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Abstract. We show that BPP can be simulated in subexponential time
for infinitely many input lengths unless exponential time

o collapses to the second level of the polynomial-time hierarchy,

o has polynomial-size circuits and
o has publishable proofs (EXPTIME = MA).

We also show that BPP is contained in subexponential time unless ex-
ponential time has publishable proofs for infinitely many input lengths.
In addition, we show BPP can be simulated in subexponential time
for infinitely many input lengths unless there exist unary languages in
MA - P.

The proofs are based on the recent characterization of the power
of multiprover interactive protocols and on random self-reducibility via
low-degree polynomials. They exhibit an interplay between Boolean
circuit simulation, interactive proofs and classical complexity classes.
An important feature of this proof is that it does not relativize.

One of the ingredients of our proof is a lemma that states that if
EXPTIME has polynomial size circuits then EXPTIME = MA. This
extends previous work by Albert Meyer.
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1. Introduction

How much time is necessary to deterministically simulate a probabilistic
machine? We could simulate our machine for every possible choice of coin tosses
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and then compute the probability of acceptance. Simulating a probabilistic
polynomial-time Turing machine using this method would require exponential
time. Does there exist a faster way?

One solution involves pseudorandom number generators. A pseudorandom
number generator maps some set of random bits to a larger set of bits where
the larger set of bits is computationally indistinguishable from random. One
could use a pseudorandom number generator to reduce the number of random
bits needed for a probabilistic algorithm to accept a certain language and thus
to reduce the number of computation paths to simulate. Blum and Micali [11]
described the first secure pseudorandom generator based on the assumption
of the hardness of the discrete log function. These ideas are generalized by
Yao [26, 12] who showed that one can convert any one-way permutation into
a pseudorandom number generator to show that BPP has subexponential time
simulations. A series of results [21, 13, 19, 16] show that any one-way function
is enough to create a pseudorandom generator that could be used to show that
BPP is in subexponential time.

Rather than making hardness assumptions on certain types of functions,
in this paper we shall consider the effect of complexity theoretic assumptions.
Nisan and Wigderson [24] show that if there exists a function computable in
exponential time that cannot be approximated by a polynomial-size circuit then
there exists a pseudorandom number generator computable in subexponential
time that looks random to polynomial-size circuits for infinitely many input
lengths. They use this pseudorandom number generator to show that if such a
hard function exists then BPP has such a weak subexponential simulation.

We generalize this result by showing that a much weaker assumption will
still give the same consequence. We show that BPP has a weak subexponential
simulation, i.e. a simulation in time 2" for infinitely many values of n and every
e > 0, unless exponential time has polynomial size circuits and is contained in
the class MA of languages with probabilistically checkable proofs. Since MA is
known to lie within X2 NTI" [2], we deduce that subexponential simulations for
BPP exist unless EXPTIME lies within the second level of the polynomial-time
hierarchy.

Thus the main theorems of our paper are the following.

Theorem 1.1.

1. BPP admits weak subexponential time simulations unless EXPTIME =
MA =YY c P/poly.

2. BPP is contained in subexponential time unless MA weakly simulates

EXPTIME.
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We will use Theorem 1.1 to also prove the following.

Theorem 1.2. BPP admits weak subexponential time simulations unless there
exist unary languages in MA — P.

From the proof of Theorem 1.2 we will deduce the following corollary.
Corollary 1.3. If EH = FE then P = BPP.

Corollary 1.3 is a rare instance of a collapse at the exponential-time level
implying a collapse at the polynomial-time level.

2. Background and Definitions

Nisan and Wigderson [24] showed a general theorem on how certain hard
functions could be used to create various pseudorandom number generators.
We will use a specific corollary of their work.

We use the notation EXPTIME for UysoDTIMER™ | and the notation F for
Ueso DTIME[27"]. We define EH, the exponential-time hierarchy, as UpsoF % .

The class MA, defined by Babai [2] (cf. [5]), denotes the Merlin-Arthur class,
the class of languages accepted by an interactive proof system consisting of a
single message from the prover followed by probabilistic verification. Formally,
we say that L € MA if there exists a probabilistic polynomial time machine M
and a polynomial ¢(n) such that:

1. For all & € L there exists a y, |y| = ¢(|x|) and M(x,y) accepts with
probability at least two-thirds, and

2. For all @ ¢ L and for all y such that |y| = ¢(|z|), M(x,y) accepts with
probability at most one-third.

Arguably this represents the class of languages with publishable proofs of mem-
bership (not requiring direct interaction between prover and verifier; the verifier
can flip coins at any later date). Babai [2] has shown that X2 N II} contains
MA.

Let ¥ = {0,1}. Let f be a function mapping ¥* to ¥. We say f is t(n)-
approximated by circuits of size s(n) if for all sufficiently large n there exists a
circuit C,, of size s(n) on inputs of length n such that

1
Pr(Cy(z) # f(x)) < i)
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where x is chosen uniformly over X".

We say that f is weakly t(n)-approzimated by circuits of size s(n) if the
above statement holds for infinitely many n. Nisan and Wigderson [24] use
“approximated by circuits of size s(n)” to mean “weakly n’-approximated by
circuits of size s(n) for any fixed j”7 in our terminology.

A function f cannot be (weakly) approximated by polynomial-size circuits
if it cannot be (weakly) n/-approximated by circuits of size n/ for any fixed
J. A language cannot be approximated if the characteristic function of that
language cannot be approximated. A language class cannot be approximated
if some language in that class cannot be approximated.

The class P/poly consists of all languages recognizable by a (nonuniform)
family of polynomial-size circuits.

We say that a machine M weakly computes the language [ C ¥* it for
infinitely many values of n,

LNY" = L(M)nx".

We say that L admits weak subexponential simulations if for every ¢ > 0
there exists a 2" -time bounded Turing machine which weakly computes L. We
say that a language class (' admits weak subexponential simulations if each
member of €' does. A class D weakly simulates a class C if for every language
in C' there is a language in D that agrees with C for infinitely many input
lengths.

We will use and significantly extend the following theorems due to Nisan

and Wigderson [24].
Theorem 2.1.

1. If EXPTIME cannot be approximated by polynomial-size circuits then
BPP admits weak subexponential simulations.

2. If EXPTIME cannot be weakly approximated by polynomial-size circuits
then BPP C NesoDTIMER™].

To extend these theorems we will use some of the recent work by Babai,
Fortnow and Lund [4] on multiple prover interactive proof systems. Interac-
tive proof systems were introduced by Babai [2] and Goldwasser, Micali and
Rackoff [15] as a probabilistic extension of NP. The model consists of an in-
finitely powerful but untrustworthy prover that tries to convince a probabilistic
polynomial-time verifier that a string is in a certain language. A recent series
of results by Lund, Fortnow, Karloff and Nisan [23] and Shamir [25] show that
this model accepts exactly those languages recognizable in polynomial space.
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Ben-Or, Goldwasser, Kilian and Wigderson [7] generalize this model to have
many provers, that cannot communicate with each other or see the communi-
cation of the others with the verifier. Babai, Fortnow and Lund [4] show that
this model accepts exactly the languages recognizable in nondeterministic ex-
ponential time. We will use the following theorem from [4] regarding the power

of EXPTIME provers.

Theorem 2.2. Any language in EXPTIME has a multi-prover interactive
proof system where the honest provers are limited to computing within de-
terministic exponential time.

We note that this result implies that EXPTIME admits instance checking in
the sense of Blum and Kannan [9], cf. [4].

3. Random Self-Reducibility in High Complexity
Classes

Following an idea of Beaver and Feigenbaum [6], Lipton [22] observed that
the permanent function has the following random self-reducibility property: if
p 1s a prime greater than n and an oracle tells the value of n x n permanents
over Z, correctly for a 1 — ;—n portion of the set of inputs, then one can use this
oracle to find the correct value with exponentially small probability of error on
every input. Blum, Luby and Rubinfeld [10] used similar ideas.

The idea of the proof is that the value of permanent of A can be computed,
using interpolation, from the permanents of any n + 1 matrices A 4+ «; B where
B is a random matrix and «; € Z,,

A similar idea works for arbitrary polynomials of low degree. In particular,
by extending a Boolean function f to a multilinear function ¢ over Z,, we
obtain a random self-reducible f-hard and PSPACFE/-easy function g¢.

We prove the following lemmas from [4] for completeness.

Lemma 3.1. Let A: {0,1}* — Q be a function. Then A has a unique multi-
linear extension A : Q° — Q.

PROOF. Deﬁnegby
Alz) = 30 1AM (&), (3.1)
be{0,1}s i=1

where x = (&1,...,&); bis the bit-string 81 ... 3s; and (o(§) = 1 =&, (1(£) = &.

Clearly, A possesses the required properties.
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To prove the uniqueness, assume [ : Q° — Q is multilinear and its restric-
tion to {0,1}® is zero. For « € Q7, let k(x) denote the number of coordinates
different from 0,1. We prove by induction on k(z) that f(z) = 0. Indeed this
is true by assumption for k(z) = 0. Now for some k(x) > 0 suppose e.g. that
& € {0,1}. Replacing & by either 0 or 1 we obtain places where f vanishes
by the induction hypothesis; but then, by the linearity in &, it vanishes at x
as well. O

Let us call a language L PSPACE-robust if P = PSPACE". (The oracle
PSPACE-machine is restricted to polynomial length queries.) We say that L
has a t(n)-random self-reduction if L has a random self-reduction that makes
at most t(n) queries.

Lemma 3.2. Every PSPACE-robust language has a Turing-equivalent family
of (n 4 1)-random self-reducible multilinear functions over finite fields.

ProoF.  Let L be a PSPACE-robust language. Let g¢,(x1,...,2,) be the
unique multilinear extension of the characteristic function of L, = L N {0,1}"
(Lemma 3.1). The function g, is (n + 1)-random self-reducible via the same
proof that shows the permanent is (n 4+ 1)-random self-reducible.

Clearly L € P? where ¢ = {g, : n > 0}. We will describe an alternating
polynomial-time Turing machine with access to I computing g. First guess the
value z = g,(21,...,2,). Then existentially guess the linear function hy(y) =
g(y,x2,...,2,) and verify that hq(x1) = z. Then universally choose t; € {0,1}
and existentially guess the linear function hz(y) = ¢(t1,y,xs,...,2,). Keep
repeating this process until we have specified t4,....¢, and then verify that
ty...t, € L. Since a PSPACE machine can simulate an alternating polynomial-
time Turing machine, if L is PSPACE-robust then ¢ is Turing-reducible to L.
O

In particular, we have random self-reducible PSPACE-complete functions,
EXPTIME-complete functions, etc. This observation, inspired by [6] and
spelled out simultaneously by the authors of [6] and [4], has significant con-
sequences, as we shall see below.

4. Deterministic Simulation of BPP

In this section we complete the proof of Theorem 1.1. The proof consists of
proving the following two lemmas.
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Lemma 4.1.

1. BPP admits weak subexponential time simulations unless EXPTIME is
in P/poly.

2. BPP isin subexponential time unless EXPTIME can be weakly simulated
by polynomial-size circuits.

Lemma 4.2.
1. If EXPTIME C P/poly then EXPTIME = MA.

2. If EXPTIME is weakly simulated by polynomial-size circuits then MA
weakly simulates EXPTIME.

Lemma 4.2 extends a result of Albert Meyer (see [20]): If EXPTIME C
P/poly then EXPTIME = ¥¥. We use entirely different techniques to prove
this stronger lemma. This lemma is also an extension of a corollary in [23].

PROOF. [of Lemma 4.2] By Theorem 2.2 [4] we know that to prove a language
L € EXPTIME with multiple provers, we only need EXPTIME-strong provers.
Now the MA protocol proceeds as follows. Merlin gives Arthur Cy and 'y which
are the polynomial size circuits (for the input lengths for which such circuits
exist) computing the two provers P; and P,, respectively. Arthur then simulates
the verifier V' using €y and C; for Py and P, respectively. O

PRrROOF. [of Lemma4.1] Let L be an EXPTIME-complete language. We encode
the set LNX" as a Boolean function f. Let p be a prime greater than n, and let
g be the (unique) multilinear extension of f to Z; — Z,. We require a lemma
involving g¢.

Lemma 4.3.

1. If BPP does not have a weak subexponential time simulation then there
is a family of poly(n) size (nonuniform) circuits computing ¢ for all but
a % fraction of the inputs of length n.

2. If BPP is not in subexponential time, then for an infinite number of input
lengths n, there is a poly(n) size (nonuniform) circuit computing g for all
but a ;—n fraction of the inputs of length n.
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PrROOF.  Assume there is no polynomial-size circuit family computing ¢ for
all but a 5~ fraction of the inputs. Goldreich and Levin [14] show how to
construct from ¢ a one-bit function A that is computable in exponential time
but cannot be approximated by polynomial-size circuits. The lemma follows
by Theorem 2.1. O

We continue the proof of Lemma 4.1: Assume now that BPP does not have a
weak subexponential time simulation. By Lemma 4.3 we have a family D, of
poly(n) size circuits computing ¢ for all but a fraction % of the inputs. Since
¢ is (n 4 1)-random self-reducible, create the following randomized polynomial

size circuit family for g: ', will use random inputs to generate the random-self

reduction of ¢ and use the D, circuit for those queries. The probability that

the random self-reduction queries one of the strings that D, fails to compute

correctly is bounded by (n 4+ 1)/3n < 2/5 for almost every n.

Using techniques of [1, 8] we can replace the randomness with non-uniformity:
We can use the usual amplification techniques to reduce the error to less than
27". Then there must be a single random sequence that gives a correct answer
for all inputs. We encode this string into the circuit.

This proves the first part of Lemma 4.1. The second part has virtually the
same proof. Theorem 1.1 follows. O

5. Unary Languages

In this section we will prove Theorem 1.2. We will use the following theorem
due to Nisan and Wigderson [24].

Theorem 5.1. If there exists a function f computable in exponential time
such that f cannot be weakly 2" -approximated by 2" -size circuits for some

e >0 then P = BPP.
First we prove the following lemma.

Lemma 5.2. If every unary language in the polynomial-time hierarchy is de-
cidable in polynomial time then P = BPP.

PROOF. By counting arguments, for some ¢ > 0, there exists a function
on strings of N = clogn bits that cannot be weakly n-approximated by n-size
circuits. We can encode one of these functions as a unary language decidable in
Y by choosing the lexicographically first function f from ¥ to ¥ that is not
approximated by a circuit of size n. If we assume that every unary language
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in the polynomial-time hierarchy is decidable in polynomial time then we can
compute f in polynomial time. The function f : ¥V — ¥ is computable in
exponential time in N and cannot be weakly 2N1/c—approximated by any Nt/
size circuit. The lemma now follows from Theorem 5.1. O

Corollary 1.3 follows from this lemma by noticing that a simple padding
argument (see [17]) shows that FH = F if and only if all unary languages in
the polynomial-time hierarchy are decidable in polynomial time.

Corollary 1.3 has the interesting property of showing that a collapse of two
higher complexity classes imply a collapse at a lower level. Usually one sees
the other direction, for example P = NP implies E = NFE (see [17]).

PROOF. [of Theorem 1.2] Suppose BPP does not have a weak subexponential
time simulation. By Theorem 1.1 we have that EXPTIME = MA and thus
PH = MA since MA C X', Also we have that BPP # P so there exist unary
languages in PH — P and thus MA —P. O

6. Conclusions

Our proof utilizes a powerful new technique in complexity theory, namely,
the use of multilinear functions in the simulation of certain complexity classes.
The significance of this technique makes it worth studying its applications and
limits (see [23, 25, 3, 4]).

If BPP has a weak subexponential simulation then EXPTIME properly
contains BPP since one can easily create languages in EXPTIME that do not
have a weak subexponential, or even weak DTIME[2?"] simulation. Ideally,
we would like to prove that EXPTIME properly contains BPP without any
assumptions. While an oracle making these two classes equal is known to
exist (see [18]), the new methods indicated do not relativize and therefore a
relativized collapse no longer seems as intimidating as it used to be.
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