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Abstract

This paper presents new results on axiomatizations for fragments
of Bounded Arithmetic which improve upon the author’s dissertation.
It is shown that (Σb

i+1 ∩Πb
i+1)-PIND and strong Σb

i -replacement are
consequences of Si

2 . Also ∆b
i+1 -IND is a consequence of T i

2 . The lat-
ter result is proved by showing that Si+1

2 is ∀∃Σb
i+1 -conservative over

T i
2 . Furthermore, Si+1

2 is conservative over T i
2 + Σb

i+1-replacement
with respect to Boolean combinations of Σb

i+1 -formulas.

1 Introduction

In [1] we introduced weak first-order theories of arithmetic, called col-
lectively Bounded Arithmetic. These theories have the non-logical symbols
0, S , +, · , ≤ , b1

2
xc , |x| and # where 0, S , +, · and ≤ have the usual

interpretations of zero, successor, plus, times and less than or equal to, and
where |x| = d log2(x)e is the length of the binary representation of x , b1

2
xc

is x divided by two rounded down, and x#y is 2|x|·|y| . (The binary operator
# is called the “smash” operation, see Nelson [6].)

∗This paper is in final form and no version of it will be submitted for publication
elsewhere.

†Work performed while at the Mathematical Sciences Research Institute and the
University of California, Berkeley. Supported in part by NSF fellowships DMS-8511465
and DMS-8701828.
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The syntax of first-order logic is enlarged to include bounded quantifiers
of the forms (∀x ≤ t) and (∃x ≤ t) where t is an arbitrary term not
containing x . Bounded quantifiers of the form (∀x ≤ |t|) and (∃x ≤ |t|)
are called sharply bounded quantifiers. The usual first order quantifiers are
called unbounded quantifiers.

A formula is bounded if all of its quantifiers are bounded. In [1], the
bounded formulae are classified in a hierarchy of sets Σb

i and Πb
i by counting

alternations of bounded quantifiers, ignoring sharply bounded quantifiers.
This is analogous to the definition of the arithmetical hierarchy where one
counts the alternations of unbounded quantifiers, ignoring bounded quanti-
fiers. It is well known that a predicate is definable by a Σb

i predicate if and
only if it is a Σp

i predicate, where Σp
i is the set of predicates at the i-th level

of the Meyer-Stockmeyer polynomial hierarchy; for example, Σp
1 is NP, the

set of non-deterministic polynomial time computable predicates.
Let Ψ be a set of formulae. The following axiom schemata are defined

as follows where A may be any formula in Ψ:

Ψ-IND : A(0) ∧ (∀x)(A(x) → A(Sx)) → (∀x)A(x)

Ψ-PIND : A(0) ∧ (∀x)(A(b1
2
xc) → A(x)) → (∀x)A(x)

Ψ-LIND : A(0) ∧ (∀x)(A(x) → A(Sx)) → (∀x)A(|x|)

Ψ-MIN : (∃x)A(x) → (∃x)[A(x) ∧ (∀y < x)(¬A(y))]

Ψ-LMIN : (∃x)A(x) → A(0) ∨ (∃x)[A(x) ∧ (∀y ≤ b1
2
xc)(¬A(y))]

Ψ-replacement :

(∀x ≤ |t|)(∃y ≤ s)A(x, y) ↔
↔ (∃w ≤ SqBd(t, s))(∀x ≤ |t|)(A(x, β(Sx,w)) ∧ β(Sx,w) ≤ s)

strong Ψ-replacement :

(∃w ≤ SqBd(t, s))(∀x ≤ |t|)[(∃y ≤ s)A(x, y) ↔
↔ A(x, β(Sx,w) ∧ β(Sx,w) ≤ s]
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Here β is a variant of the Gödel sequence coding function, with β(i, w)
equal to the i-th element of the sequence coded by w , and SqBd is a term
which depends on the precise definition of the β function. It should be
noted that the term SqBd must use the # function symbol; indeed, # has
precisely the growth rate necessary to make the replacement axioms valid.

Note the IND axioms are the usual induction axioms; both PIND and
LIND are versions of induction on the length of a number. The MIN axioms
express the least number principle; whereas LMIN is a length minimization
axiom.

The theory T i
2 is a theory of Bounded Arithmetic axiomatized by the

Σb
i -IND axioms and an additional finite set of open axioms. The theory

Si
2 is axiomatized by the Σb

i -PIND axioms and the same finite set of open
axioms. (The subscript 2 denotes the presence of # in the language.)
S1

2 is the weakest “nice” theory of Bounded Arithmetic; in particular, S1
2

is strong enough to define any polynomial time computable function and
to use induction on formulae containing symbols for the polynomial time
computable functions [1]. Thus S1

2 can define the Gödel β function and the
replacement axioms are meaningful in S1

2 .
We say that a theory R can Σb

i -define a function f : Nk → N if there
exists a Σb

i -formula A(~x, y) such that R ` (∀~x)(∃y)A(~x, y) and such that
A(~n, f(~n)) is valid for all ~n in Nk . In [1], it is shown that Si

2 can Σb
i -define

precisely the p
i functions. The p

i functions are the functions at the i-th
level of the polynomial time hierarchy; namely p

i+1 is the set of functions
which can be computed in polynomial time with an oracle for a Σp

i set,
and p

1 is the set of polynomial time computable functions. Hence S1
2 can

Σb
1 -define precisely the polynomial time computable functions. Part of the

motivation for studying Bounded Arithmetic comes from these connections
to computational complexity. (See Nelson [6] for another motivation).

Many relationships among the various axiomatizations have been known.
Firstly, for i ≥ 1, the Σb

i -IND axioms imply the Σb
i -PIND axioms and the

Σb
i+1 -PIND axioms imply the Σb

i -IND axioms [1]. Hence the theory Si+1
2

contains T i
2 which in turn contains Si

2 . As a consequence, S2 =
⋃

i S
i
2 and

T2 =
⋃

i T
i
2 are the same theory; they are also equivalent to the theory

I∆0 + Ω1 studied by Wilkie and Paris [9]. Secondly, relative to the base
theory S1

2 , the Σb
i -IND, Πb

i -IND and Σb
i -MIN axioms are equivalent. In

addition Σb
i -PIND, Σb

i -LIND, Πb
i -PIND, Πb

i -LIND and Σb
i -LMIN axioms

are equivalent over S1
2 . Finally, combining results of [1] and Ressayre [8]

it was known that, relative to the base theory S1
2 , the Σb

i+1-replacement
axioms imply the strong Σb

i -replacement axioms which imply the Σb
i -PIND
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axioms which in turn imply the Σb
i -replacement axioms for all i .

In this paper some further results of this type are proved. First we
show that Σb

i -PIND implies strong Σb
i -replacement; i.e., that Si

2 proves
strong Σb

i -replacement, for i ≥ 1. In addition, we show that Si
2 proves

(Σb
i+1 ∩ Πb

i+1)-PIND and T i
2 proves ∆b

i+1-IND. The results for Si
2 are not

too difficult; however, for the other result we must first show that Si+1
2

is ∀∃Σb
i+1 conservative over T i

2 . We also show that Si+1
2 is conservative

over T i
2 + Σb

i+1-replacement for all Boolean combinations of Σb
i+1 -formulae

(possibly containing free variables).
The class Σb

i+1 ∩Πb
i+1 should not be confused with ∆b

i+1 . A formula A is
∆b

i with respect to a theory R if and only if R proves A is equivalent both
to a Σb

i -formula and a Πb
i -formula; when it is clear from the context what

the theory R is, we shall just say A is “∆b
i ” instead of “∆b

i with respect
to R”. On the other hand, Σb

i+1 ∩ Πb
i+1 is the class of formulae which are

explicitly written in Σb
i+1 and Πb

i+1 form simultaneously.‡

There are still a number of open problems concerning axiomatizations
of Bounded Arithmetic, most notably, whether S2 is finitely axiomatizable
and whether the theories Si

2 and T i
2 are all distinct. Several other, less

ambitious, open problems are posed at the end of this paper.

2 The Main Results

We begin by proving two theorems about the theories Si
2 .

Theorem 1 (i ≥ 1). Let A(v, x) be a Σb
i -formula and t(v) be a term. Then

Si
2 ` (∃w)(∀x ≤ |t|)(A(v, x) ↔ Bit(x,w) = 1).

Thus Si
2 ` strong Σb

i -replacement.

The final sentence of Theorem 1 is an easy consequence of the first part
and of the fact that Σb

i -replacement is provable by Si
2 . The function symbol

Bit(i, y) is Σb
1 -defined by S1

2 to be equal to 0 or 1 depending on the value
of the bit in the 2i position of the binary representation of y . (Much of our
notation is explained in detail in [1].)

‡Louise Hay and the author [2] have shown that the predicates definable by Σb
2 ∩Πb

2 -
formulae are precisely the predicates which are polynomial time truth table reducible to
SAT . More generally, a predicate is definable by a Σb

i+1 ∩Πb
i+1 -formula if and only if it

is polynomial time truth table reducible to a set in Σp
i .
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Σb
i -IND ⇐⇒ Πb

i -IND ⇐⇒ Σb
i -MIN ⇐⇒ ∆b

i+1-INDwwÄ
Σb

i -PIND ⇐⇒ Πb
i -PIND ⇐⇒ Σb

i -LIND ⇐⇒ Πb
i -LIND~wÄ

Σb
i -LMIN ⇐⇒ strong Σb

i -replacement ⇐⇒ (Σb
i+1 ∩ Πb

i+1)-PINDwwÄ
Σb

i−1-IND

Σb
i+1-MIN ⇐⇒ Πb

i -MIN

Σb
i+1-replacement =⇒ Σb

i -PIND =⇒ Σb
i -replacement

Si+1
2 Â

Σb
i+1

T i
2

Si+1
2 Â

B(Σb
i+1)

T i
2 + Σb

i+1-replacement

Relationships among axiomatizations for Bounded Arithmetic
relative to the base theory S1

2 with i ≥ 1
(including the results of this paper)
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Proof Let Numones(w) be the Σb
1 -defined function symbol of S1

2 which is
equal to the number of ones in the binary representation of w . That is,

Numones(w) = (#i < |w|)(Bit(i, w) = 1),

so Numones is a kind of Hamming metric. Let B(k, v) be the formula

(∃w < 2|t|+1)[Numones(w) = k ∧ (∀x ≤ |t|)(Bit(x,w) = 1 → A(v, x))].

Clearly Si
2 ` B(0, v) and Si

2 ` k > j ∧ B(k, v) → B(j, v). Since B ∈ Σb
i

and Si
2 ` ¬B(|t| + 2, v), it follows from Σb

i -LIND that

Si
2 ` (∃k ≤ |t| + 1)(B(k, v) ∧ ¬B(k + 1, v)).

Thus Si
2 proves that there exists a maximum value for k such that B(k, v)

holds. The w associated with this k is the desired w which makes Theorem
1 true. 2

Definition Let A(b) be a formula with free variable b and possibly other
free variables. Then PINDA(b) , INDA(b) and MINA(b) are the formulae:

PINDA(b) : A(0) ∧ (∀x ≤ b)(A(b1
2
xc) → A(x)) → A(b)

INDA(b) : A(0) ∧ (∀x < b)(A(x) → A(x + 1)) → A(b)

MINA(b) : A(b) → (∃x ≤ b)[A(x) ∧ (∀y < x)(¬A(y))].

Theorem 2 (i ≥ 1). Suppose A ∈ Σb
i+1 ∩ Πb

i+1 . Then Si
2 ` PINDA .

In other words, Si
2 ` (Σb

i+1 ∩ Πb
i+1)-PIND for i ≥ 1. It is important to

recall the distinction between Σb
i+1 ∩ Πb

i+1 and ∆b
i+1 ; it is open whether Si

2

proves ∆b
i+1-PIND.

Proof First note that every A(b, ~v) ∈ Σb
i+1 ∩ Πb

i+1 can be put in the form

(Q1x1 ≤ |t1|) · · · (Qkxk ≤ |tk|)B(A1, . . . , As)

where each Aj is a Σb
i -formula and B(A1, . . . , As) denotes a Boolean com-

bination of A1, . . . , As ; this is readily shown by induction on the complexity
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of A .§ Note especially that each (Qixi ≤ |ti|) is a sharply bounded quanti-
fier. Without loss of generality, we can assume that each term tj contains
as variables only b and the parameters ~v ; also, the formulae Aj(b, ~v, ~x) have
free variables as indicated.

Let C(y, b, ~v) be the formula A(MSP(b, |b| .−y), ~v) where .− is subtraction
and where MSP(b, z) is the Σb

1 -defined function of S1
2 which is equal to the

integer part of b/2z . Thus it will suffice to show that S1
2 proves LINDC(y)

(where now b becomes a parameter). Towards this end, let Cj(y, b, ~v, ~x) be
Aj(MSP(b, |b| .− y), ~v, ~x). By a trivial extension of Theorem 1, Si

2 can prove
the existence of numbers w1, . . . , wk such that

(∀y ≤ |b|)(∀x1 ≤ |t1|) · · · (∀xk ≤ |tk|)[Bit(〈y, ~x〉, wj) = 1 ↔ Cj(y, b, ~v, ~x)].

Here 〈y, x1, . . . , xk〉 denotes the Gödel number of the sequence of integers.
Sequences are coded in an efficient manner [1]; in particular, there is a term
r(b, ~v) so that if y ≤ |b| and if for all j , xj ≤ |tj| , then 〈y, x1, . . . , xk〉 ≤ |r|.
Given these w1, . . . , wk , the formula C(y, b, ~v) is actually equivalent to a
∆b

1 -formula using the wj ’s as parameters. Clearly, S1
2 proves ∆b

1-LIND
since a ∆b

1 -formula is by definition provably equivalent to a Σb
1 -formula.

Thus it follows that Si
2 proves LINDC(y) and hence PINDA(b). 2

The theory IΣn is the fragment of Peano arithmetic axiomatized by a
simple base theory plus induction on Σn formulae (see Paris-Kirby [7]).
It is well-known that IΣn proves induction for formulae in Σn+1 ∩ Πn+1 ;
indeed, the proof is very similar to the above proofs (although our proof
of Theorem 1 seems to necessarily be slightly more complicated than the
analogous proof for IΣn ). However there seems to be no way to apply the
proofs of Theorems 1 and 2 to the theories T i

2 . In fact, T i
2 does prove

(Σb
i+1 ∩ Πb

i+1)-IND; the proof is presented below. But first we shall show
that T i

2 proves induction for Boolean combinations of Σb
i -formulae (mostly

because this has a short elegant proof).

Theorem 3 (i ≥ 1). Suppose T i
2 ` MIN¬A and T i

2 ` INDB . Then
T i

2 ` INDA∧B .

Proof Let A(b, ~v) and B(b, ~v) have the indicated free variables and let
HYPA∧B be the hypothesis of INDA∧B , namely, the formula

A(0, ~v) ∧ B(0, ~v) ∧ (∀x)[A(x,~v) ∧ B(x,~v) → A(x + 1, ~v) ∧ B(x + 1, ~v)].
§Louise Hay and the author [2] have strengthened this to show that every A in

Σb
i+1 ∩Πb

i+1 is equivalent to a formula of the form B = (∃x ≤ |t|)(A1 ∧¬A2) where A1

and A2 are Σb
i -formulae. The equivalence of A and B is provable in Si

2 .
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It is easy to see that

T i
2 ` (∀x < a)A(x,~v) ∧ HYPA∧B(~v) → (∀x ≤ a)B(x,~v)

since T i
2 ` INDB . So it will suffice to show that T i

2 proves HYPA∧B(~v) →
(∀x)A(x,~v). Let us argue informally in T i

2 : suppose HYPA∧B(~v) but
(∃x)(¬A(x,~v)). By MIN¬A there is a minimum a such that ¬A(a,~v). Thus
(∀x ≤ a)B(x,~v). In particular, A(a .− 1, ~v) and B(a .− 1, ~v) both hold. But
now by HYPA∧B we have that A(a, v) holds, which is a contradiction. 2

It is a corollary of Theorem 3 and of a result of Hausdorff that T i
2 proves

induction for Boolean combinations of Σb
i -formulae:

Corollary 4 (i ≥ 1). Suppose A is a Boolean combination of Σb
i -formulae.

Then T i
2 ` INDA .

Proof By Hausdorff’s characterization of Boolean combinations into a
difference hierarchy [3], A is tautologically equivalent to a formula of the
form

A1 ∧ ¬(A2 ∧ ¬(A3 ∧ · · · ¬(Ak−1 ∧ ¬Ak) · · ·))
where each Aj ∈ Πb

i . Let Ak be the set of formulae which are tautologically
equivalent to a formula in this form. We prove by induction on k that T i

2

proves INDA for every A ∈ Ak . This is already known for k = 1 since A1

is Πb
i . Now suppose T i

2 ` Ak-IND. First we show that if A is an arbitrary
formula in Ak then T i

2 ` IND¬A(b). Well this can be done by letting
B(a, b, ~v) be the formula A(b .− a,~v) and using INDB . Since subtraction is
a Σb

1 -defined function symbol of T i
2 the formula B can be picked to be a

formula in Ak ; hence T i
2 ` INDB(a). Now let D be a formula in Ak+1 of

the form C ∧ ¬A where C is a Πb
i -formula. It is known that T i

2 ` Σb
i -MIN

(see [1]), so by Theorem 3, T i
2 ` INDD . 2

Interestingly, the methods of proof of Theorem 3 and Corollary 4 do
apply to the theories Si

2 and IΣn . This gives an alternative proof that Si
2

(respectively, IΣn ) proves PINDA (respectively, INDA ) for A a Boolean
combination of Σb

i -formulae (respectively, Σn -formulae). Of course this is
not as strong as Theorems 1 and 2 above.

We are now ready to state our main theorems.

Theorem 5 (i ≥ 1). Suppose A(~v) is a Σb
i+1 -formula and that Si+1

2 ` A(~v).
Then T i

2 ` A(~v).
In other words, Si+1

2 is ∀Σb
i+1 -conservative over T i

2 .
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By a well-known theorem of Parikh’s, Theorem 5 implies that Si+1
2 is

∀∃Σb
i+1 -conservative over T i

2 .

Corollary 6 If i ≥ 1 then T i
2 ` ∆b

i+1-IND. Hence T i
2 ` (Σb

i+1 ∩Πb
i+1)-IND.

Proof of Corollary 6 from Theorem 5:
Let A be ∆b

i+1 with respect to T i
2 . This means there is a Σb

i+1 -formula
AΣ and a Πb

i+1 -formula AΠ which are T i
2 -provably equivalent to A . The

IND axiom for A can be reexpressed as

AΠ(0) ∧ (∀x < b)(AΣ(x) → AΠ(Sx)) → AΣ(b).

This is a Σb
i+1 -formula and since Si+1

2 ` ∆b
i+1-IND by Theorem 2.22 of [1],

it is a consequence of Si+1
2 . Hence by Theorem 5 it is a consequence of T i

2 .
2

Theorem 7 (i ≥ 1). Suppose A(~v) is a Boolean combination of Σb
i+1 -

formulae and Si+1
2 ` (∀~v)A(~v). Then T i

2 + Σb
i+1-replacement ` (∀~v)A(~v).

In other words, Si+1
2 is conservative over T i

2 + Σb
i+1-replacement with

respect to Boolean combinations of Σb
i+1 -formulae.

Again, Parikh’s theorem and Theorem 7 imply that Si+1
2 is conservative

over T i
2 with respect to ∀∃B(Σb

i+1)-formulas, where B(Σb
i+1) is the set of

Boolean combinations of Σb
i+1 -formulas. We give the proofs of Theorems 5

and 7 in the next three sections.

3 p
i+1-functions are definable by T i

2 .

The main theorem of [1] showed that the Σb
i+1 -definable functions of

Si+1
2 are precisely the p

i+1 functions. This together with the conservation
result, Theorem 5, which is proved below implies that the Σb

i+1 -definable
functions of T i

2 are also precisely the p
i+1 functions. However, in order

to prove the conservation result we will first prove directly that every p
i+1

function is Σb
i+1 -definable in T i

2 . (The converse, that every Σb
i+1 -definable

function of T i
2 is in p

i+1 , follows by the same result for the stronger theory
Si+1

2 .)

Theorem 8 (i ≥ 1): Suppose U(a, b, ~v) is a Σb
i -formula and s(~v) is a term.

The following is a theorem of T i
2 :

(∃w)(∀j ≤ |s|)[Bit(j, w) = 1 ↔ U(LSP (w, j), j, ~v)].
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Recall that LSP (w, j) is the Σb
i -defined function of S1

2 which is equal to
w mod 2j . Hence the above formula specifies the value of Bit(j, w) as a
Σb

i -predicate of the j lower order bits of w .

Proof The idea of the proof is to use the Σb
i -MIN axioms to get such a w .

However, instead of minimizing w , we must minimize the complement of
the bit-reversal of w . So let Flips(w,~v) be the function such that for all w ,

|Flips(w,~v)| ≤ |s(~v)| + 1

and
(∀j ≤ |s|)(Bit(j, F lips(w,~v)) = 1 .− Bit(|s| .− j, w)) .

Clearly Flips is a polynomial time function and using techniques from
Chapter 2 of [1], it can easily be Σb

1 -defined in S1
2 .

Now let B(u, a,~v) be the formula

(∀j ≤ |s|)[Bit(j, F lips(u,~v)) = 1 → U(LSP (Flips(u,~v), j), j, ~v)].

So B is a Σb
i -formula and T i

2 ` MINB(u). Let us argue informally in
T i

2 : there exists a u such that B(u, a,~v), namely, u = 2|s|+1 .− 1; hence
there exists a minimal such u . Given a minimal such u , we claim that
w = Flips(u,~v) satisfies the desired condition of Theorem 8. Clearly for
all j , if Bit(j, w) = 1 then U(LSP (w, j), j, ~v) holds. So it suffices to show
that if Bit(j, w) = 0 then ¬U(LSP (w, j), j, ~v). Suppose not, we claim that
changing the bit at the 2j position in w gives a smaller u satisfying B ; more
precisely, let w∗ = 2j +LSP (w, j) and let u∗ = Flips(w

∗, ~v). So u∗ < u and
B(u∗, a, ~v) holds by our supposition. But this contradicts the minimality of
u . 2

Theorem 9 (i ≥ 1). Let k ∈ p
i+1 . Then T i

2 can Σb
i+1 -define k .

Proof Let M be a deterministic Turing machine with an oracle for a Σp
i

predicate Ω which computes k(x) in time bounded by a polynomial p .
We first claim that T i

2 can prove that for all x there exists a w such that
Bit(j, w) = 1 if and only if the j -th oracle query of M on input yields a
“yes” answer. Of course, the w will be defined as in Theorem 8. Towards
this end, let f(w, j, x) be the polynomial time function computed as follows:

f(w, j, x) simulates M on input x for up to p(|x|) steps. When
the (n + 1)-st oracle query is made (for n < j ), the simulation
uses Bit(n,w) as the oracle’s answer. When either p(|x|) steps
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have elapsed or just as the (j+1)-st query is to be attempted, the
simulation terminates and f(w, j, x) outputs the Gödel number
of the final instantaneous description (ID) of the simulation.

We also define g(v) to be the polynomial time function which accepts as
input a Gödel number of an ID of M and outputs the value on the query
tape of M (i.e., outputs the number which is ready to be used as a query to
the oracle). Finally, h(v) also accepts as input an ID of M , but outputs the
value on the output tape of M . The defining equation, DEFΩ(w, u), of w
can now be given as

(∀j < p(|x|))[Bit(j, w) = 1 ↔ Ω(g(f(LSP (w, j), j, x)))]

with Ω(· · ·) a Σb
i -formula. By Theorem 8, T i

2 ` (∃w)DEFΩ(w, x) so T i
2 can

Σb
i+1 -define k by proving

(∃y ≤ 2p(|x|))(∃w ≤ 2p(|x|))(DEFΩ(w, x) ∧ y = h(f(w, p(|x|), x))).

Of course, the y = k(x) can readily be proved to be unique. 2

The proof of Theorem 9 gave a very special kind of Σb
i+1 -definition for

k ; we call this a Qi -definition:

Definition A theory R can Qi -define the function f(~x) if and only if there
is a Σb

i -formula U(w, j, ~x) , a term t(~x) and a Σb
1 -defined function f ∗ of S1

2

such that R ` (∀x)(∃w)DEFU,t(w, ~x) , where DEFU,t is the formula

(∀j < |t|)[Bit(j, w) ↔ U(LSP(w, j), j, ~x)] ,

and such that, for all ~n, w ∈ N , if DEFU,t(w,~n) then f(~n) = f ∗(w,~n) .

The letter “Q” stands for “query” and the idea (as in the above proof) is
that a function is Qi -definable if and only if it is computable by a polyno-
mial time Turing machine with a Σp

i -oracle. Note that every Qi -definable
function is Σb

i+1 -definable by the definition. Also, by Corollary 10 and the
main theorem of [1], every Σb

i+1 -definable function of Si+1
2 is Qi -definable

by T i
2 .

Corollary 10 Every p
i+1 -function is Qi -definable by T i

2 (and conversely).

Proof This was what the proof of Theorem 9 showed. The converse follows
from the fact that the Σb

i+1 -definable functions of Si+1
2 are precisely the

p
i+1 -functions. 2

11



In spite of the fact that in T i
2 , the notions of Qi -definable and Σb

i+1 -
definable coincide, we must work extensively with the Qi -definable func-
tions. The reason is that there is no a priori reason why the notions
provably coincide — for instance, given a Σb

i+1 -definable function T i
2 is there

a Qi -defined function which is T i
2 -provably the same function? The answer

is yes, but it will take a lot of work to show it. Also, the author knows no
simple proof of the (true) variant of Theorem 11 concerning Σb

i+1 -definable
functions.

Theorem 11 (i ≥ 1)
(a) Suppose g and h are Qi -defined by T i

2 . Then there is a Qi -defined
function f such that T i

2 can prove (∀~x)(f(~x) = g(h(~x), ~x)).
(b) Suppose g(~x) and h(y, z, ~x) are Qi -defined by T i

2 and let t be a term.
Then there is a Qi -defined function f such that T i

2 can prove that for all ~x
and all y 6= 0,

f(0, ~x)=min{g(~x), t(0, ~x)}
f(y, ~x)=min{h(y, f(b1

2
yc, ~x), ~x), t(y, ~x)}.

In other words, the Qi -definable functions are provably closed under
composition and limited iteration. (This gives a second proof of Corollary 10,
using the alternate definition of polynomial time functions via composition
and limited iteration instead of via Turing machines.)

Proof Let g and h have Qi -definitions via Σb
i -formulae V and W , terms r

and s , and Σb
1 -defined functions g∗ and h∗ of S1

2 , respectively. So g(~x) = y
is true if and only if (∃w)(DEFV,r(w, ~x) ∧ g∗(w, ~x) = y) and similarly for h .
Also, let r∗ and s∗ be terms which dominate g and h so that r∗ > g and
s∗ > h are provable by T i

2 . Without loss of generality, assume r, s, r∗ and
s∗ are increasing in each of their variables.

To define f by composition, let the term t(~x) be equal to

2|r(s∗(~x), ~x)| + |s(~x)|

and let U(w, j, ~x) be the Σb
i -formula

[j < |s(~x)| → V (w, j, ~x)]∧
∧[j ≥ |s(~x)| → W (MSP(w, |s(~x)|), j .− |s(~x)|, h∗(w, ~x), ~x)].
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(Recall that MSP(w, j) is defined to the equal to the integer part of w/2j .)
Now let f ∗(w, ~x) be g∗(MSP(w, |s(~x)|), h∗(w, ~x), ~x). It is clear that f is
properly Qi -defined by

f(~x) = y ↔ (∃w ≤ 2|t|)(DEFU,t(w, ~x) ∧ f ∗(w, ~x) = y)

and that T i
2 proves that f is formed by composition from g and h .

(b) is proved with a similar but more complicated construction. The idea
is that for the Qi -definition of f we make w be the concatenation of the w ’s
required for the computation of g and the repeated computations of h . To-
wards this end we define simultaneously functions k(n, y, ~x), f ∗∗(n,w, y, ~x)
and E(n,w, y, ~x) by iteration on n = 0, . . . , |y| . This will be done so that
for an appropriate w, f ∗∗(n,w, y, ~x) is equal to f(MSP(y, |y| .− n), ~x), i.e.,
the n-th intermediate result in the calculation of f(y, ~x). The k(n, y, ~x)
will denote the first bit position of w for coding “oracle answers” for the
computation of f ∗∗(n,w, y, ~x) from f∗∗(n− 1, w, y, ~x) and E(n,w, y, ~x) will
be the substring of w consisting of the oracle answers for the computation
of f∗∗(n,w, y, ~x). We define, for n ≤ |y| ,

k(0, y, ~x)=0
E(0, w, y, ~x)=w

f ∗∗(0, w, y, ~x)=min{g∗(w, ~x), t(0, ~x)}
k(1, y, ~x)=|r(~x)|

k(n + 2, y, ~x)=k(n + 1, y, ~x) + |s∗(y, t(y, ~x), ~x)|
E(n,w, y, ~x)=MSP(w, k(n, y, ~x))

f∗∗(n + 1, w, y, ~x)=min{t(MSP(y, |y| .− (n + 1)), ~x),
h∗(E(n + 1, w, y, ~x),MSP(y, |y| .− (n + 1)),

f ∗∗(n,w, y, ~x), ~x)}
For larger values of n , we may define k , E and f∗∗ arbitrarily. It is clear
that k , E , and f∗∗ can be Σb

1-defined by S1
2 . We define U(w, j, y, ~x) to be

[j < k(1, y, ~x) → V (w, j, ~x)]∧
∧(∀n < |y|)[k(n + 1, y, ~x) ≤ j < k(n + 2, y, ~x) →

→ W (E(n + 1, w, y, ~x), j .− k(n + 1, y, ~x), f∗∗(n,w, y, ~x), ~x)]

and choose the term v(y,~c) to bound k(|y| + 1, y, ~x) and set f∗(w, y, ~x) =
f ∗∗(|y|, w, y, ~x). It is now straightforward to check that U, v and f ∗ provide
a Qi -definition of f which is provably formed by limited iteration from g
and h . 2
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The next theorem shows that minimization for Σb
i -formulae can be

Qi-defined in T i
2 . This is needed for the proof of Theorem 17 below.

Theorem 12 (i ≥ 1). Let A(a,~v) be a Σb
i -formula. Then there is a

Qi-defined function f such that

T i
2 ` (∃x ≤ z)A(x,~v) → A(f(z,~v), ~v) ∧ (∀y < f(z,~v))(¬A(y,~v)) .

Proof Let U(w, j, z, ~v) be the Σb
i -formula

(∃x < 2|z|
.−j)[A(x + Flipz(w, z), ~v)] .

Let the term t(z,~v) = z and let f ∗(w, z,~v) = Flipz(w, z). The reader may
check that the desired function f is Qi-defined by U , t and f ∗ ; note that
the idea of computing f is to do a binary search for the least x such that
A(x,~v) holds. 2

The function f(z,~v) of Theorem 12 is denoted by (µx ≤ z)A(x,~v).

4 The Witness Formula

We next review briefly a definition from [1] which is necessary for the
proof of the main theorems. Let i ≥ 1 be fixed, and let A(~a) be a Σb

i -formula.
A formula Witnessi,~a

A (w,~a) is defined which has quantifier complexity less
than that of A and which states that w is a number “witnessing” the truth
of A(~a).

Definition Suppose i ≥ 1 and A(~a) ∈ Σb
i and ~a is a vector of variables

including all those free in A . The formula Witnessi,~a
A is defined below,

inductively on the complexity of A :

(1) If A ∈ Σb
i−1 ∪ Πb

i−1 then Witnessi,~a
A is just A itself.

(2) If A is B ∧ C then define

Witnessi,~a
A (w,~a) ⇐⇒ Witnessi,~a

B (β(1, w),~a) ∧ Witnessi,~a
C (β(2, w),~a).

(3) If A is B ∨ C then define

Witnessi,~a
A (w,~a) ⇐⇒ Witnessi,~a

B (β(1, w),~a) ∨ Witnessi,~a
C (β(2, w),~a).
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(4) If A is B → C then we define

Witnessi,~a
A (w,~a) ⇐⇒ Witnessi,~a

¬B(β(1, w),~a) ∨ Witnessi,~a
C (β(2, w),~a).

(5) If A /∈ Σb
i−1 ∪ Πb

i−1 and A(~a) is (∀x ≤ |s(~a)|)B(~a, x) then define

Witnessi,~a
A (w,~a) ⇐⇒ Seq(w) ∧ Len(w) = |s(~a)| + 1∧

∧(∀x ≤ |s(~a)|)Witnessi,~a,b
B(~a,b)(β(x + 1, w),~a, x).

In words, w witnesses A(~a) if w = 〈w0, . . . , w|s|〉 and each wi witnesses
B(~a, i) . The formula Seq(w) says w is a valid Gödel number of a
sequence and Len(w) is a function giving the number of entries in the
sequence w .

(6) If A /∈ Σb
i−1 ∪ Πb

i−1 and A is (∃x ≤ t(~a))B(~a, x) then define

Witnessi,~a
A (w,~a) ⇐⇒ Seq(w) ∧ Len(w) = 2 ∧ β(1, w) ≤ t(~a)∧

∧Witnessi,~a,b
B(~a,b)(β(2, w),~a, β(1, w)).

So w witnesses A(~a) if w = 〈n, v〉 where n ≤ t(~a) and v witnesses
B(~a, n) .

(7) If A /∈ Σb
i−1 ∪ Πb

i−1 and A is ¬B then use prenex operations to push
the negation sign “into” the formula so that it can be handled by cases
(1)–(6).

The purpose of defining Witness is to give a canonical way of verifying
that A(~a) is true. It is easy to see that (∃w)Witnessi,~a

A (w,~a) is equivalent to
A(~a). The next propositions express some properties of Witness ; these are
proved mostly by induction on the complexity of A .

Proposition 13 For i ≥ 1, and A ∈ Σb
i , Witnessi,~a

A is a ∆b
i -formula with

respect to S1
2 . If i ≥ 2 then it is in fact either a Σb

i−1 -formula or a Πb
i−1

formula.

Proposition 14 (i ≥ 1). Let A(~a) be a Σb
i -formula. then there is a term

tA(~a) such that

Si
2 ` A(~a) ↔ (∃w ≤ tA)Witnessi,~a

A (w,~a).

Also there is a Σb
1 -defined function gA(w) such that

S1
2 ` Witnessi,~a

A (w,~a) → Witnessi,~a
A (gA(w),~a) ∧ gA(w) ≤ tA.
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Proposition 15 (i ≥ 1). Let A be a Σb
i -formula. The predicate represented

by Witnessi,~a
A is a ∆p

i -predicate.

The above propositions are proved in [1]. We shall also need the following
strengthened version of Proposition 14:

Proposition 16 (i ≥ 1). Let A(~a) be a Σb
i+1 -formula. Then:

(a) T i
2 ` (∃w)Witnessi+1,~a

A (w,~a) → A(~a).

(b) There is a term tA so that

T i
2 + Σb

i+1-replacement ` A(~a) → (∃w ≤ tA)Witnessi+1,~a
A (w,~a).

This is easily proved by induction on the complexity of A . Note that for
the proof of part (b) the Σb

i+1-replacement axiom is exactly what we need
to handle Case (5) of the definition of the Witness formula.

5 The Main Proof

In this section the proofs of Theorems 5 and 7 are given. The argu-
ments are proof-theoretic and hence constructive; however, they use cut
elimination and thus may not be feasibly constructive (since they involve
superexponential growth rates). We use a Gentzen-style sequent calculus:
each line in a proof is a sequent of the form

A1, . . . , Ak > B1, . . . , B`

where each Aj and Bj is a formula. The intended meaning of this sequent is
that the conjunction of the antecedent A1, . . . , Ak implies the disjunction of
the succedent B1, . . . , B` . Note that the sequent connective symbol > is
distinct from the logical connective → . Capital Greek letters Γ, ∆, Π, Λ, . . .
will be used to denote a series of formulae separated by commas, these are
called cedents.

There are about 23 rules of inference for the sequent calculus; in addition,
there are induction rules which replace the induction axioms. The initial
sequents (i.e., axioms) of a sequent calculus proof must be equality axioms,
logical axioms or non-logical axioms. The theories Si

2 and T i
2 all have the

same set of non-logical axioms; namely, a finite set of open (i.e., quantifier
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free) sequents. There are no induction axioms as initial sequents since
induction rules are used instead. An important theorem (due to Gentzen)
concerning the sequent calculus is that many instances of the cut rule may
be eliminated from proofs — more precisely, all free cuts may be eliminated
from a proof. Rather than define precisely what a free cut is, let us merely
say that for a proof of a Σb

i -formula in a theory Si
2 or T i

2 , we may assume that
every formula appearing in the proof is a Σb

i - or a Πb
i -formula. For more

information on the sequent calculus for theories of Bounded Arithmetic,
consult chapter 4 of [1] and the references cited there.

If T is a cedent we write
∧

Γ and
∨

Γ to denote the conjunction and
disjunction, respectively, of the formulae in Γ. Conjunction and disjunction
associate from right to left; for example, if Γ is A,B,C then

∧
Γ denotes

A ∧ (B ∧ C).
We have already mentioned the function and predicate symbols β, Seq ,

and Len which manipulate Gödel numbers of sequences. We use 〈a1, . . . , an〉
to denote the Gödel number of the sequence a1, . . . , an . Also, ∗ is a binary
function defined so that

〈a1, . . . , an〉 ∗ an+1 = 〈a1, . . . , an, an+1〉.

Finally 〈〈a1, . . . , an〉〉 is equal to 〈a1, 〈a2, . . . , 〈an−1, an〉 . . .〉 〉 .
These conventions allow us to conveniently discuss witnessing a cedent.

For example, suppose Γ is A1, . . . , An and that w = 〈〈w1, . . . , wn〉〉 . Then
Witnessi,~a∧Γ

(w,~a) holds if and only if Witnessi,~a
Aj

(wj,~a) holds for all 1 ≤ j ≤
n .

Instead of proving Theorems 5 and 7 directly, we prove a stronger theo-
rem:

Theorem 17 (i ≥ 1). Suppose the sequent Γ, Π > ∆, Λ is a theorem of
Si+1

2 and each formula in Γ∪∆ is Σb
i+1 and each formula in Π∪Λ is Πb

i+1 .
Let c1, . . . , cp be the free variables in the sequent and let G and H be the
formulae

G =
(∧

Γ
)
∧

∧
{¬C : C ∈ Λ}

and
H =

(∨
∆

)
∨

∨
{¬C : C ∈ Π}.

Then there is a Qi -defined function f of T i
2 such that

T i
2 ` Witnessi+1,~c

G (w,~c) → Witnessi+1,~c
H (f(w,~c),~c).
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Proof of Theorem 5 from Theorem 17. Let A(~c) be a Σb
i+1 -formula which

is provable in Si+1
2 . By Theorem 17, T i

2 ` Witnessi,~c
A (f(~c),~c) for some

Qi -defined function f . By Proposition 16(a) T i
2 ` A(~c). 2

Proof of Theorem 7 from Theorem 17. Let A(~c) be a Boolean combination
of Σb

i+1 -formulae which is provable by Si+1
2 . Thus A is tautologically

equivalent to a conjunction of disjunctions
∧

j

∨
k Ajk with each Ajk a Σb

i+1 -

or a Πb
i+1 -formula. Hence Si+1

2 proves each disjunct
∨

k Ajk . Fix a value
for j and let ∆j be the cedent containing the Σb

i -formulae among Ajk and
let Λj be the rest of the Ajk ’s. Hence Si+1

2 proves the sequent > ∆j, Λj .
Let G be the formula ¬ (

∨
Λj) and let H be

∨
∆j . By Theorem 17

T i
2 ` (∃w)Witnessi+1,~c

G (w,~c) → (∃w)Witnessi+1,~c
H (w,~c).

By Proposition 16(b),

T i
2 + Σb

i+1-replacement ` G(~c) → H(~c).

Hence T i
2 + Σb

i+1-replacement proves the sequent > ∆j, Λj , or
equivalently, the formula

∨
k Ajk . Hence A(~c) is a consequence of

T i
2 + Σb

i+1-replacement. 2

We next prove Theorem 17: the outline of the proof is identical to the
proof of Theorem 5.5 of [1]. Indeed, this proof is a strengthened version of
that proof.

Proof of Theorem 17:
By the free-cut elimination theorem there is a Si+1

2 -proof P of
Γ, Π > ∆, Λ such that every cut in P has a Σb

i+1 principal formula and
such that P is in free variable normal form (see [1] for definitions). The
proof of Theorem 17 is by induction on the number of sequents in the proof
P .

To simplify notation we shall henceforth assume Π and Λ are the empty
cedent. We can always fulfill this requirement by using (¬ :left) and (¬ :right)
to move formulae from side to side and no essential cases are ignored under
this assumption since each inference has a dual; for example, the dual of
(∃ ≤ :left) is (∀ ≤ :right) and the dual of (∧ :right) is (∨ :left).

To begin, consider the case where P has no inferences and consists of a
single sequent. This sequent must be a nonlogical axiom of Si+1

2 or a logical
axiom or an equality axiom. In any event, it contains only atomic formulae
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and is also an axiom of T i
2 . For atomic formulae A , Witnessi+1,~c

A is just A
itself; hence this case is completely trivial.

The argument for the induction step splits into thirteen cases depending
on the final inference of P .

Case (1): Suppose the last inference of P is (¬ :left) or (¬ :right). These
are “cosmetic” inferences; see also the discussion above about assuming Π
and Λ are empty.

Case (2): (∧ :left). Suppose the last inference of P is:

B, Γ∗ >∆
B ∧ C, Γ∗ >∆

Let D be the formula B ∧ (
∧

Γ∗) and let E be (B ∧ C) ∧ (
∧

Γ∗). By the
induction hypothesis, there is a Qi -defined function symbol g of T i

2 such
that

T i
2 ` Witnessi+1,~c

D (w,~c) → Witnessi+1,~c∨∆
(g(w,~c),~c).

Let h be the function defined by h(w) = 〈β(1, β(1, w)), β(2, w)〉 so that

T i
2 ` Witnessi+1,~c

E (w,~c) → Witnessi+1,~c
D (h(w),~c)

follows immediately from the definition of Witness . Now let f(w,~c) =
g(h(w),~c). By Theorem 11(a) and since h is Σb

1 -defined by S1
2 , the function

f is Qi -defined by T i
2 . Also

T i
2 ` Witnessi+1,~c

E (w,~c) → Witnessi+1,~c∨∆
(f(w,~c),~c),

so f fulfills the desired conditions.

Case (3): (∨ :left) Suppose the last inference of P is

B, Γ∗ > ∆ C, Γ∗ > ∆

B ∨ C, Γ∗ > ∆

Let D be the formula B ∧ (
∧

Γ∗) and let E be C ∧ (
∧

Γ∗) and let F
be (B ∨ C) ∧ (

∧
Γ∗). By the induction hypothesis, there are Qi -defined

functions g and h such that

T i
2 ` Witnessi+1,~c

D (w,~c) → Witnessi+1,~c∨∆
(g(w,~c),~c)

and
T i

2 ` Witnessi+1,~c
E (w,~c) → Witnessi+1,~c∨∆

(h(w,~c),~c).
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Since i ≥ 1, Proposition 13 states that Witnessi+1,~c∨∆
is either a Σb

i - or a
Πb

i -formula. Hence the function k defined by

k(w, a, b,~c) =

{
a if Witnessi+1,~c∨∆

(w,~c)
b otherwise

is Qi -defined. Let f be the function

f(w,~c) = k(β(1, β(1, w)), g(w,~c), h(w,~c),~c)

where
g(w,~c) = g(〈β(1, β(1, w)), β(2, w)〉,~c)

and
h(w,~c) = h(〈β(2, β(1, w)), β(2, w)〉,~c).

Since f is defined as the composition of Qi -defined functions, f is itself
Qi -defined. Clearly f satisfies the desired conditions of Theorem 17.

Case (4): (∃ ≤ :left). Suppose the last inference of P is

a ≤ s,B(a), Γ∗ >∆
(∃x ≤ s)B(x), Γ∗ >∆

The free variable a is the eigenvariable and appears only as indicated. Let D
be the formula a ≤ s∧ (B(a)∧ (

∧
Γ∗)) and let E be (∃x ≤ s)B(x)∧ (

∧
Γ∗).

By the induction hypothesis, there is a Qi -defined function g such that

T i
2 ` Witnessi+1,~c,a

D (w,~c, a) → Witnessi+1,~c∨∆
(g(w,~c, a),~c).

(Note that the variable a can be omitted from the superscript in the right
hand side of the implication since it does not appear free in ∆.)

This case splits into three subcases: first, if (∃x ≤ s)B is not in Σb
i ∪Πb

i ,
let h be the function Σb

1 -defined by S1
2 so that h(w,~c) = β(1, β(1, w)).

Second, if (∃x ≤ s)B ∈ Σb
i , let h(w,~c) = (µx ≤ s)B(x,~c); by Theorem 12,

h is Qi -defined by T i
2 . Third, if (∃x ≤ s)B ∈ Πb

i \ Σb
i then the quantifier

(∃x ≤ s) must be sharply bounded, so h(w,~c) = (µx ≤ s)B(x,~c) is again
Qi -defined (to prove this, define h by limited iteration and use Theorem 11).
In any case we have that

T i
2 ` Witnessi+1,~c

E (w,~c) → B(h(w,~c),~c) ∧ h(w,~c) ≤ s(~c)

and, indeed, that

T i
2 ` Witnessi+1,~c

E (w,~c) → Witnessi+1,~c,a
B (β(2, β(1, w)),~c, h(w,~c)).

The desired Qi -defined function f(w,~c) is given by

f(w,~c) = g(〈〈0, β(2, β(1, w)), β(2, w)〉〉,~c, h(w,~c)).
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Case (5): (∀ ≤ :left). We omit the proof of this case, as it is fairly easy and
exactly like case (5) of the proof of Theorem 5.5 of [1].

Case (6): (→ :left) and (→ :right). These cases are also omitted: they are
very similar to (∨ :left) and (∨ :right).

Case (7): (∨ :right). This case is very simple; see Case (7) of Theorem 5.5
of [1].

Case (8): (∧ :right). Suppose the last inference of P is

Γ > B, ∆∗ Γ > C, ∆∗

Γ > B ∧ C, ∆∗

Let D be the formula B ∨ (
∨

∆∗), let E be C ∨ (
∨

∆∗) and let F be
(B ∧ C) ∨ (

∨
∆∗). The induction hypothesis is that there are Qi -defined

functions g and h so that

T i
2 ` Witnessi+1,~c∧Γ

(w,~c) → Witnessi+1,~c
D (g(w,~c),~c)

and
T i

2 ` Witnessi+1,~c∧Γ
(w,~c) → Witnessi+1,~c

E (h(w,~c),~c).

Let k be the function such that

k(v, w,~c) =

{
v if Witnessi+1,~c∨∆∗ (v,~c)
w otherwise.

By Proposition 13, Witnessi+1,~c∨∆∗ is either a Σb
i - or a Πb

i -formula; hence k is
Qi -defined. Let f be the function

f(w,~c) = 〈 〈β(1, g(w,~c)), β(1, h(w,~c))〉, k(β(2, g(w,~c)), β(2, h(w,~c)),~c)〉.
By Theorem 11(a) f is Qi -defined; furthermore, it is clear that

T i
2 ` Witnessi+1,~c∧Γ

(w,~c) → Witnessi+1,~c
F (f(w,~c),~c).

Case (9): (∃ ≤ :right). Suppose the last inference of P is

Γ∗ >B(r), ∆∗

r ≤ s, Γ∗ >(∃x ≤ s)B(x), ∆∗

We assume r ≤ s is in Γ; a similar argument works for r ≤ s in Π.
Let D be the formula B(r) ∨ (

∨
∆∗), let E be r ≤ s ∧ (

∧
Γ∗) and let F
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be (∃x ≤ s)B(x) ∨ (
∨

∆∗). The induction hypothesis is that there is a
Qi -defined function g such that

T i
2 ` Witnessi+1,~c∧Γ∗ (w,~c) → Witnessi+1,~c

D (g(w,~c),~c)

By the definition of Witness ,

T i
2 ` Witnessi+1,~c

E (w,~c) → r ≤ s ∧ Witnessi+1,~c∧Γ∗ (β(2, w),~c).

So define f by

f(w,~c) = 〈 〈r(~c), β(1, g(β(2, w),~c))〉, β(2, g(β(2, w),~c))〉.

By Theorem 11(a), f is Qi -defined and clearly f satisfies the conditions of
Theorem 17.

Case (10): (∀ ≤ :right). Suppose the last inference of P is

a ≤ s, Γ >B(a), ∆∗

Γ >(∀x ≤ s)B(x), ∆∗

The free variable a is the eigenvariable and must appear only as indicated.
Let D be the formula a ≤ s∧ (

∧
Γ), let E be B(a)∨ (

∨
∆∗) and let F (~c, d)

be (∀x ≤ d)B(x) ∨ (
∨

∆∗). The induction hypothesis is that there is a
Qi -defined function g such that

T i
2 ` Witnessi+1,~c,a

D (w,~c, a) → Witnessi+1,~c,a
E (g(w,~c, a),~c, a).

First, consider the case where (∀x ≤ s)B(x) is not in Σb
i ∪Πb

i ; recall that
all formulas are assumed to be in Σb

i+1 . So (∀x ≤ s) is sharply bounded and
s = |r| for some term r . Let k be the function defined by

k(v, w,~c) =

{
v if Witnessi+1,~c∨∆∗ (v,~c)
w otherwise.

Since Witnessi+1,~c∨∆∗ is either a Σb
i - or a Πb

i -predicate (by Proposition 13) k
is Qi -defined. Let p(w,~c, d) be defined by limited iteration as:

p(w,~c, 0)=〈 〈β(1, g(w,~c, 0))〉, β(2, g(w,~c, 0)〉
p(w,~c,m)=〈β(1, p(w,~c, b1

2
mc)) ∗ β(1, g(w,~c, |m|)),

k(β(2, p(w,~c, b1
2
mc)), β(2, g(w,~c, |m|)),~c)〉
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for all m 6= 0. By Theorem 11(b), p can be Qi -defined and

T i
2 ` Witnessi+1,~c

D (w,~c) → Witnessi+1,~c,d
F (p(w,~c, 0),~c, 0)

and

T i
2 ` Witnessi+1,~c

D (w,~c) ∧ Witnessi+1,~c,d
F (p(w,~c, b1

2
mc),~c, |m| .− 1) →

→ Witnessi+1,~c,d
F (p(w,~c,m),~c, |m|).

We now wish to use induction on the length of m to deduce that

T i
2 ` Witnessi+1,~c

D (w,~c) → Witnessi+1,~c,d
F (p(w,~c, r),~c, s).

However, Witnessi+1,~c,d
F (p(w,~c,m),~c, |m|) is a ∆b

i+1 -formula (since p is a
Σb

i+1 -defined function) and we have not yet shown that T i
2 has induction for

∆b
i+1 -formulae. To circumvent this problem, define the function h so that

h(w,~c, 0)=〈p(w,~c, 0)〉
h(w,~c,m)=h(w,~c, b1

2
mc) ∗ p(w,~c,m)

for m 6= 0. Again by Theorem 11(b), h is Qi -defined, say by V , q and h∗ .
Note that T i

2 proves

b = MSP (a, j) → p(w,~c, b) = β(|b| + 1, h(w,~c, a)).

Thus, the formula above can be re-expressed as

T i
2 ` DEFV,q(w

∗, w,~c, t) ∧ 0 ≤ j ∧ j < |t| ∧ Witnessi+1,~c
D (w,~c)∧

∧Witnessi+1,~c,d
F (β(j + 1, h∗(w∗, w,~c, t)),~c, j) →

→ Witnessi+1,~c,d
F (β(j + 2, h∗(w∗, w,~c, t)),~c, j + 1).

Since h∗ is Σb
1 -defined by S1

2 and since i ≥ 1,

Witnessi+1,~c,d
F (β(j + 1, h∗(w∗, w,~c, t)),~c, j)

is either a Σb
i - or a Πb

i -formula by Proposition 13. Hence by Πb
i -LIND, T i

2

can prove

Witnessi+1,~c
D (w,~c) → Witnessi+1,~c,d

F (f(w,~c),~c, s)

where f(w,~c) = p(w,~c, r(~c)). So f is Qi -defined and it follows readily from
the definition of Witness that

T i
2 ` Witnessi+1,~c

D (w,~c) → Witnessi+1,~c
F (~c,s)(f(w,~c),~c).
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Second, consider the case where (∀x ≤ s)B(x) is a formula in Σb
i ∪ Πb

i .
Similar to the argument in Case (4), T i

2 can Qi -define the function h(w,~c) =
(µx ≤ s)(¬B(x)). Now we let

f(w,~c) = 〈0, β(2, g(〈0, w〉,~c, h(w,~c))〉.
It is easy to verify that f satisfies the desired conditions and thus this case
is also done.

Case (11): Cut. Suppose the last inference of P is

Γ > B, ∆ B, Γ > ∆

Γ > ∆

By the assumption that P is free-cut free, B must be a Σb
i+1 -formula. Let D

be the formula B∨(
∨

∆) and let E be B∧(
∧

Γ). The induction hypothesis
is that there are Qi -defined functions g and h such that

T i
2 ` Witnessi+1,~c∧Γ

(w,~c) → Witnessi+1,~c
D (g(w,~c),~c)

and
T i

2 ` Witnessi+1,~c
E (w,~c) → Witnessi+1,~c∨∆

(h(w,~c),~c).

We define the function f so that

f(w,~c) =

{
β(2, g(w,~c)) if Witnessi+1,~c∨∆

(β(2, g(w,~c)),~c)
h(〈β(1, g(w,~c)), w〉,~c) otherwise.

By Proposition 13, Witnessi+1,~c∨∆
is a Σb

i - or a Πb
i -formula, hence f is Qi -

defined. Also, it is clear that

T i
2 ` Witnessi+1,~c∧Γ

(w,~c) → Witnessi+1,~c∨∆
(f(w,~c),~c).

Case (12): (Σb
i+1 -PIND). Suppose the last inference of P is

B(b1
2
ac), Γ∗ >B(a), ∆∗

B(0), Γ∗ >B(t), ∆∗

where a is the eigenvariable and must not appear in the lower sequent.
First consider the case where B is not in Σb

i ∪Πb
i and hence B(0) is in Γ

and B(t) is in ∆. The general idea is to treat the Σb
i+1 -PIND inference as

if it were |t| .− 1 cuts. So, in effect, this case is handled by formally iterating
the method of Case (11).
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Let D be the formula B(b1
2
ac)∧(

∧
Γ∗), let E(~c, a) be B(a)∨(

∨
∆∗), let

F be B(0) ∧ (
∧

Γ∗) and let A be B(t) ∨ (
∨

∆∗). The induction hypothesis
is that there is a Qi -defined function g such that

T i
2 ` Witnessi+1,~c,a

D (w,~c, a) → Witnessi+1,~c,a
E (g(w,~c, a),~c, a).

Let k and h be the functions Qi -defined so that

k(v, w,~c)=

{
v if Witnessi+1,~c∨∆∗ (v,~c)
w otherwise

h(v, w,~c, a)=g(〈β(1, v), β(2, w)〉,~c, a).

By Proposition 14 there is a term tE and a Σb
1 -defined function q of S1

2 such
that

T i
2 ` Witnessi,~c,a

E (w,~c, a) → Witnessi+1,~c,a
E (q(w),~c, a) ∧ q(w) ≤ tE(~c, a)

Define p by limited iteration so that

p(w,~c, 0)=q(g(w,~c, 0))

p(w,~c,m)=q(〈β(1, h(p(w,~c, b1
2
mc), w,~c,m)),

k(β(2, h(p(w,~c, b1
2
mc), w,~c,m)), β(2, p(w,~c, b1

2
mc)),~c)〉)

for all m > 0. This is a valid definition by limited iteration since the
use of the q function gives a provable bound on the size of p ; namely,
p(w,~c,m) ≤ tE(~c,m). Thus by Theorem 11(b), p is Qi -defined by T i

2 . Now
it is easy to see that

T i
2 ` Witnessi+1,~c

F (w,~c) → Witnessi+1,~c,a
E (p(w,~c, 0),~c, 0)

and

T i
2 ` Witnessi+1,~c

F (w,~c) ∧ Witnessi+1,~c,a
E (p(w,~c, b1

2
ac),~c, b1

2
ac) →

→ Witnessi+1,~c,a
E (p(w,~c, a),~c, a).

By the same trick as we used in Case (10), we can replace
Witnessi+1,~c,a

E (p(w,~c, a),~c, a) by a Σb
i - or a Πb

i -formula and use the PIND
axioms to get that

T i
2 ` Witnessi+1,~c

F (w,~c) → Witnessi+1,~c,a
E (p(w,~c, a),~c, a).
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So f is Qi -defined by f(w,~c) = p(w,~c, t) and then it is obvious from the
definition of Witness that

T i
2 ` Witnessi+1,~c

F (w,~c) → Witnessi+1,~c
A (f(w,~c),~c).

Second, consider the case where B ∈ Σb
i ∪ Πb

i . Here we cannot use the
simplifying assumption that Π and Λ are empty and must consider the four
subcases for B(0) in Γ or Π and B(t) is ∆ or Λ. All four subcases are
handled similarly: let h be the Qi -defined function

h(w,~c) = (µx ≤ |t|)(¬B(MSP(t, |t| .− x))

as in the last paragraph of Case (10). The function f first checks if ¬B(0)
or B(t) is true; if so, it is trivial to give a witness for it; if not, the function
g given by the induction hypothesis is applied to a = MSP (t, |t| .− h(w,~c))
to get a witness for (

∨
∆∗). The details are left to the reader.

Case (13): (Structural Inferences). The cases where the last inference is an
exchange inference, a contraction inference or a weak inference are all trivial
and their proofs are omitted.

Q.E.D. Theorem 17. 2

6 Conclusion

J. P. Ressayre [8] introduced the strong Σb
i -replacement axioms (he

called them strong Σb
i -collection axioms) and showed that the theory S1

2 +
Σb

i+1-replacement is ∀∃Σb
i+1 -conservative over S1

2 + strong Σb
i -replacement.

In view of Theorem 1, this means that S1
2 + Σb

i+1-replacement is ∀∃Σb
i+1 -

conservative over Si
2 ; furthermore, by Theorem 5 this implies that for i ≥ 1,

S1
2 + Σb

i+2-replacement is ∀Σb
i+1 -conservative over T i

2 and is ∀∃B(Σb
i+1)-

conservative over T i
2 + Σb

i+1-replacement, where B(Σb
i+1) denotes the set of

Boolean combinations of Σb
i+1 -formulae (possibly containing free variables).

The obvious question arises of what the exact strength of the
Σb

i+1-replacement axioms is relative to Si
2 and T i

2 . From [1] we know
that, relative to the base theory S1

2 ,

Σb
i+1-PIND =⇒ Σb

i+1-replacement =⇒ Σb
i -PIND.
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But do either of the arrows reverse? Note that if Σb
i+1-replacement implies

Σb
i+1-PIND then by Ressayre’s result, Si+1

2 is Σb
i+1 -conservative over Si

2 —
which seems unlikely. On the other hand, there seems to be no reason why
it should not be the case that the Σb

i+1-replacement axioms are theorems of
Si

2 .
Another open question is whether ∆b

i+1 -PIND is a consequence of Si
2 .

Of course ∆b
i+1 means with respect to Si

2 . Possibly Si
2 + ∆b

i+1 -PIND is
conservative in some way over Si

2?
Finally, it is still completely open whether the theories

S1
2 ⊆ T 1

2 ⊆ S2
2 ⊆ T 2

2 ⊆ · · ·

are all distinct. Can our result that Si+1
2 is Σb

i+1 -conservative over T i
2 be

strengthened to Si+1
2 ≡ T i

2 ? Is T i
2 conservative over Si

2? We remark that
it is unlikely that T 1

2 is Σb
1 -conservative over S1

2 since this has surprising
consequences for the computational complexity of linear programming. It is
straightforward to see that T 1

2 can Σb
1 -define a function which solves linear

programming problems; hence, if T 1
2 is Σb

1 -conservative over S1
2 then so

can S1
2 and thus by the main theorem of [1], linear programming has a

polynomial time algorithm. Of course this latter fact is well-known, but
it would be very surprising to have a purely logical proof which did not
depend on the geometry of linear programming — note that Khachiyan’s
and Karmarkar’s algorithms do depend strongly on geometric considerations
[5, 4].

In closing, let us remark that it is expected to be difficult to actually
prove that the theories Si

2 and T j
2 are distinct; in part because it involves

the same problems that arise in trying to prove P 6= NP . For example, if
S1

2 6≡ S2 then S1
2 does not prove NP = co-NP . However, there are known

separation results for relativized theories: if we add a new function symbol
f to the language of Bounded Arithmetic, then we have by Theorem 5.15
of [1] that S1

2(f) 6≡ T 2
2 (f). But no separation results are known for the

unrelativized theories, and it seems that until new techniques are developed
we shall have to content ourselves with proving equivalence and conservation
results for fragments of Bounded Arithmetic.
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