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1 p-Simulation

Definition Let f and g be proof systems in the same language. We say f p-simulates g if there
exists a poly-time computable function H (x) such that VY, g(x) = f(H(z)). We say f simulates g
if there exists a polynomial p(n) such that Vz3y, |y| < p(jz|) and f(y) = g(z).

Definition A proof system f is mazimal if f simulates g for any proof system g. A proof system
[ is super if there exists a polynomial p(n) such that Yy € TAUT, 3z such that || < p(]¢|) and
f(x) = ¢. Note that any super proof system is maximal.

Open Question Is there a super or maximal proof system?
Theorem 1 [1] [Cook] There exists a super proof system <= NP =co— NP.
Homework 1 Prove the above theorem for a homework excercise.

Definition A Frege system is a proof system given by a finite set of of schematic axioms and
inference rules, and must be implicationally sound and implicationally complete.

Theorem 2 [2/ [Cook-Reckhow] If F1, F» are Frege systems, then Fi p-simulates Fa.

Proof For the proof we will assume F; and F3 have the same language, but the statement is

true in general. Consider a rule of Fs, Al'éA’V. JF1 can prove Aj...Ar F B by the implicational
completeness of Frege proof systems. Consider an Fa-proof ¢; ... p,. We convert to an Fj-proof
as follows: ¢; follows from an inference rule %, where Ajo = @i, ..., Ao = ;,, with

i1...1 < 1, and Bo = ;. Assuming ¢;, ...y;, already proved, use the substitution o on the
Fi-proof Ay ... Ap - B to get an Fj-proof ¢;, ... i, F ;. Combining this proof and the proof of
©iy - - - 5, yields an Fi-proof of ¢;.

Proof Complexity This is a polynomial time procedure. For each line of the Fs-proof, there
are O(1) lines in the Fj-proof. If the F, proof has n lines and m total symbols, the F; proof has
O(n) lines, and each line has O(m) symbols. So the Fj-proof contains O(n) lines, and O(mn)
total symbols. Since n < m, the size of the Fi-proof is bounded by a polynomial in the size of the
Fo-proof.
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Open Question Can the bound of O(mn) symbols in the preceeding proof be improved to O(m)?
It can if we assume that F; has modus ponens, but is it true in general?

Open Question Are Frege systems super? or maximal?

Open Question Is there a “natural” proof system stronger than Frege systems?

2 Extended Frege Sytems

Definition Here we define an extended Frege system, eF. An eFy-proof is the same as an Fy-
proof, except the size of the proof is computed differently. The size of an extended Frege proof of
A is (# of lines in the proof) + |A].

Example In a previous lecture we saw that any formula A — A has an Fy-proof of five lines. So
there is an eFy-proof of A — A of size 5 + |A|.

The catch is that an extended Frege system as defined above is not an abstract proof system,
since an abstract proof system defines the size of a proof z to be the number of symbols in x. For
this reason we will present an encoding where an ey proof with size n in the extended Frege sense
can be encoded by a string of length O(poly(n)). We also present a polynomial time decoding
algorithm to verify that a string encodes a valid eFy proof. This decoding algorithm defines an
abstract proof system with the notion of size that we desire, within a polynomial.

Encoding [3] [Parikh] Number the rules of inference. The axioms take values 0...9, and modus
ponens takes 10. We represent an eFy-proof ¢1,...,¢0, = ¢ by a tuple (e1,...,en,p) where if
¢; is an instance of axiom k then e; = k, and if ¢; is inferred from ¢j;, pr, by modus ponens,
€ = <101jia kl>

The size of this proof skeleton is O(nlogn + |¢|), where n is the size of the ey proof.

Claim There is a polynomial time algorithm to decide if an encoding corresponds to a valid
eJFo-proof.

Proof We convert the skeleton into a unification problem which has a solution iff the proof skeleton
is valid. We create new “metavariables” y1...y,, and z3, and search for a substitution o : y; — ¢;
which must satisfy the following equations:

1. yp = ¢. (means oy, = @)
2. if ; = (10, ji, k;), we require that y, = (y;, — vi)

3. for 0 <e; <9 let A be the e;-th axiom. Replace each z; in A by zé, and denote this instance
of the axiom A by A’. We require that y; = A°.

A substitution o that satisfies these requirements is called a unifier, and the encoding corre-
sponds to a valid eFy-proof of ¢ if and only if such a ¢ exists. More on this next time.
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