPn+1
n has Frege proofs of polynomial size.

Thm: [B’??]. The [CR’79] eF proofs of PHPn+1
n can be

translated into quasi-polynomial size F-proofs of PHPn+1
n .

[Bonet-B-Pitassi’95] Suggested several other tautologies for
separating Frege and extended Frege systems. However, these all
now have been shown to have quasi-polynomial size Frege proofs:

Thm: [Hrubes-Tzameret’12] The matrix identity over Z2,

AB = I ⇒ BA = I (c.f. BBP’91) has quasi-polynomial size Frege proofs.

Thm: [Aisenberg-Bonet-B’??] Frankl’s Theorem (c.f. BBP’91) has

quasipolynomial size Frege proofs.
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Cook-Reckhow’s eF proof of PHPn+1
n

Code the graph of f : [n + 1] → [n] with
variables xi ,j indicating that f (i) = j .

PHPn+1
n (~x): “f is not both total and injective”

Use extension to introduce new variables

xℓ−1
i ,j ↔ xℓi ,j ∨ (xℓi ,ℓ−1 ∧ xℓℓ,j).

for i ≤ ℓ, j < ℓ; where xni ,j ↔ xi ,j .

Prove, for each ℓ that

¬PHPℓ+1
ℓ (~xℓ) → ¬PHPℓℓ−1(~xℓ−1).

Finally derive PHPn+1
n (~x) from PHP2

1 (~x1). � 0

1

i
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1
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n−2
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Cook-Reckhow’s proof of PHPn+1
n as a Frege proof

Let G ℓ be the directed graph with:

edges (〈i , 0〉, 〈j , 1〉) such that xi ,j holds, and

edges (〈i , 1〉, 〈i+1, 0〉) such that i≥ℓ (blue edges).

For i ≤ ℓ, j < ℓ, let ϕℓi ,j express

“Range node 〈j , 1〉 is reachable
from domain node 〈i , 0〉 in G ℓ”.

ϕℓi ,j is a quasi-polynomial size formula via an NC 2

definition of reachability.

For each ℓ, prove that

¬PHPℓ+1
ℓ (~ϕℓ) → ¬PHPℓℓ−1(~ϕℓ−1).

Finally derive PHPn+1
n (~x) from PHP2

1 (~ϕ1).�
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Implications for using extension in CDCL????

Concentrate on extension that represents polynomial size
formulas? (Instead of polynomial size circuits.)

Rationale: We have no conjectured examples of exponential

improvement of eF over F except partial consistency statements.

Extension should not be restricted to just conjunctions or
disjunctions or original literals.

Rationale: Constant depth Frege proofs require exponential size for

combinatorial principles such as pigeonhole principle.

However, it would reasonable to concentrate extension to
representing low depth formulas.
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Regular resolution versus resolution

Thm: [Goerdt’92,Alekhnovich-Johannsen-Pitassi-Urquhart’07,
Urquhart’11]
Regular resolution does not simulate resolution.

[AJPU’07,U’11] proved the separation using modified (“guarded”)
graph tautologies and pebbling principles, and using a “Stone”
principle. Both are based on well-foundedness conditions in
directed acyclic graphs.
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CDCL versus resolution

Thm: [Beame-Kautz-Sabharwal’04, Atserias-Fichte-Thurley’11,
Pipatsrisawat-Darwiche’11]
CDCL with restarts simulates, and is simulated by, resolution.

Open: Does CDCL without restarts simulate resolution?

Thm: [Bonet-B’12, Bonet-Johannsen-B’??,B-Ko lodziejczyk’??]
The guarded pebbling and graph tautologies, and Stone principles,
of [AJPU’07,U’11] have polynomial size refuations in RegWRTI, a
proof system that closely corresponds to CDCL without restarts.

Thus, we have no conjectured examples for separating resolution
from CDCL without restarts, or from RegWRTI.
On the other hand, no simulation of resolution by CDCL without
restarts has been found.

Sam Buss Proof Complexity



Proof systems
Craig Interpolation

Automatizability

Frege systems; Abstract proof systems
Extension; Extended Frege; Resolution
Cutting planes; Polynomial calculus

Cutting planes

Variables x1, x2, . . . are 0/1 valued (0=“False”, 1=“True”).

Lines are linear inequalities with integer coefficients:

a1x1 + a2x2 + · · · anxn ≥ a0.

Clauses become inequalities:
e.g., x ∨ y ∨ z becomes the inequality x − y + z ≥ 0.
Note that y becomes 1 − y .

Axioms: xi ≥ 0 and −x1 ≥ −1.

Addition rule:

∑

aixi ≥ a0
∑

bixi ≥ b0
∑

(ai+bi)xi ≥ a0+b0

Division rule: If c |ai for all i > 0,

∑

aixi ≥ a0
∑

(ai/c)xi ≥ ⌈a0/c⌉
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Cutting planes is a refutation system: initial lines are axioms, or
encode initial clauses. The final line of a refutation has the form
0 ≥ 1.

Thm: Cutting planes p-simulates resolution.

Thm: Resolution, and bounded depth Frege systems, do not
simulate cutting planes.

Thm: [Goerdt’92] Cutting planes is p-simulated by Frege systems.

Thm: [Pudlák’90] Cutting planes is not polynomially bounded.
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Nullstellensatz and polynomial calculus

Work over a finite field, characteristic p.

Variables x1, x2, ... are 0/1 valued.

A polynomial f is identified with the assertion f = 0.

A set of initial polynomials {fj}j is refuted in the Nullstellensatz
system by polynomials gj , hi such that

∑

fj · gj +
∑

(x2i − xi) · hi = 1,

where equality indicates equality as polynomials.
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A polynomial calculus refutation uses the inferences of addition
and multiplication:

f g
f + g

f
f · g

A polynomial calculus refutation of a set of polynomials {fj}j is
a derivation of 1 from the fj ’s and the polynomials (x2i − xi ).

It is more common to work with the degree of nullstellensatz or
polynomial calculus proofs, rather than their size. These systems
are known to not be simulated by resolution or bounded depth
Frege; conversely, several lower bounds are known.

One sample result:

Thm: [Razborov’98] Any polynomial calculus proof of PHPn+1
n

must have degree Ω(n).
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Craig Interpolation

[Bonet-Pitassi-Raz’95, Razborov’95, Kraj́ıček’97, Pudlák’97]

Defn: Suppose A(~p, ~r) ∧ B(~q, ~r) is unsatisfiable, where A and B

depend only on the variables indicated.
A Craig interpolant for this formula is a predicate C (~r) such that

If ¬C (~r), then A(~p, ~r) is unsatisfiable.

If C (~r ), then B(~q, ~r ) is unsatisfiable.

Remark: A Craig interpolant always exists when A(~p, ~r) ∧ B(~q, ~r)
is unsatisfiable, but may not be a feasible predicate of ~r .

Sam Buss Proof Complexity



Proof systems
Craig Interpolation

Automatizability

Craig interpolant
Resolution
Cutting planes

Thm: [Kraj́ıček’97] Suppose a set of clauses A(~p, ~r ),B(~q, ~r) has a
resolution refutation of size m, and that variables ~r appear only
positively in the clauses in A(~p, ~r) or negatively in the clauses
in B(~q, ~r). Then, there is Craig interpolant which is computed by a
monotone Boolean circuit of size mO(1).

Corollary: (Using [Razborov’85, Alon-Boppana’87.) Resolution
does not have polynomial size refutations of the Clique-Coloring
clauses expressing that a graph both is k-colorable and has a k + 1
clique.
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Thm: [Pudlák’97] Suppose a set of clauses A(~p, ~r ),B(~q, ~r) has a
cutting planes refutation of m steps, and that the variables ~r
appear only positively in the clauses in A(~p, ~r) or negatively in the
clauses in B(~q, ~r). Then, there is Craig interpolant which is
computed by a monotone real circuit of size mO(1).

Corollary: (Using [Razborov’85, Alon-Boppana’87.) Resolution
does not have polynomial size refutations of the Clique-Coloring
clauses expressing that a graph both is k-colorable and has a k + 1
clique.

Sam Buss Proof Complexity



Proof systems
Craig Interpolation

Automatizability

Automatizability and Feasible interpolation
Frege and Extended Frege
Resolution

Automatizability

Defn: A proof system T is automatizable (in polynomial time) if
there is a procedure, which given a formula ϕ, produces a T -proof
of ϕ in time bounded by a polynomial of the size of the shortest
T -proof of ϕ (if any).

Defn: A proof system T has feasible interpolation if there is
polynomial time procedure C (−,−) so that if P is a T -proof of
¬(A(~p, ~r) ∧ B(~q, ~r)), then C (P , ~r) is a Craig interpolant for
A(~p, ~r) ∧ B(~q, ~r).

Thm: [Bonet-Pitassi-Raz’00] If T is automatizable, then T has
feasible interpolation.
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Thm: [Kraj́ıček-Pudlák’95, also B’97] The extended Frege system
eF does not have feasible interpolation and thus is not
automatizable, unless the RSA encryption function, the discrete
logarithm encryption function, and the Rabin encryption function
can be inverted in polynomial time.

Thm: [Bonet-Pitassi-Raz’00] The Frege system F does not have
feasible interpolation and thus is not automatizable, unless Blum
integers can be factored in polynomial time.

Defn: Blum integers are products of two primes, each congruent
to 3 mod 4.

A related theorem holds for bounded depth Frege systems under a
stronger hardness assumption about Blum integers. [BDGMP’03].
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Thm: [Alekhnovich-Razborov’03] Resolution and tree-like
resolution are not automatizable unless the parameterized
hierarchy class W [P ] is fixed-parameter tractable via randomized
algorithms with one-sided error.

On the other hand:

Thm: [Beame-Pitassi’96; building on CEI’96]
Tree-like resolution is automatizable in time nlog S where n is the
number of variables, and S is the size of the shortest tree-like
resolution refutation. (This is quasipolynomial time.)

Resolution is automatizable in time n
√
n log S .

Open: Is resolution automatizable in quasi-polynomial time?
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Thank you!
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