
Math 267a - Propositional Proof Complexity Lecture #7: 6 February 2002

Math 267a - Propositional Proof Complexity

Lecture #7: 6 February 2002

Lecturer: Sam Buss

Scribe Notes by: Dan Curtis

1 Completeness and Soundness of Resolution Proofs

1.1 Definition of a Resolution Proof

Recall the resolution rule:
C ∪ {x} D ∪ {x̄}

C ∪ D
.

Definition A set of literals {x1, . . . , xn}, with xi in Pk or P̄k, is called a clause.

Definition Resolution refutes a set of clauses if and only all the clauses cannot be simultaneously
satisfied.

A clause is a disjunction of literals and a set of clauses is a conjuction of clauses, which can
be thought of as a conjuctive normal form formula. We can view resolution as proving disjunctive
normal form formulas. For right now, resolution can prove tautologies that are in Disjunctive
Normal Form.

Example The Pigeon hole principle (PHPm
n ) can be written as

∧∧m

i=1

∨∨n

j=1
pij →

∨∨m−1

i=1

∨∨m

j=i+1

∨∨n

k=1
(pik ∧ pjk).

The negation of this (¬PHPm
n ) is

∧∧m

i=1

∨∨n

j=1
pij ∧

∧∧m−1

i=1

∧∧n

j=i+1

∧∧n

k=1
(p̄ik ∧ p̄jk).

which is in conjunctive normal form.
Written as a set of clauses:

{pi,1, . . . , pi,n}, i = 1, . . . , m ← m clauses
{p̄ik, p̄jk}, i = 1, . . . , m − 1; j = i + 1, . . . , n; k = 1, . . . n ←≈ m2 clauses

A resolution “proof” of PHP means a refutation of this set of clauses.

1



Math 267a - Propositional Proof Complexity Lecture #7: 6 February 2002

1.2 Completeness Theorem

Theorem 1 (Completeness Theorem) If C is an unsatisfiable set of clauses, then C has a resolution
refutation.

Proof Using induction on the number of variables in C, assume C has zero variables. Then
either C = {∅}, in which case it contains the refutation ∅, or C = ∅ which is satisfiable. Thus the
hypothesis holds for any clause with zero variables.

Now, let C be an unsatisfiable set of clauses and let x be a variable in some clause in C. Define

Cx = {the set of clauses in C that contain x}
Cx̄ = {the set of clauses in C that contain x̄}
C′ = C − (Cx ∪ Cx̄).

Then resolve all Cx clauses with all Cx̄ clauses by

D ∪ {x} E ∪ {x̄}
D ∪ E

Let D = C′ ∪ {all resolvents of the form D ∪ E, where D ∪ {x} ∈ Cx and E ∪ {x̄} ∈ Cx̄}
Since D has fewer variables than C, then by the induction hypothesis, if D is unsatisfiable, then

D has a refutation. Also, from the construction of D, if D has a refutation, then C has a refutation.
Thus, if we can show that D is unsatisfiable, then C has a refutation.

Suppose D is satisfiable and τ is a truth assignment that satisfies D. Define τ+ to be the same
as τ with the addition that τ(x) = T , and define τ− to be the same as τ with the addition that
τ(x) = F .

Suppose τ+ does not satisfy C. Then there is a E ∪ {x̄} ∈ C such that τ+ does not satisfy
E ∪{x̄}. But then τ does not satisfy E. Similarly, if τ− does not satisfy C, then there is a D∪{x}
such that τ does not satisfy D. However, since τ satisfies D, τ satisfies D ∪E. So, either τ+ or τ−

satisfies C.

1.3 Size of a Resolution Proof

The size of a resolution proof can be measured in two ways:

a) Total number of literals in all clauses.

b) Number of clauses.

Clearly, (b) ≤ (a) ≤ (b)·(number of distinct variables), so a polynomial size bound on b) implies
a polynomial size bound on a).

1.4 Subsumption Rule

Definition The subsumption rule (weakening rule), for any two clauses C and D with C ⊆ D, is
given by

C

D
.

2



Math 267a - Propositional Proof Complexity Lecture #7: 6 February 2002

Theorem 2 A resolution and subsumption refutation of a set C of clauses can be converted into a
smaller resolution refutation of C.

In practice, a theorem prover has C1, . . . , Ck as input clauses and generates clauses with resolu-
tion. At some point, if it has clauses D and E with E ⊆ D, then it is alright to discard D without
any negative consequences.

Proof Let φ1, . . . , φk = ∅ be a refutation using resolution and subsumption. A new refutation
ψ1, . . . , ψk = ∅, built recursively in the following way using only resolution, will have the property
that ψi ⊆ φi for each i ≤ k.

For each i ≤ k, define ψi as follows:

1) If φi ∈ C, then set ψi = φi. In this case, clearly ψi ⊆ φi.

2) If φi is inferred by subsumption φl
φi

for some l ≤ i, with φl ⊆ φi, then set ψi = ψl. Here, we
have ψi = ψl ⊆ φl ⊆ φi.

3) If φi is inferred by resolution, for some j, l ≤ i,

φj φl

φi

resolving on x ∈ φj and x̄ ∈ φl, do the following:

a) If x 6∈ ψj , set ψi = ψj ⊆ φi.

b) If x̄ 6∈ ψl, set ψi = ψl ⊆ φi.

c) Otherwise, set ψi = resx(ψj , ψl), where resx is defined to be the resolvent obtained by
the resolution using the literal x. Since ψj ⊆ φj and ψl ⊆ φl, then ψi ⊆ φi.

Clearly, ψk = ∅, since ψk ⊆ φk = ∅. Finally, erase any duplicate ψi’s.

1.5 Refutation Proof of the Pigeon Hole Principle

As a point of notation, throughout this proof, we will use [k] to denote the set {1, . . . , k}.
Recall that the negation of the Pigeon Hole Principle can be written as:

∧∧m

i=1

∨∨n

j=1
pij ∧

∧∧m−1

i=1

∧∧n

j=i+1

∧∧n

k=1
(pik ∧ pjk).

For this proof, we will prove the special case PHPn+1
n (i.e. m = n + 1). Writing this as a set

of clauses, we get

C = {{Pi,1, . . . , Pi,n}, 1 ≤ i ≤ n} ∪ {{P̄i,k, P̄j , k}, 1 ≤ i ≤ j ≤ m; 1 ≤ k ≤ n}

Proof The refutation will proceed in a series of stages, s = n, n − 1, . . . , 0. At stage s, we
have the following clauses: For each injective map π : {1, . . . , s} → {1, . . . , n} we have the clause
{P̄1,π(1), P̄2,π(2), . . . , P̄s,π(s)}.

At stage s = 0, the only map is π : ∅ → [n] and the clause is ∅.

3



Math 267a - Propositional Proof Complexity Lecture #7: 6 February 2002

At stage s = n, for any injective map π : [n] → [n], start with the initial clause {Pn+1,1, . . . , Pn+1,n}
and resolve with the initial clauses {P̄i,π(i), P̄n+1,π(i)} for each 1 ≤ i ≤ n.

For the induction step, assume we have the stage s + 1 clauses. Given any injective map
π : [s] → [n] we need to derive {P̄1,π(1), P̄2,π(2), . . . , P̄s,π(s)}. For j 6∈ Range(π), define πj to be
π ∪ {(s + 1) 7→ j}. Since πj : [s + 1] → [n], then from stage s + 1 we already have

(∗j) {P̄1,π(1), P̄2,π(2), . . . , P̄s,π(s), P̄s+1,j}.

To derive the stage s clauses, start with the initial clause {Ps+1,1, . . . , Ps+1,n} and resolve with
the initial clauses {P̄i,π(i), P̄s+1,π(i)} for each 1 ≤ i ≤ s. After resolving with each of the s clauses,
we get

{P̄1,π(1), P̄2,π(2), . . . , P̄s,π(s), Ps+1,j1 , . . . , Ps+1,jn−s}
where [n] − Range(π) = {j1, . . . , jn−s}. Finally, resolve with the (∗j) clauses for j = j1, . . . , jn−s

and we get {P̄1,π(1), P̄2,π(2), . . . , P̄s,π(s)} as desired.

1.6 Size of Proof of Pigeon Hole Principle

There are n stages for this proof of PHPn+1
n . At each stage, there are on the order of O(ns)

injective maps π : [s] → [n]. Also, there are n steps required to derive each clause. Thus, the size
of this proof is on the order of O(n · n · nn) = 2O(n log n) total number of clauses.

However, a more honest measure of the size of the proof is in terms of the number of variables
v = Ω(n2). In terms of v, the size of the proof is on the order 2O(

√
v log

√
V ) = 2O(

√
v log V ).

1.7 Soundness Theorem

Theorem 3 (Soundness Theorem) If C is a set of clauses with a refutation, then C is unsatisfiable.

Proof Proof of the soundness theorem is deferred until the next lecture.

4


