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1 Last Time

In this lecture, we prove exponential an lower bound on the sizes of resolution refutations of
PHPn+1

n . We also discuss recent results on the size needed to prove certain formulations of circuit
lower bounds in resolution.

2 A Size Lower Bound for Resolution Refutations of PHP n+1
n

The main result of this lecture is the proof that resolution refutations of PHPn+1
n require size

2Ω(n). We show that clauses of high width are likely to be satisfied by a random restriction selected
according to the distribution given in lecture 8. These restrictions transform the refutation into a
refutation of a slightly smaller instance of the pigeonhole principle, and by the results of lecture
8, this new refutation must have either large width or large size. Because the restricted refutation
has small width, it must have large size. Therefore, the original refutation must also have large
size.

Recall that the width of a clause is the number of variables appearing in the clause, and the
width of a resolution refutation is the maximum width of a clause in the refutation. We also assume
that in a resolution refutation, there are no clauses that contain both a variable and its negation.

First, we show that clauses of high width must have many pigeons that appear in many literals.

Definition Let s > 0 be given. Let C be a clause. Let i ∈ [n] be a pigeon. We say that i is an
s-heavy pigeon of C if |{j ∈ [n]|Xi,j ∈ C ∨ ¬Xi,j ∈ C}| ≥ s.

Lemma 1 Let n be an integer strictly greater than 1. For any clause C and any γ > 0, if C has
width at least γn2, then C contains at least γn

2 many γn
2 -heavy pigeons.

Proof Let h be the number of γn
2 -heavy pigeons in C.

First, we show that h ≥ 1. Because each pigeon that is not γn
2 -heavy can contribute at most γn

2

literals to C, if every pigeon were not γn
2 -heavy, then there would be at most (n+1)γn

2 = γn2

2 + γn
2

many literals in C. Because n > 1, this is quantity is less than γn2/2 and we would have a
contradiction to the fact C has width at least γn2.

Moreover, each γn
2 -heavy pigeon can contribute at most n literals to C, so we have the following

inequalities.
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γn2 ≤ (n + 1 − h)
γn

2
+ hn

γn2 ≤ γn2

2
+ hn

γn2

2
≤ hn

γn

2
≤ h

Recall the definition on partial assignments given in lecture 8: for a fixed parameter β ∈ (0, 1),
we choose to match each pigeon from [n] with independent probability 1− β. Then, we uniformly
choose a matching between the selected pigeons and the holes. In the sequel of this lecture, this
distribution will be referred to as Rn,β .

We now show that a clause that has many heavy pigeons is very likely to be satisfied by a
restriction chosen according to Rn,β .

Lemma 2 If C is a clause that contains t many αn-heavy pigeons, then

Prρ∈Rn,β

[
C¹ρ 6= 1

] ≤ (1 − (1 − β)α/2)t−1

Proof Let F be the set of pigeons from [1, n] that are αn-heavy in C. Notice that |F | ≥ t−1. For
each i ∈ F , let Hi be the set of holes so that the variable Xi,j occurs in C. For each i ∈ F , j ∈ Hi

notice that exactly one of Xi,j ,¬Xi,j occurs in C: let li,j be this literal. In this notation, C can be
written as

∨
i∈F

∨
j∈Hi

li,j ∨ C ′. where C ′ is a clause that contains only literals whose pigeons are
not in F . Furthermore, we may assume without loss of generality that F consists of the pigeons 1
through |F | because permuting the first n pigeons does not change the distribution Rn,p.

For each i ∈ F , let Ei be the event that
(∨

k∈F
k<i

∨
j∈Hk

lk,j

)
¹ρ 6= 1.

Now we bound, for each i ∈ F , the probability that, conditioned on Ei, ρ ∈ Rn,β satisfies∨
j∈Hi

li,j .
First of all, if

∨
j∈Hi

li,j contains two or more negative literals, then ρ satisfies
∨

j∈Hi
li,j if and

only if ρ matches the pigeon i to some hole, and this occurs with probability 1 − β.
If

∨
j∈Hi

li,j contains no negative literals, then at worst the preceding elements of F were each

matched to an element of Hi, and the chance of satisfying
∨

j∈Hi
li,j is at most (1− β)

( |Hi|−i+1
n−i+1

)
.

Because |Hi| ≥ αn and t ≤ αn/2, we have that this probability exceeds (1 − β)α/2.
If

∨
j∈Hi

li,j contains exactly one negative literal, then
∨

j∈Hi
li,j is satisfied with the probability

that ρ matches i to some hole besides the forbidden hole. At the very worst, ρ did not match any
of the preceding pigeons of F to the forbidden hole, so the probability of satisfaction is at least
(1− β)(1− 1/(n− i + 1)). This is equal to (1− β)(n− i)/(n− i + 1) which is at least (1− β)α/2.

Therefore, for any i ∈ F , we have the following inequalities:

Prρ∈Rn,β


(

∨
j∈Hi

li,j) ¹ρ= 1 | Ei


 ≥ (1 − β)α/2
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Prρ∈Rn,β


(

∨
j∈Hi

li,j) ¹ρ 6= 1 | Ei


 ≤ 1 − (1 − β)α/2

Examination of the conditional probabilities of satisfying the literals involved with each heavy
pigeon reveals the following.

Prρ∈Rn,β
[C ¹ρ 6= 1] ≤ Prρ∈Rn,β


(

∨
i∈F

∨
j∈Hi

li,j) ¹ρ 6= 1


 =

∏
i∈F

Prρ∈Rn,β


(

∨
j∈Hi

li,j) ¹ρ 6= 1 | Ei




≤
∏
i∈F

(1 − (1 − β)α/2) = (1 − (1 − β)α/2)t−1

We now show that a random restriction will almost certainly satisfy every wide clause of a small
proof.

Lemma 3 Let ε, β ∈ (0, 1) be a constants so that ε < −(β2/64) log2(1 − (1 − β)β2/128). For n
sufficiently large, if R is resolution refutation of PHPn+1

n of size at most 2εn, then the following
inequality holds.

Prρ∈Rn,β

[
w(R ¹ρ) ≥ β2n2/32

]
= o(1)

Proof For each clause C of R that has width at least β2n2/32, by lemma 1, C contains at least
β2n/64 many β2n/64-heavy pigeons. Therefore, by lemma 2, each clause C of R of width at least
β2n2/32 is not satisfied with probability at most (1 − (1 − β)β2/128)(β

2n/64)−1. Therefore, by an
application of the union bound, we have the following inequality.

Prρ∈Rn,β

[
w(R ¹ρ) ≥ β2n2/32

] ≤ 2εn(1−(1−β)β2/128)(β
2n/64)−1 = 2εn2((β2n/64)−1) log2(1−(1−β)β2/128)

= 2n(ε+((β2/64)−1/n) log2(1−(1−β)β2/128))

Because ε and β are constants with ε < −(β2/64) log2(1 − (1 − β)β2/128), this probability is
o(1) as n tends to infinity.

We now combine these lemmas with Danchev’s theorem to prove the size lower bounds for
resolution refutations of PHPn+1

n .

Theorem 4 There exists an ε > 0 so that every resolution refutation of PHPn+1
n has size at least

2εn.

Proof
We will show that for constants ε, β ∈ (0, 1) with ε < β/8 and ε < −(β2/64) log2(1 − (1 −

β)β2/128) there is no resolution refutation of PHPn+1
n of size 2εn. There are constants satisfying

these bounds because for any β ∈ (0, 1), − log2

(
1 − (1 − β)β2/128

)
> 0 and therefore we can take

ε to be the minimum of β/8 and −(β2/64) log2(1− (1−β)β2/128), and we will have that ε ∈ (0, 1).
For the sake of contradiction, assume that R is a resolution refutation of PHPn+1

n of size less
than 2εn.

Let ρ ∈ Rn,β be given. Let M be the set of pigeons matched by ρ, and let m = |M |. Notice that
for the set of clauses PHPn+1

n , the set of clauses PHPn+1
n ¹ρ is is just a renaming of PHPn−m+1

n−m .
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Because the number of pigeons matched by ρ ∈ Rn,β is distributed according to a binomial
distribution, the expected number of pigeons matched by ρ is (1−β)n. By the central limit theorem
as n tends to infinity, the probability that the number of matched pigeons exceeds (1 − β)n tends
to 1/2. Therefore, for sufficiently large n, the probability that ρ leaves at least βn+1 many pigeons
unmatched is at least 1/4.

Lemma 3 tells us that Prρ∈Rn,β

[
w(R ¹ρ) ≥ β2n2/32

]
is o(1)

Therefore, for sufficiently large n, we may choose ρ ∈ Rn,β so that w(R ¹ρ) < β2n2/32 and ρ
leaves at least βn many pigeons unmatched.

Because the restriction of a resolution refutation is a resolution refutation (see lecture 8), R ¹ρ is
a resolution refutation of PHPn+1

n ¹ρ. Therefore, up to renaming the variables, R ¹ρ is a resolution
refutation of PHP βn+1

βn with each clause of width strictly less than β2n2/32 and of size at most 2εn.

By Danchev’s theorem, every resolution refutation of PHP βn+1
βn requires width at least βn2/32 or

size at least 2βn/8, but because ε < β/8, we have obtained a contradiction.

3 Lower Bounds for Resolution Proofs of Circuit Lower Bounds

Recently, Razborov has shown that certain formulations of circuit lower bounds require exponential
size refutations in resolution. Given the truth-table of a boolean function, fn : {0, 1}n → {0, 1},
and a a parameter t ≤ 2n, a CNF Circuitt(fn) is constructed which is satisfiable if and only if fn

can be computed by a circuit of size t. If fn is a function which is not computed by any circuit of
size ≤ t, then this formula is unsatisfiable. The formula is constructed in a brute force way, with
O(t) many variables encoding the circuit, and with O(t2n) many variables representing the value
of each gate on each assignment to the inputs. The clauses state that the output of each gate is
consistent with the output of its inputs.

Razborov’s result shows that for any function fn and size t, Circuitt(fn) has no resolution refu-
tation of size less than 2Ω(t/n3). The proof works by reducing the onto-functional weak pigeonhole
principle to the principle Circuitt(fn).
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