Math 267a - Propositional Proof Complexity

Lecture #7: 6 February 2002

Lecturer: Sam Buss

Scribe Notes by: Dan Curtis

1 Completeness and Soundness of Resolution Proofs

1.1 Definition of a Resolution Proof

Recall the resolution rule:

$$\frac{C \cup \{x\} \ D \cup \{\bar{x}\}}{C \cup D}$$

Definition A set of literals $\{x_1, \ldots, x_n\}$, with x_i in P_k or \overline{P}_k , is called a clause.

Definition Resolution refutes a set of clauses if and only all the clauses cannot be simultaneously satisfied.

A clause is a disjunction of literals and a set of clauses is a conjuction of clauses, which can be thought of as a conjuctive normal form formula. We can view resolution as <u>proving</u> disjunctive normal form formulas. For right now, resolution can prove tautologies that are in Disjunctive Normal Form.

Example The Pigeon hole principle (PHP_n^m) can be written as

$$\bigwedge_{i=1}^{m} \bigvee_{j=1}^{n} p_{ij} \to \bigvee_{i=1}^{m-1} \bigvee_{j=i+1}^{m} \bigvee_{k=1}^{n} (p_{ik} \wedge p_{jk}).$$

The negation of this $(\neg PHP_n^m)$ is

$$\bigwedge_{i=1}^{m} \bigvee_{j=1}^{n} p_{ij} \wedge \bigwedge_{i=1}^{m-1} \bigwedge_{j=i+1}^{n} \bigwedge_{k=1}^{n} (\bar{p}_{ik} \wedge \bar{p}_{jk}).$$

which is in conjunctive normal form.

Written as a set of clauses:

$$\{p_{i,1}, \dots, p_{i,n}\}, \qquad i = 1, \dots, m \qquad \leftarrow m \text{ clauses} \\ \{\bar{p}_{ik}, \bar{p}_{jk}\}, \quad i = 1, \dots, m-1; \ j = i+1, \dots, n; \ k = 1, \dots n \qquad \leftarrow \approx m^2 \text{ clauses}$$

A resolution "proof" of *PHP* means a refutation of this set of clauses.

1.2 Completeness Theorem

Theorem 1 (Completeness Theorem) If C is an unsatisfiable set of clauses, then C has a resolution refutation.

Proof Using induction on the number of variables in C, assume C has zero variables. Then either $C = \{\emptyset\}$, in which case it contains the refutation \emptyset , or $C = \emptyset$ which is satisfiable. Thus the hypothesis holds for any clause with zero variables.

Now, let \mathcal{C} be an unsatisfiable set of clauses and let x be a variable in some clause in \mathcal{C} . Define

 $C_x = \{ \text{the set of clauses in } \mathcal{C} \text{ that contain } x \}$ $C_{\bar{x}} = \{ \text{the set of clauses in } \mathcal{C} \text{ that contain } \bar{x} \}$ $\mathcal{C}' = \mathcal{C} - (\mathcal{C}_x \cup \mathcal{C}_{\bar{x}}).$

Then resolve all \mathcal{C}_x clauses with all $\mathcal{C}_{\bar{x}}$ clauses by

$$\frac{D \cup \{x\} \ E \cup \{\bar{x}\}}{D \cup E}$$

Let $\mathcal{D} = \mathcal{C}' \cup \{\text{all resolvents of the form } D \cup E, \text{ where } D \cup \{x\} \in \mathcal{C}_x \text{ and } E \cup \{\bar{x}\} \in \mathcal{C}_{\bar{x}} \}$

Since \mathcal{D} has fewer variables than \mathcal{C} , then by the induction hypothesis, if \mathcal{D} is unsatisfiable, then \mathcal{D} has a refutation. Also, from the construction of \mathcal{D} , if \mathcal{D} has a refutation, then \mathcal{C} has a refutation. Thus, if we can show that \mathcal{D} is unsatisfiable, then \mathcal{C} has a refutation.

Suppose \mathcal{D} is satisfiable and τ is a truth assignment that satisfies \mathcal{D} . Define τ^+ to be the same as τ with the addition that $\tau(x) = T$, and define τ^- to be the same as τ with the addition that $\tau(x) = F$.

Suppose τ^+ does not satisfy \mathcal{C} . Then there is a $E \cup \{\bar{x}\} \in \mathcal{C}$ such that τ^+ does not satisfy $E \cup \{\bar{x}\}$. But then τ does not satisfy E. Similarly, if τ^- does not satisfy \mathcal{C} , then there is a $D \cup \{x\}$ such that τ does not satisfy D. However, since τ satisfies \mathcal{D}, τ satisfies $D \cup E$. So, either τ^+ or τ^- satisfies \mathcal{C} .

1.3 Size of a Resolution Proof

The size of a resolution proof can be measured in two ways:

- a) Total number of literals in all clauses.
- b) Number of clauses.

Clearly, (b) \leq (a) \leq (b) (number of distinct variables), so a polynomial size bound on b) implies a polynomial size bound on a).

1.4 Subsumption Rule

Definition The subsumption rule (weakening rule), for any two clauses C and D with $C \subseteq D$, is given by

 $\frac{C}{D}$.

Theorem 2 A resolution and subsumption refutation of a set C of clauses can be converted into a smaller resolution refutation of C.

In practice, a theorem prover has C_1, \ldots, C_k as input clauses and generates clauses with resolution. At some point, if it has clauses D and E with $E \subseteq D$, then it is alright to discard D without any negative consequences.

Proof Let $\phi_1, \ldots, \phi_k = \emptyset$ be a refutation using resolution and subsumption. A new refutation $\psi_1, \ldots, \psi_k = \emptyset$, built recursively in the following way using only resolution, will have the property that $\psi_i \subseteq \phi_i$ for each $i \leq k$.

For each $i \leq k$, define ψ_i as follows:

- 1) If $\phi_i \in \mathcal{C}$, then set $\psi_i = \phi_i$. In this case, clearly $\psi_i \subseteq \phi_i$.
- 2) If ϕ_i is inferred by subsumption $\frac{\phi_l}{\phi_i}$ for some $l \leq i$, with $\phi_l \subseteq \phi_i$, then set $\psi_i = \psi_l$. Here, we have $\psi_i = \psi_l \subseteq \phi_l \subseteq \phi_i$.
- 3) If ϕ_i is inferred by resolution, for some $j, l \leq i$,

$$\frac{\phi_j \phi_l}{\phi_i}$$

resolving on $x \in \phi_i$ and $\bar{x} \in \phi_l$, do the following:

- a) If $x \notin \psi_i$, set $\psi_i = \psi_i \subseteq \phi_i$.
- b) If $\bar{x} \notin \psi_l$, set $\psi_i = \psi_l \subseteq \phi_i$.
- c) Otherwise, set $\psi_i = \operatorname{res}_x(\psi_j, \psi_l)$, where res_x is defined to be the resolvent obtained by the resolution using the literal x. Since $\psi_j \subseteq \phi_j$ and $\psi_l \subseteq \phi_l$, then $\psi_i \subseteq \phi_i$.

Clearly, $\psi_k = \emptyset$, since $\psi_k \subseteq \phi_k = \emptyset$. Finally, erase any duplicate ψ_i 's.

1.5 Refutation Proof of the Pigeon Hole Principle

As a point of notation, throughout this proof, we will use [k] to denote the set $\{1, \ldots, k\}$.

Recall that the negation of the Pigeon Hole Principle can be written as:

$$\bigwedge_{i=1}^{m} \bigvee_{j=1}^{n} p_{ij} \wedge \bigwedge_{i=1}^{m-1} \bigwedge_{j=i+1}^{n} \bigwedge_{k=1}^{n} (p_{ik} \wedge p_{jk}).$$

For this proof, we will prove the special case PHP_n^{n+1} (i.e. m = n + 1). Writing this as a set of clauses, we get

$$\mathcal{C} = \{\{P_{i,1}, \dots, P_{i,n}\}, 1 \le i \le n\} \cup \{\{\bar{P}_{i,k}, \bar{P}_j, k\}, 1 \le i \le j \le m; 1 \le k \le n\}$$

Proof The refutation will proceed in a series of stages, s = n, n - 1, ..., 0. At stage s, we have the following clauses: For each injective map $\pi : \{1, ..., s\} \to \{1, ..., n\}$ we have the clause $\{\bar{P}_{1,\pi(1)}, \bar{P}_{2,\pi(2)}, \ldots, \bar{P}_{s,\pi(s)}\}$.

At stage s = 0, the only map is $\pi : \emptyset \to [n]$ and the clause is \emptyset .

At stage s = n, for any injective map $\pi : [n] \to [n]$, start with the initial clause $\{P_{n+1,1}, \ldots, P_{n+1,n}\}$ and resolve with the initial clauses $\{\bar{P}_{i,\pi(i)}, \bar{P}_{n+1,\pi(i)}\}$ for each $1 \le i \le n$.

For the induction step, assume we have the stage s + 1 clauses. Given any injective map $\pi : [s] \to [n]$ we need to derive $\{\bar{P}_{1,\pi(1)}, \bar{P}_{2,\pi(2)}, \ldots, \bar{P}_{s,\pi(s)}\}$. For $j \notin \text{Range}(\pi)$, define π_j to be $\pi \cup \{(s+1) \mapsto j\}$. Since $\pi_j : [s+1] \to [n]$, then from stage s+1 we already have

$$(*_j)$$
 $\{\bar{P}_{1,\pi(1)}, \bar{P}_{2,\pi(2)}, \dots, \bar{P}_{s,\pi(s)}, \bar{P}_{s+1,j}\}.$

To derive the stage s clauses, start with the initial clause $\{P_{s+1,1}, \ldots, P_{s+1,n}\}$ and resolve with the initial clauses $\{\bar{P}_{i,\pi(i)}, \bar{P}_{s+1,\pi(i)}\}$ for each $1 \leq i \leq s$. After resolving with each of the s clauses, we get

$$\{\bar{P}_{1,\pi(1)}, \bar{P}_{2,\pi(2)}, \dots, \bar{P}_{s,\pi(s)}, P_{s+1,j_1}, \dots, P_{s+1,j_{n-s}}\}$$

where $[n] - \text{Range}(\pi) = \{j_1, \ldots, j_{n-s}\}$. Finally, resolve with the $(*_j)$ clauses for $j = j_1, \ldots, j_{n-s}$ and we get $\{\bar{P}_{1,\pi(1)}, \bar{P}_{2,\pi(2)}, \ldots, \bar{P}_{s,\pi(s)}\}$ as desired.

1.6 Size of Proof of Pigeon Hole Principle

There are *n* stages for this proof of PHP_n^{n+1} . At each stage, there are on the order of $O(n^s)$ injective maps $\pi : [s] \to [n]$. Also, there are *n* steps required to derive each clause. Thus, the size of this proof is on the order of $O(n \cdot n \cdot n^n) = 2^{O(n \log n)}$ total number of clauses.

However, a more honest measure of the size of the proof is in terms of the number of variables $v = \Omega(n^2)$. In terms of v, the size of the proof is on the order $2^{O(\sqrt{v} \log \sqrt{V})} = 2^{O(\sqrt{v} \log V)}$.

1.7 Soundness Theorem

Theorem 3 (Soundness Theorem) If C is a set of clauses with a refutation, then C is unsatisfiable.

Proof Proof of the soundness theorem is deferred until the next lecture.