
Short refutations for an equivalence-chain principle

for constant-depth formulas

Sam Buss∗

Department of Mathematics

University of California, San Diego

La Jolla, CA 92093-0112, USA

sbuss@ucsd.edu

Ramyaa Ramyaa†

Department of Computer Science

New Mexico Institute of Mining and Technology

Socorro, NM 87801

ramyaa@cs.nmt.edu

July 21, 2018

Abstract

We consider tautologies expressing equivalence-chain properties in
the spirit of Thapen and Kraj́ıček, which are candidates for exponen-
tially separating depth k and depth k + 1 Frege proof systems. We
formulate a special case where the initial member of the equivalence
chain is fully specified and the equivalence-chain implications are actu-
ally equivalences. This special case is shown to lead to polynomial size
resolution refutations. Thus it cannot be used for separating depth k
and depth k+1 propositional systems. We state some H̊astad switch-
ing lemma conditions that restrict the possible propositional proofs in
more general situations.

∗Supported in part by NSF grant CCR-1213151. Buss also thanks the Simons Institute

for a supporting a visit to the Special Program on Logical Structures in Computation in

August and September 2016 where a main portion of this work was carried out.
†Ramyaa gratefully acknowledges the support from Simons Institute in Theoretical

Computer Science and its Fall 2016 Program on Logical Structures in Computation for

hosting her during the period of this work.

1

1 Introduction

Frege systems are the usual “textbook-style” proof systems for propositional
logic with modus ponens as the only rule of inference. It is often more elegant
to use the propositional sequent calculus PK instead, with connectives ¬,
∧ and ∨. We can require that negations (¬) be applied only to variables,
and then define the depth of a formula as the number of alternating levels
of ∧’s and ∨’s in the formula. A depth k PK proof is a PK proof in which
all formulas have at most k alternating blocks of ∧’s and ∨’s. One of the
central open questions in propositional proof complexity is the question of
whether, for proofs of depth 2 (say) tautologies, the constant-depth Frege
(or PK) systems form a hierarchy with respect to quasipolynomial size or
other sub-exponential size simulations. The best results so far give a n(logn)

ǫ

(superpolynomial) separation between depth d−1 and depth d PK proofs,
where the constant ǫ > 0 depends on d. This was first proved in a uniform
setting by Impagliazzo and Kraj́ıček [4] working with bounded arithmetic;
it was generalized to the non-uniform setting by Kraj́ıček [6] following a
suggestion of Thapen.

There are two main approaches to the problem of giving better separa-
tions between depth d−1 and depth d PK proofs. The first approach con-
siders the uniform version of this problem via the Paris-Wilkie translation
by studying the ∀Σb

1(α)-consequences of the fragments T k
2 (α) on bounded

arithmetic (see [2, 5] for overviews). There has been extensive work in this
direction, with the modern line of work initiated by the game induction prin-
ciples of Skelley and Thapen [8], which characterized the total NP search
problems of the fragments of the bounded arithmetic theories T k

2 (α). The
second and less well-developed approach is the “isomorphism-chain” pro-
posal of Kraj́ıček [7].

The present paper considers a special case of equivalence-chain tautolo-
gies ECD. These can also be construed as tautologies expressing a restricted
case of the game induction principles in which the induction step is reversible
and very simple and in which the first player has a unique strategy for the
initial stage. The first versions of these tautologies were defined in [7], at-
tributed to Thapen. The paper [7] was motivated by feasible interpolation;
we are grateful to Pudlák [private communication] for bringing them to our
attention in the framework of seeking separations of constant-depth proofs.

To define the ECD tautologies, consider constant-depth Boolean sen-
tences which are constructed by alternating levels of ∧ and ∨ gates of fanin f ,
with the inputs all constants 1 (True) or 0 (False). Two such Boolean sen-
tences ϕ and ψ are called “isomorphic” if one can be obtained from the other

2

by permuting the orders of inputs to gates. As a special case of this, we say
that ϕ and ψ are “locally equivalent” if there is a gate g in ϕ and integers
i and j such that interchanging the i-th and j-th inputs to g transforms ϕ
into ψ. We will work with tautologies ECD which state that if ϕ0, ϕ1, . . . , ϕT

are depth D Boolean sentences with each ϕi locally equivalent to ϕi+1, then
it is impossible for ϕ0 to evaluate to true in a “minimal” way and for ϕT to
evaluate to false. (See Section 2 for the precise definition.)

It is not hard to see that the tautologies ECD have polynomial size,
depth D PK proofs which are tree-like and log depth. Our main result is
that the clausal forms of the complement ECD actually have polynomial
size resolution refutations, even if D is allowed to vary. Thus the principles
ECD do not serve as candidates for a depth hierarchy for Frege systems or
PK proof systems.

In Section 4, we describe alternative forms ICD of the ECD tautologies
which we conjecture do provide a depth hierarchy for Frege systems and PK
systems: these replace the conditions that ϕi+1 is locally equivalent to ϕi

with the conditions that ϕi+1 is “locally implied” by ϕi. (“EC” and “IC”
stand for “equivalence chain” and “‘implication chain”.) An alternate for-
mulation called EC−

D keeps the “locally equivalent” conditions but weakens
the conditions on the first formula ϕ0.

The intuition for why the principles EC−
D and ICD should be hard for

depth D′ PK proofs with D′ sufficiently smaller than D is that the only pos-
sible proofs seem to require (implicitly) using truth definitions for depth D
Boolean formulas to prove inductively that ϕi is true for all i = 1, 2, . . . , T .
But, Yao and H̊astad showed that the truth of depth D Boolean formulas
cannot be expressed by depth D − 1 Boolean formulas of subexponential
size [3]. The same intuition would seem to hold for the principles ECD: but
here the intuition fails, as there is an alternate way to indirectly express the
truth of the formulas ϕi. For this, see the discussion at the beginning of
Section 3.

The next section gives the main definitions. Section 3.1 describes the
polynomial resolution refutations informally. Section 3.2 explains how the
informal proof is translated into polynomial size resolution refutations. Sec-
tion 3.3 outlines how the resolution refutations can be also obtained via
formalization in the system U2,1-IND of [1]. Section 4 uses the H̊astad
switching lemma to restrict what kinds of low depth proofs can be used to
prove EC−

D or ICD. Ultimately, improved switching lemmas might be able
to show that the EC−

D or ICD tautologies do yield a depth hierarchy for the
Frege and PK proof systems.

We assume the reader has some basic knowledge of propositional logic

3

and resolution. Section 3.3 gives an alternate proof of Theorem 4 using
formalization in bounded arithmetic, but this can be skipped by the reader
unfamiliar with these systems.

2 Definitions of the Tautologies

This section formulates the EC tautologies as a unsatisfiable set of clauses.
The EC tautologies are defined using three integer parameters: (1) D > 1
is the depth of the Boolean sentences ϕi (implicitly) described by the tau-
tologies. (2) f ≥ 2 is the fanin of each ∧/∨ gate in the Boolean sentences.
(3) T ≥ 1 gives the number of ϕi’s in the chain of Boolean sentences.

We use standard conventions for concepts such as “clause”, “resolution
inference”, etc. We use [k] to denote {0, 1, . . . , k−1}.

By convention, a depth D Boolean sentence ϕ is the same as a tree-
like Boolean circuit with constants as inputs. The topmost (output) gate
is a ∨ gate and is at depth 0. More generally, gates at depth d < D are
∧ gates if d is odd, and ∨ gates if d is even. The inputs are at depth D
and are constants 0 or 1. Gates and inputs of ϕ are specified by sequences
π = 〈a1, . . . , ak〉 for 0 ≤ k ≤ D and ai ∈ [f]. We call π a “path” and
it specifies the node which is reached by starting at the root (the output
gate) of ϕ, then walking to its child number a1, then to that gate’s child
number a2, etc., repeating this for k steps. Paths of even (resp., odd) length
< D specify an ∨ gate (resp., an ∧ gate). Paths of length D specify input
nodes.

Definition 1. A path is a sequence π of length |π| ≤ D of the form

〈d1, c1, d2, c2, . . . , cℓ−1, dℓ〉 or 〈d1, c1, d2, c2, . . . , dℓ, cℓ〉

where ci and di are in [f] = {0, . . . , f−1}. Thus |π| equals 2ℓ−1 or 2ℓ
(respectively).

The letters “d” and “c” stand for “disjunction” and “conjunction”: a di
selects an input to a disjunction; a ci selects an input to a conjunction.

The tautologies ECD,f,T , or just ECD for short, implicitly express prop-
erties about Boolean sentences ϕ0, . . . , ϕT . For 0 ≤ t ≤ T , ϕt is the Boolean
sentence at time t. These tautologies involve the following variables:

1. (Leaf variables.) For each 0 ≤ t ≤ T , and each path π of length D, there
is a variable xtπ. The intuition is that Boolean value of xtπ gives the
true/false value of the input of ϕt indexed by π. There are fD · (T+1)
many leaf variables xtπ.

4

2. (Swap variables.) For each path π with length < D, each 0 ≤ t ≤ T , and
each 0 ≤ i < j < f , there is a variable ytπ,i,j. The intuition is that ytπ,i,j
indicates that ϕt+1 is obtained from ϕt by interchanging (swapping)
the i-th and j-th inputs of the gate gπ indexed by π.

Definition 2. An initial ∨-path is any path π of length D of the form
〈0, c1, 0, c2, . . .〉, i.e., with each di = 0. Dually, a terminal ∧-path is any
path π of length D of the form 〈d1, 0, d2, 0, . . .〉, i.e., with each ci = 0.

The idea for initial ∨-paths is that they are the paths that can be ob-
tained by always selecting the first input (indexed by di = 0) of ∨-gates.
The same holds for terminal ∧-paths, except using the first inputs of ∧-
gates. The initial ∨-paths are called “initial” since we will use them for
the first Boolean sentence ϕ0, that is, with t = 0. Likewise, the “terminal”
∧-paths will be used for the last Boolean sentence ϕT .

We can now define the clauses that will be used formalize the proposi-
tional principles EC, EC−, and IC. These clauses will be chosen from the
following:

a. For each initial ∨-path π, the unit clause x0π.

b. For each terminal ∧-path π, the unit clause ¬xTπ .

c. For each π, |π| = D, not an initial ∨-path, the unit clause ¬x0π.

d. For each swap variable ytπ,i,j and each path σ with |π|+ 1 + |σ| = D (so

0 ≤ |σ| < D), the clauses1

i. ytπ,i,j ∧ x
t
πiσ → xt+1

πjσ

ii. ytπ,i,j ∧ x
t+1
πjσ → xtπiσ

iii. ytπ,i,j ∧ x
t
πjσ → xt+1

πiσ

iv. ytπ,i,j ∧ x
t+1
πiσ → xtπjσ

and for each path τ with |τ | = D not of the above form πiσ or πjσ,
the clauses

v. ytπ,i,j ∧ x
t
τ → xt+1

τ

vi. ytπ,i,j ∧ x
t+1
τ → xtτ

1These are written as implications but of course are equivalent to clauses. E.g., d.i. is

the clause ¬y
t
π,i,j ∨ ¬x

t
πiσ ∨ x

t+1

πjσ.

5

e. For each fixed t < T , the clause
∨
ytπ,i,j. The disjunction is taken over all

paths π of length < D and all i < j; that is, over all swap variables at
time t.

f. For each t < T , the clauses ¬ytπ,i,j ∨¬ytπ′,i′,j′, for all pairs of distinct swap

variables ytπ,i,j and y
t
π′,i′,j′.

The clauses of type a. suffice to prove that the Boolean sentence ϕ0 evaluates
to true. Indeed, the ∨-gates are all satisfied by their first inputs. Alternately,
we can define the truth of ϕ using a two player D-round game played by
an existential player and a universal player. The players select a path from
the root gate-by-gate with the existential and universal players selecting the
inputs of ∨- and ∧-gates, respectively. Then ϕ0 is true means the existen-
tial player has a winning strategy. The clauses of type a. ensures that the
existential player can win by always choosing the first input to the current
∨-gate. Dually, the clauses of type b. ensure that the final formula ϕT is
false.

The clauses of type c. state that the rest of the inputs to ϕ0 are false;
in other words, that ϕ0 is true in a minimal way. These clauses are not
necessary for the truth of the equivalence chain tautologies, but are crucial
for our resolution refutations. One could dually define unit clauses xTπ for π
not a terminal ∧-path, but it turns out we do not need them.

The clauses of type e. and f. state that exactly one swap variable is true
at time t. The true swap variable ytπ,i,j controls how ϕt+1 is formed as an
isomorphic copy of ϕt. The clauses of type d. force the correct isomorphic
copy. The clauses d.i-iv. state that the inputs that are “moved” by the swap
correctly maintain their values, and the clauses of type d.v-vi. state that the
rest of the inputs maintain their values.

Definition 3. Fix values for the depth D > 1, the fanin f , and the number
of swaps T . The ECD,f,T clauses are the clauses of types a.-f. The EC−

D,f,T

are the same clauses except omitting the clauses of type c. The ICD,f,T

clauses omit d.ii., d.iv., and d.vi.; that is, they are the clauses a., b., c., d.i.,
d.iii., d.v., e. and f.

Each of these sets of clauses is unsatisfiable. If we fix the value of D, we
get families of sets of clauses, we denote ECD, EC

−
D and ICD. The clauses of

type c. are superfluous for ICD, and may as well be omitted. It is not clear
that the clauses of type f. are ever useful; indeed, our resolution refutations
do not use them. Nonetheless, it seems more elegant to include them.

6

3 Resolution refutations of ECD clauses

We now state our main result. We measure the size of a resolution refutation
in terms of the number of clauses appearing in the refutation.

Theorem 4. Letting all three of D, f , and T vary, there are polynomial

size resolution refutations of the set of clauses ECD,f,T .

To be more specific about the size bounds, note that there areO(f ·fD ·T)
many swap variables ytπ,i,j; there are O(f2f2D · T) many clauses of type f.;

there are O(f ·fD ·T) many clauses of type d., and fewer clauses of the other
types. Thus, Theorem 4 states that the sizes of the resolution refutations
can be polynomially bounded in terms of fD and T ; this is the same as
being polynomially bounded in the size of ECD,f,T .

The first intuition for how to prove Theorem 4 is to use truth definitions
for the formulas ϕi, or more relevantly, use truth definitions for all subfor-
mulas of all the ϕi’s. Normally, clauses cannot express the truth and falsity
of formulas of depth D; however, the inclusion of clauses of type c., along
with the presence of clauses d.ii., d.iv. and d.vi., makes this possible in our
setting. Namely, for i = 0, any subformula ψ of ϕ0 evaluates to true iff at
least one input to ψ is true. More formally, for π a path of length ≤ D, the
subformula ψ of ϕ0 rooted at the gate indexed by π is true iff the disjunction∨

σ x
0
πσ is true. The corresponding property can then be proved for each ϕi

by proceeding inductively with i = 1, 2, . . . , T .
This informal argument cannot be so simply carried out in resolution,

nonetheless we use closely related techniques. We give an informal outline of
the proof in Section 3.1, and then in Section 3.2 explain how this translates
into polynomial size resolution refutations of the sets ECD,f,T . Section 3.3
discusses an alternate construction of the polynomial size resolution refu-
tations, namely by formalizing the proof in the bounded arithmetic theory
U2,1-IND.

3.1 Informal version of the proof

The informal version of the proof is via Lemma 8 and Corollary 9 as discussed
next. Section 3.2 will show how to formalize these as resolution derivations.

Definition 5. Fix t ∈ [T]. Fix a vector ~c of values c1, . . . , cℓ, where ℓ =
⌊D/2⌋. The clause Ct

~c containing the literals xtπ with the ci components
fixed to these values is called an ∨-group at time t:

Ct
~c := {xt〈d1,c1,d2,c2,...〉 : for all i, di ∈ [f]}. (1)

7

Since the di’s may equal zero, the clauses of type a. defined above specify
that any ∨-group C0

~c at time t = 0 contains a variable which is set to true.
In other words, any ∨-group C0

~c , when viewed as a clause, must be true.
The next definitions express the local correctness of the informal defini-

tion of truth discussed above.

Definition 6. Fix t ≤ T , and fix a path π of odd length |π| = k < D, so
that π ends at an ∧ gate. Let i < f indicate an input to that gate. The
(π, i)-equivalence at time t, denoted Et

π,i, is the implication

∨

|σ|=|D|−k

xtπσ →
∨

|τ |=|D|−k−1

xtπiτ . (2)

This is called an “equivalence” instead of an “implication” since the reverse
implication is automatic.

Let also j ∈ [f]. The (π, i, j)-equivalence at time t, denoted Et
π,i,j, is the

equivalence ∨

|τ |=D−k−1

xtπiτ ≡
∨

|τ |=D−k−1

xtπjτ . (3)

Definition 7. Fix t and π as in the previous definition. Let k = 2k′ + 1,
so π = 〈d1, c1, . . . , dk′ , ck′ , dk′+1〉. Also fix ~c = 〈ck′+1, ck′+2, . . . , ck′′〉 where
k′ < k′′ and 2k′′ ≤ D. Set ℓ = D − 2k′′. Letting ~d range over vectors of
the form 〈dk′+2, dk′+3, . . . , dk′′〉, and τ range over vectors with |τ | = ℓ, the
(π,~c)-equivalence at time t, denoted Et

π,~c, is

∨

|σ|=D−k

xtπσ →
∨

~d, τ

xtπck′+1dk′+2 ··· ck′′−1dk′′ck′′τ
. (4)

Note that Et
π,i is a special case of Et

π,~c by taking ~c to be just 〈i〉 with
k′′ = k′ + 1.

Lemma 8. Fix π0, i0, j0, and ~c. The equivalences Et
π0,i0,j0

and Et
π0,~c

are

consequences of the equivalences of the form Et
π,i.

Proof. By Et
π0,i0

and Et
π0,j0

, the right-hand side and the left-hand side of the
equivalence Et

π0,i0,j0
are both equivalent to

∨
σ x

t
π0σ

. Hence the equivalence
Et

π0,i0,j0
holds.

We prove Et
π0,~c

by induction on the length k′′ − k′ of ~c. The base case

where ~c has length 1 is the same as Et
π,ck′′

. For the induction step, the
induction hypothesis states that

∨

|σ|=D−|π0|

xtπ0σ
→

∨

~d−, τ ′

xtπ0ck′+1dk′+2 ···dk′′−1ck′′−1τ
′

8

where ~d− means dk′+2, . . . , dk′′−1, and τ
′ ranges over vectors of lengthD−2k′′+2 >

0. Rewriting τ ′ as dk′′τ
′′. the induction hypothesis becomes

∨

|σ|=D−|π0|

xtπ0σ
→

∨

~d, τ ′′

xtπ0ck′+1dk′+2 ··· dk′′−1ck′′−1dk′′τ
′′ (5)

Now apply the Et
π,i equivalence (2) with π equal to the odd length sequence

π0ck′+1dk′+2 · · · dk′′−1ck′′−1dk′′ and i = ck′′ to obtain

∨

τ ′′

xtπ0ck′+1dk′+2 ···dk′′−1ck′′−1dk′′τ
′′ →

∨

τ

xtπ0ck′+1dk′+2 ··· dk′′−1ck′′−1dk′′ck′′τ
.

(6)
The implications (5) and (6) immediately imply Et

π0,~c
.

When we consider |π0| equal to one, Lemma 8 gives:

Corollary 9. For fixed ~c of length ⌊D/2⌋, view Ct
~c as a disjunction of vari-

ables. The following implication follows from the equivalences of the form

Et
π,i: ∨

|τ |=D

xtτ → Ct
~c. (7)

Proof. Suppose D is odd (the argument when D is even is very similar).
Let k′ = 0 and k′′ = ⌊D/2⌋. For d1 < f , let π = 〈d1〉. Let σ range over
sequences of length D−1, and let ~d range over sequences 〈d2, . . . , dk′′〉. Then
Et

π,~c as defined in (4) yields

∨

σ

xtd1σ →
∨

~d,dk′′+1

xtd1c1d2c2...dk′′ck′′dk′′+1
.

Combining these f many implications for d1 < f , gives immediately the
implication (7) as desired. The argument for D even is identical, except
that dk′′+1 is omitted and (4) is used with τ empty.

We now give an informal semantic version of the arguments that will be
used in the resolution refutations that satisfy Theorem 4. Section 3.2 shows
discusses how these arguments can be realized by polynomial size resolution
derivations.

Assume the ECD,f,T clauses hold. We shall prove, for each successive
t = 0, 1, . . . , T , first

∨
π x

t
π and second every (π, i)-equivalence Et

π,i.

Time 0. We first derive
∨

π x
0
π. This is immediate from the initial

clauses of type a.

9

We next derive every E0
π,i at time 0. Fix a (π, i)-equivalence E0

π,i as
in (2). First, suppose π = 〈d1, c1, d2, c2, . . . , dk〉 with dj 6= 0 for some
1 ≤ j ≤ k. Then by initial clauses c., every x0πσ is false; thus E0

π,i holds.
Suppose conversely that each dj in π is 0. Choosing τ to be of the form
〈0, ck+2, 0, ck+3, . . .〉 makes πiτ an initial ∨-path. Therefore x0πiτ is an initial
clause of type a.; Thus E0

π,i again holds.

Time t+1. In this step, we derive
∨

π x
t+1
π and the Et+1

π,i ’s. The argu-

ments split into cases depending on which ytπ0,i0,j0
is true.2 When ytπ0,i0,j0

is

true, we define a bijection h : {xtπ : |π| = D} → {xt+1
π : |π| = D} by letting

h(xtπ0i0σ
) = xt+1

π0j0σ
and h(xtπ0j0σ

) = xt+1
π0i0σ

for |σ| = D−|π0|−1, and letting h(xtπ′) = xt+1
π′ for all other xtπ′ . Overload-

ing h, we also write xt+1
h(π) for h(x

t
π). The mapping h extends in the natural

way to clauses containing the literals xtπ and more generally to propositional
formulas. Furthermore, h(π) can be uniquely defined for |π| < D by letting
h(π) = π′ provided h(πσ) = π′σ′ holds for some σ, σ′.

By initial clauses d.i-vi., we obtain xtπ ↔ xt+1
h(π) for |π| = D. Therefore,

the clause
∨

π x
t+1
π follows immediately from

∨
π x

t
π.

The harder task is to establish Et+1
π,i . We claim that this clause follows

from the Et
π,i’s and the initial axioms of types d.i.-d.iv. Indeed, if π0 is

an initial subsequence of π, then Et+1
π,i is identical to h(Et

π′,i′) for π′i′ =

h(πi). Otherwise, h(π) = π and thus h(Et
π,i) is equivalent to E

t+1
π,i : the only

difference is that the order of the literals in the disjunctions in (2) may be
reordered. In other words, considering the lefthand side of (2), we have

∨

|σ|=D−|π|

xtπσ ↔
∨

|σ|=D−|π|

xt+1
h(πσ)

by virtue of h being a bijection between the variables of the disjunctions. A
similar consideration holds for the disjunction on the righthand side of (2).

Time T+1. The previous step established
∨

π x
T
π and all clauses ET

π,i.

By Corollary 9, these imply CT
~0
, where ~0 denotes the length ⌊D/2⌋ vector

of zeros. The clause CT
~0

is the disjunction of exactly the variables xTπ with
π a terminal ∧ path. By initial clauses b., each such variable is false. This
yields a contradiction, and completes the construction of the refutation of
clauses a.-e.

2The argument here uses clauses of type e. to know that at least one of the swap

variables y
t
π0,i0,j0

is true. It does not need uniqueness, and the clauses of type f. are not

used.

10

3.2 The resolution refutations

We now discuss how the above argument for Theorem 4 can be formulated as
resolution refutations of the clauses ECD,f,T . The difficulty is that the above
argument for Theorem 4, including the proofs of Lemma 8 and Corollary 9,
does not work with clauses; rather it works instead with implications be-
tween clauses (e.g., the “equivalence” Et

π,i) and with equivalences between
clauses (e.g., Et

π,i,j). To address this, we describe how to translate such
implications and equivalences into sets of clauses.

We write x for ¬x; as usual, if y is x, then y is x. We identify a clause
with the disjunction of its members. By convention, clauses must be non-
tautologous; i.e., a clause may not contain both of the literals z and z.

Definition 10. Suppose F and G are clauses. (F → G)res is the set of
clauses of the form z∨G for z ∈ F \G. And, (F ≡ G)res is the set of clauses
(F → G)res ∪ (G→ F)res.

Clearly, the set of clauses (F → G)res is equivalent to the formula F → G,
and similarly for F ≡ G. This allows a resolution refutation to work with, for
instance, the sets of clauses (Et

π,i)
res and (Et

π,i,j)
res instead of with the for-

mulas Et
π,i and E

t
π,i,j. The number of clauses in (F → G)res and (F ≡ G)res

is linearly bounded by the number of literals in F and G. The total number
of (occurrences of) literals in (F → G)res and (F ≡ G)res is quadratically
bounded by the number of literals in F and G.

Lemma 11. Let F and G be clauses. There is a resolution derivation of the

clause G from the clause F and the clauses of (F → G)res; the size of this

derivation is polynomially bounded by the number of literals in F and G.

Proof. This is essentially trivial: The derivation resolves F against the
clauses z ∨G for z ∈ F \G.

Lemma 12. Let F , G and H be clauses, and suppose the clauses of (F → G)res

and (G → H)res are given as initial clauses. There is a polynomial size res-

olution derivation which derives all the clauses of (F → H)res from these

initial clauses.

By “polynomial size” is meant polynomial in the number of literals in
F,G,H.

Proof. Consider any literal z ∈ F \H: we need to derive z ∨H. If z ∈ G,
then the clause z∨H is in (G→ H)res. Otherwise, this clause can be derived
by resolving z∨G against u∨H for every u ∈ G\H. The clauses z ∨G and
u ∨H are in (F → G)res and (G→ H)res, respectively.

11

For the next lemma, it is convenient to allow the weakening rule, namely
from F infer any clause F ′ ⊃ F . A clause is identified with the set of literals
in the clause.

Lemma 13. Suppose Fi, Gi and Hi are clauses for i < n. The unions F =
∪iFi, G = ∪iGi and H = ∪iHi are clauses. Let the clauses in (Fi → Gi)

res

and (Gi → Hi)
res for all i < n be given as initial clauses. There there is

a polynomial size resolution with weakening derivation of all the clauses in

(F → H)res from these initial clauses.

Lemma 13 handles proofs “by cases”. Informally: to prove F implies H,
we argue that if F holds, then some Fi holds; from thisGi holds and therefore
Hi and hence H holds.

Proof. This follows from the previous lemma. Let z be in F \H. Choose i
such that z ∈ Fi \Hi. Lemma 12 gives a derivation of z ∨Hi. From this,
weakening gives z ∨H.

With Lemmas 11-13, it is easy to check (and we leave most of the details
to the reader) that the arguments for the proof of Theorem 4 can be carried
out in resolution augmented with weakening. First, using Lemmas 11-13
and adapting the proof of Lemma 8 shows that there are polynomial size
derivations of the clauses of (Et

π0,i0,j0
)res and of (Et

π0,~c
)res from the clauses

in the sets (Et
π,i)

res. Second, the proof of Corollary 9 shows there are poly-
nomial size derivations of the clauses of (7)res from the clauses in the sets
(Et

π,i)
res. Third, the informal arguments for Theorem 4 of Section 3.1 can

be translated into a resolution with weakening derivation. For time t = 0,
the clauses (

∨
π x

0
π) and the clauses in (E0

π,)
res follow from the initial clauses

of type a. by weakening. For time t+1, the resolution derivation splits into
cases, one for each ytπ0,i0,j0

, as in the proof of Theorem 4. For time T+1,
the resolution derivation uses the derivation obtained from Corollary 9 to
derive the clause CT

~0
. Resolving with the initial clauses of type b. gives the

empty clause.
Since weakenings can be removed from resolution refutations without

increasing the size of the refutation, this proves Theorem 4.

3.3 Formalization in U2,1-IND

An alternate way to describe the polynomial size resolution refutations is
by formulating the arguments of Section 3.1 within the bounded arithmetic
theory U2,1-IND of Beckmann-Pudlák-Thapen [1]. For space reasons, we

12

omit the definitions of U2,1-formulas and the theory U2,1-IND. However, one
can think of U2,1-formulas as being ∀≤∃≤-formulas; namely, as formulas with
bounded universal quantifiers, followed by bounded existential quantifiers,
followed by a quantifier-free part. For formalization in U2,1-IND, the values
D, f and T are free first-order variables. The value D is sharply bounded
since the length of ECD,f,T is polynomially bounded by fD and T . We write
X(π, t) for xtπ where |π| = D is a sequence from [f]. A high-level sketch of
the U2,1-IND proof is that it proves the following three things by induction:

(a) The translation of
∨

π x
t
π into first-order logic becomes the existential

formula A(t) := (∃π)X(π, t), where it is required that π ranges over
sequences of length D, and thus (∃π) is a bounded quantifier. The
assertion A(t) is proved by induction on t, for all t = 0, . . . , T .

(b) The translations of the clauses Et
π,i are also proved by induction. These

are expressed with

B(t) := (∀π)(∀i)(∀σ)(∃τ)[¬X(πσ, t) ∨X(πiτ, t)],

with the domains of the variables π, i, σ, τ, σ constrained appropri-
ately. The theory U2,1-IND can express this as a U2,1-formula. B(t) is
also proved by induction on t, for all t = 0, . . . , T .

(c) Similarly, as an implication between two clauses, each Et
π,~c implica-

tion (4) can be expressed as a U2,1-formula. These are needed only
for t = T , and are proved by induction on the length k′′ − k′. (Only a
logarithmic length induction is needed here since D is sharply bounded
and k′′ < D.) The end result contradicts the translation of the axioms
of type b.

Theorem A.2 of [1] on translations of U2,1-IND proofs into propositional
proofs then gives the existence of the polynomial size refutations needed for
Theorem 4.

4 Prospects for proofs of ICD

Theorem 4 showed that the clauses expressing (the negation of) the EC tau-
tologies have polynomial size resolution refutations. It remains an important
open question whether the ICD or EC−

D tautologies could have polynomial-
size constant depth PK or Frege proofs. It is particularly frustrating that
this question remains open since H̊astad proved that the truth of depth D

13

Boolean sentences cannot be defined by polynomial size, depth D − 1 for-
mulas.

Specifically, consider the following framework for a hypothetical proof
of an ICD,f,T tautology. (The same discussion also applies to EC−

D,f,T .)
The proof starts with the axioms of types a. and c. which assert ϕ0 is true
in a very strong sense, namely any true ∨ gate has exactly its first input
true. From this it proves an assertion A(~x0) about the variables x0π. The
formula A has polynomial size and has constant depth D′ << D. Using
A(~xt) and axioms of types d.i., d.iii., d.v., e. and f., it proves the formula
A(~xt+1) for successive values of t = 0, 1, 2, . . . , T−1. Finally, it obtains
a contradiction from A(~xT) and the axioms of type b. This is in fact the
framework used by our proof of Theorem 4: in that proof, the formula A(~xt)
consisted of the clauses

∨
π x

t
π and Et

π,i.
We claim that ICD,f,T proofs which use this framework must have A(~xt)

actually equivalent to the truth of the Boolean sentence ϕt. To prove this,
consider the following facts:

(1) Any true formula can be modified by swapping the order of inputs to
its gates so as to satisfy the initial clauses of type a. To do this, for
each ∨-gate which evaluates to true, swap one of its true inputs to be
the first input to the gate.

(2) Dually, any false formula can be modified by swapping the order of
inputs to its gates so as to satisfy the initial clauses of type b. To
do this, for each ∧-gate which evaluates to false, swap one of its false
inputs to be the first input to the gate.

(3) A(~x) is true if the variables ~x satisfy the axioms of type a.

(4) A(~x) is false if the variables ~x satisfy the axioms of type b.

(5) The property A(·) is preserved under swapping the order of inputs to
gates.

Properties (3), (4) and (5) are needed for the proof framework.
It follows from (1), (3) and (5) that A(~x) must be true if the variables ~x

define the input values for a depthD, fanin f Boolean sentence of alternating
∧/∨ gates which evaluates to true. Likewise, (2), (4) and (5) imply that
A(~x) must be false if the values of ~x encode such a Boolean sentence which
evaluates to false.

From H̊astad [3], any such polynomial size A(~x) must have depth at
least D.

14

It is tempting to try to argue that any depth D′ << D polynomial
size proof of the ICD or EC−

D formulas must involve formulas A(~x) defining
the truth of the depth D Boolean sentences, and hence must involve near-
exponential size formulas (contradicting the proof being polynomial size).
It is possible that such an argument can be carried out using a switching
lemma, but attempts so far have been unsuccessful.

Acknowledgements. We thank the two anonymous referees for useful
comments, including the suggestion to formalize the proof in U2,1-IND. We
also thank Jan Kraj́ıček for helpful comments.

References

[1] A. Beckmann, P. Pudlák, and N. Thapen, Parity games and propo-

sitional proofs, ACM Transactions on Computational Logic, 15 (2014),
pp. 17:1–30.

[2] S. R. Buss, Bounded Arithmetic, Bibliopolis, Naples, Italy, 1986. Revi-
sion of 1985 Princeton University Ph.D. thesis.

[3] J. Håstad, Almost Optimal Lower Bounds for Small Depth Circuits,
vol. 5 of Advances in Computing Research, JAI Press, 1989, pp. 143–
170.

[4] R. Impagliazzo and J. Kraj́ıček, A note on conservativity relations

among bounded arithmetic theories, Mathematical Logic Quarterly, 48
(2002), pp. 375–377.

[5] J. Kraj́ıček, Bounded Arithmetic, Propositional Calculus and Com-

plexity Theory, Cambridge University Press, Heidelberg, 1995.

[6] , Proof Complexity, Cambridge University Press, 20?? to appear.

[7] , A form of feasible interpolation for constant depth Frege systems,
Journal of Symbolic Logic, 72 (2010), pp. 774–784.

[8] A. Skelley and N. Thapen, The provably total search problems of

bounded arithmetic, Proceedings of the London Mathematical Society,
103 (2011), pp. 106–138.

15

