
Math 267a - Propositional Proof Complexity Lecture #8: 11 February 2002

Math 267a - Propositional Proof Complexity

Lecture #8: 11 February 2002

Lecturer: Sam Buss

Scribe Notes by: Bryant Forsgren

1 Last Time

In Lecture 7 we proved the “strong” Pigeon Hole Principle (PHPn+1
n ) by giving a resolution

refutation of its negation. The refutation was tree-like and had size 2O(n log n). We claim without
proof that a non-tree-like refutation of size 2O(n) exists. Today our goal is to prove exponential
lower bounds (2Ω(n)) on the size of any refutation of the ¬PHPn+1

n clauses.

2 Views of Resolution Refutations

2.1 Resolution Proof as a Decision dag

Any resolution proof starts with a set of initial clauses C1, C2, . . . Ck, and ends with the empty
clause ∅. Clearly all of the variables need to be eliminated to reach this conclusion. For example,
the variable x can be eliminated from two clauses of the form D∪{x} and E∪{x} to derive D∪E.
In particular, there exists some variable y such that the empty clause ∅ is derived from {y} and
{y}. We can view this pictorially as follows:

C1 . . . Ck

. . .
... . . .

D ∪ {x} E ∪ {x}
D ∪ E

. . .
... . . .

{y} {y}
∅

Given any such refutation and a truth assignment τ , it is clear that there exists an initial clause
Ci such that τ falsifies Ci. We wish to use the refutation as a decision dag to find such a Ci. We
start with ∅, and work toward the initial clauses, making a decision at each clause we encounter.
Suppose we are at the clause D ∪ E in the diagram. We do the following:
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If τ(x) = >
go to E ∪ {x}

Else
go to D ∪ {x}

Our invariant is the following: we are always at a clause C which is falsified by τ . Furthermore,
we are guaranteed to eventually reach one of the initial clauses Ci. By our easily verified invariant,
Ci is an initial clause which is falsified by τ .

2.2 Resolution Proof as Guiding a Game

The game is played between a Prover and an Adversary . The Prover wishes to find a clause that
is false, and the adversary wishes to prevent this from happening. A round of the game is played
as follows:

1. Prover asks a query “y?”.

2. Adversary answers True (>) or False (⊥).

3. Prover remembers the answer (but is allowed to forget later).

Claim There is an exact correspondence between resolution proofs and winning strategies for the
Prover.

This is true because at any particular point in the game, the Prover and Adversary are at some
clause in the refutation. This clause contains exactly those literals y such that the Prover knows y
holds.

3 Exponential Lower Bounds on Refutation Proofs of the Pigeon
Hole Principle

3.1 The “weak” Pigeon Hole Principle

We now define the “weak” Pigeon Hole Principle. Intuitively, it states that

∀m > n @f : [m] 1−1→ [n]

over the natural numbers.

Definition Let m > n; m, n ∈ N

PHPm
n :

m∧∧
i=1

n∨∨
j=1

Pi,j →
m−1∨∨
i=1

m∨∨
j=i+1

n∨∨
k=1

(Pi,k ∧ Pj,k)

The clauses of ¬PHPm
n are as follows:

{Pi,1, . . . , Pi,n} for i = 1, . . . , m

{Pi,k, Pj,k} for 1 ≤ i < j ≤ m, 1 ≤ k ≤ n

Note that it is often easier to prove PHPm
n for m >> n, than for m = n + 1.
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Definition The width of a refutation R is max{|C| : C is a clause in R}.
Note that the refutation of ¬PHPn+1

n from the previous lecture had width O(n).

Theorem 1 (Dantchev 2002) Let m > n >> 0. Then any resolution refutation of ¬PHPm
n of

width ≤ n2

32 has size ≥ 2
n
8 (where size is understood to mean the number of clauses in the proof).

Proof Suppose we have a refutation R of width ≤ n2

32 and size < 2
n
8 , for “large enough” n. Let

H1 = {1, . . . , bn
2 c}, H2 = {bn

2 c + 1, . . . , n}. Now fix a π which maps each pigeon i to either H1 or
H2. Denote this by i ∈ Hπ(i).

Definition Pigeon i is busy if either:

(1) The Prover knows Pi,j = > for some j ∈ Hπ(i). (call this case busy1)

(2) The Prover knows Pi,j = ⊥ for ≥ n
4 many j ∈ Hπ(i). (call this case busy2)

As described above, the Prover views R as a decision dag and chooses the queries accordingly.
When the Prover queries a variable Pi,j , the Adversary responds as follows:

(1) If j /∈ Hπ(i), Adversary answers “⊥”.

(2) If j ∈ Hπ(i) and i is not busy, Adversary answers “⊥”.

(3) Otherwise (j ∈ Hπ(i) and i is busy), the Adversary chooses an unassigned hole k ∈ Hπ(i)

for which Pi,k is not known and assigns pigeon i to that hole. The Adversary then answers
accordingly, and remembers this assignment until (if ever) pigeon i becomes unbusy.

Claim The Adversary can keep going as long as there are < n
4 busy pigeons.

The game stops when there are ≥ n
4 busy pigeons at some clause Cπ. By assumption, Cπ has

width ≤ n2

32 and has n
4 busy pigeons.

Notice that each pigeon of type busy2 contributes n
4 literals into Cπ. Suppose Cπ has > n

8

pigeons which are busy2. Then Cπ has width > n2

32 which is a contradiction. Therefore, at most n
8

of the n
4 busy pigeons can be busy2.

So at least n
8 i’s in Cπ are of type busy1. In other words, for at least n

8 i’s there exists a
j ∈ Hπ(i) such that Pi,j ∈ Cπ. We wish to address the following question: “For how many π’s can
this clause be Cπ?” But this is only possible for ≤ 2(m−n

8
) many π’s. So there are ≥ 2

n
8 distinct

Cπ’s, contradicting the assumption that size < 2
n
8 .

3.2 The “strong” Pigeon Hole Principle

Definition A restriction is a partial truth assignment that maps some variables to {>,⊥}, leaving
other variables unassigned (∗). A restriction can be expressed in the following way:

ρ(x) =




> if CondA(x)
⊥ if CondB(x)
∗ if CondC(x)

Where each Condi is an arbitrary condition.
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Definition If Σ is a set of clauses, Σ¹ρ is the set of clauses constructed as follows:

Foreach C = {x1, . . . , xk} ∈ Σ
If ∃i such that ρ(xi) = >

discard C
Else

put {xi : ρ(xi) = ∗} into Σ¹ρ

Theorem 2 If R is a refutation of Σ, then R¹ρ is a refutation of Σ¹ρ (to be precise, it is a resolution
and subsumption refutation).

What this means is that size and width do not increase under restrictions.

Theorem 3 For any α ∈ (0, n
8 ), any refutation of Σ = ¬PHPn+1

n has size ≥ 2εn where ε = 1
8 − α

(for large enough n).

Proof Assume there is a refutation R of size < 2εn. We construct a restriction ρ as follows:

Fix β ∈ (0, 1)
(note that α and β satisfy this relationship: β = 1 − 8α)

Foreach pigeon i
pick i with probability 1 − β
If pigeon i is picked

map it to a unique, randomly selected hole ji

set ρ(Pi,ji) = >
Foreach k 6= ji

set ρ(Pi,k) = ⊥
Foreach k 6= i

set ρ(Pk,ji) = ⊥

We apply this restriction to Σ, yielding Σ¹ρ. The expected number of holes in Σ¹ρ is

n − (1 − β)(n + 1) = βn − 1 + β

So with some fixed non-zero probability, the number of remaining holes is at least βn. We also
apply ρ to the refutation R which yields R¹ρ, a refutation of ¬PHP

dβne+1
dβne of size ≤ 2εn.

Claim R¹ρ has width ≤ (βn)2

32 with probability approaching 1 as n → ∞. This will be a contra-
diction, provided ε > β

8 .

This last claim will be proved next time, finishing the proof of Theorem 3. The idea is that
any clause in R will get mapped to > by ρ and vanish from R¹ρ.
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