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1 p-Simulation

Definition Let f and g be proof systems in the same language. We say f p-simulates g if there
exists a poly-time computable function H(x) such that ∀x, g(x) = f(H(x)). We say f simulates g
if there exists a polynomial p(n) such that ∀x∃y, |y| ≤ p(|x|) and f(y) = g(x).

Definition A proof system f is maximal if f simulates g for any proof system g. A proof system
f is super if there exists a polynomial p(n) such that ∀ϕ ∈ TAUT , ∃x such that |x| ≤ p(|ϕ|) and
f(x) = ϕ. Note that any super proof system is maximal.

Open Question Is there a super or maximal proof system?

Theorem 1 [1] [Cook] There exists a super proof system ⇐⇒ NP = co − NP .

Homework 1 Prove the above theorem for a homework excercise.

Definition A Frege system is a proof system given by a finite set of of schematic axioms and
inference rules, and must be implicationally sound and implicationally complete.

Theorem 2 [2] [Cook-Reckhow] If F1, F2 are Frege systems, then F1 p-simulates F2.

Proof For the proof we will assume F1 and F2 have the same language, but the statement is
true in general. Consider a rule of F2, A1...Ak

B . F1 can prove A1 . . . Ak ` B by the implicational
completeness of Frege proof systems. Consider an F2-proof ϕ1 . . . ϕn. We convert to an F1-proof
as follows: ϕi follows from an inference rule A1σ...Akσ

Bσ , where A1σ = ϕi1 , . . . , Akσ = ϕik , with
i1 . . . ik < i, and Bσ = ϕi. Assuming ϕi1 . . . ϕik already proved, use the substitution σ on the
F1-proof A1 . . . Ak ` B to get an F1-proof ϕi1 . . . ϕik ` ϕi. Combining this proof and the proof of
ϕi1 . . . ϕik yields an F1-proof of φi.

Proof Complexity This is a polynomial time procedure. For each line of the F2-proof, there
are O(1) lines in the F1-proof. If the F2 proof has n lines and m total symbols, the F1 proof has
O(n) lines, and each line has O(m) symbols. So the F1-proof contains O(n) lines, and O(mn)
total symbols. Since n ≤ m, the size of the F1-proof is bounded by a polynomial in the size of the
F2-proof.
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Open Question Can the bound of O(mn) symbols in the preceeding proof be improved to O(m)?
It can if we assume that F1 has modus ponens, but is it true in general?

Open Question Are Frege systems super? or maximal?

Open Question Is there a “natural” proof system stronger than Frege systems?

2 Extended Frege Sytems

Definition Here we define an extended Frege system, eF . An eF0-proof is the same as an F0-
proof, except the size of the proof is computed differently. The size of an extended Frege proof of
A is (# of lines in the proof) + |A|.

Example In a previous lecture we saw that any formula A → A has an F0-proof of five lines. So
there is an eF0-proof of A → A of size 5 + |A|.

The catch is that an extended Frege system as defined above is not an abstract proof system,
since an abstract proof system defines the size of a proof x to be the number of symbols in x. For
this reason we will present an encoding where an eF0 proof with size n in the extended Frege sense
can be encoded by a string of length O(poly(n)). We also present a polynomial time decoding
algorithm to verify that a string encodes a valid eF0 proof. This decoding algorithm defines an
abstract proof system with the notion of size that we desire, within a polynomial.

Encoding [3] [Parikh] Number the rules of inference. The axioms take values 0...9, and modus
ponens takes 10. We represent an eF0-proof ϕ1, . . . , ϕn = ϕ by a tuple 〈e1, . . . , en, ϕ〉 where if
ϕi is an instance of axiom k then ei = k, and if ϕi is inferred from ϕji , ϕki by modus ponens,
ei = 〈10, ji, ki〉.

The size of this proof skeleton is O(nlogn + |ϕ|), where n is the size of the eF0 proof.

Claim There is a polynomial time algorithm to decide if an encoding corresponds to a valid
eF0-proof.

Proof We convert the skeleton into a unification problem which has a solution iff the proof skeleton
is valid. We create new “metavariables” y1...yn, and zi

j , and search for a substitution σ : yi 7→ ϕi

which must satisfy the following equations:

1. yn
.= ϕ. (means σyn = ϕ)

2. if ei = 〈10, ji, ki〉, we require that yki

.= (yji → yi)

3. for 0 ≤ ei ≤ 9 let A be the ei-th axiom. Replace each xj in A by zi
j , and denote this instance

of the axiom A by Ai. We require that yi
.= Ai.

A substitution σ that satisfies these requirements is called a unifier, and the encoding corre-
sponds to a valid eF0-proof of ϕ if and only if such a σ exists. More on this next time.
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