Math 267a - Propositional Proof Complexity

Lecture #3: 23 January 2002

Lecturer: Sam Buss

Scribe Notes by: Reid Andersen

1 p-Simulation

Definition Let f and g be proof systems in the same language. We say f *p*-simulates g if there exists a poly-time computable function H(x) such that $\forall x, g(x) = f(H(x))$. We say f simulates g if there exists a polynomial p(n) such that $\forall x \exists y, |y| \leq p(|x|)$ and f(y) = g(x).

Definition A proof system f is maximal if f simulates g for any proof system g. A proof system f is super if there exists a polynomial p(n) such that $\forall \varphi \in TAUT$, $\exists x$ such that $|x| \leq p(|\varphi|)$ and $f(x) = \varphi$. Note that any super proof system is maximal.

Open Question Is there a super or maximal proof system?

Theorem 1 [1] [Cook] There exists a super proof system $\iff NP = co - NP$.

Homework 1 Prove the above theorem for a homework excercise.

Definition A Frege system is a proof system given by a finite set of of schematic axioms and inference rules, and must be implicationally sound and implicationally complete.

Theorem 2 [2] [Cook-Reckhow] If \mathcal{F}_1 , \mathcal{F}_2 are Frege systems, then \mathcal{F}_1 p-simulates \mathcal{F}_2 .

Proof For the proof we will assume \mathcal{F}_1 and \mathcal{F}_2 have the same language, but the statement is true in general. Consider a rule of \mathcal{F}_2 , $\frac{A_1...A_k}{B}$. \mathcal{F}_1 can prove $A_1 \ldots A_k \vdash B$ by the implicational completeness of Frege proof systems. Consider an \mathcal{F}_2 -proof $\varphi_1 \ldots \varphi_n$. We convert to an \mathcal{F}_1 -proof as follows: φ_i follows from an inference rule $\frac{A_1 \sigma \ldots A_k \sigma}{B \sigma}$, where $A_1 \sigma = \varphi_{i_1}, \ldots, A_k \sigma = \varphi_{i_k}$, with $i_1 \ldots i_k < i$, and $B\sigma = \varphi_i$. Assuming $\varphi_{i_1} \ldots \varphi_{i_k}$ already proved, use the substitution σ on the \mathcal{F}_1 -proof $A_1 \ldots A_k \vdash B$ to get an \mathcal{F}_1 -proof $\varphi_{i_1} \ldots \varphi_{i_k} \vdash \varphi_i$. Combining this proof and the proof of $\varphi_{i_1} \ldots \varphi_{i_k}$ yields an \mathcal{F}_1 -proof of ϕ_i .

Proof Complexity This is a polynomial time procedure. For each line of the \mathcal{F}_2 -proof, there are O(1) lines in the \mathcal{F}_1 -proof. If the \mathcal{F}_2 proof has n lines and m total symbols, the \mathcal{F}_1 proof has O(n) lines, and each line has O(m) symbols. So the \mathcal{F}_1 -proof contains O(n) lines, and O(mn) total symbols. Since $n \leq m$, the size of the \mathcal{F}_1 -proof is bounded by a polynomial in the size of the \mathcal{F}_2 -proof.

Open Question Can the bound of O(mn) symbols in the preceeding proof be improved to O(m)? It can if we assume that \mathcal{F}_1 has modus ponens, but is it true in general?

Open Question Are Frege systems super? or maximal?

Open Question Is there a "natural" proof system stronger than Frege systems?

2 Extended Frege Sytems

Definition Here we define an extended Frege system, $e\mathcal{F}$. An $e\mathcal{F}_0$ -proof is the same as an \mathcal{F}_0 -proof, except the size of the proof is computed differently. The size of an extended Frege proof of A is (# of lines in the proof) + |A|.

Example In a previous lecture we saw that any formula $A \to A$ has an \mathcal{F}_0 -proof of five lines. So there is an $e\mathcal{F}_0$ -proof of $A \to A$ of size 5 + |A|.

The catch is that an extended Frege system as defined above is not an abstract proof system, since an abstract proof system defines the size of a proof x to be the number of symbols in x. For this reason we will present an encoding where an $e\mathcal{F}_0$ proof with size n in the extended Frege sense can be encoded by a string of length O(poly(n)). We also present a polynomial time decoding algorithm to verify that a string encodes a valid $e\mathcal{F}_0$ proof. This decoding algorithm defines an abstract proof system with the notion of size that we desire, within a polynomial.

Encoding [3] [Parikh] Number the rules of inference. The axioms take values 0...9, and modus ponens takes 10. We represent an $e\mathcal{F}_0$ -proof $\varphi_1, \ldots, \varphi_n = \varphi$ by a tuple $\langle e_1, \ldots, e_n, \varphi \rangle$ where if φ_i is an instance of axiom k then $e_i = k$, and if φ_i is inferred from $\varphi_{j_i}, \varphi_{k_i}$ by modus ponens, $e_i = \langle 10, j_i, k_i \rangle$.

The size of this proof skeleton is $O(nlogn + |\varphi|)$, where n is the size of the $e\mathcal{F}_0$ proof.

Claim There is a polynomial time algorithm to decide if an encoding corresponds to a valid $e\mathcal{F}_0$ -proof.

Proof We convert the skeleton into a unification problem which has a solution iff the proof skeleton is valid. We create new "metavariables" $y_1...y_n$, and z_j^i , and search for a substitution $\sigma : y_i \mapsto \varphi_i$ which must satisfy the following equations:

- 1. $y_n \doteq \varphi$. (means $\sigma y_n = \varphi$)
- 2. if $e_i = \langle 10, j_i, k_i \rangle$, we require that $y_{k_i} \doteq (y_{j_i} \rightarrow y_i)$
- 3. for $0 \le e_i \le 9$ let A be the e_i -th axiom. Replace each x_j in A by z_j^i , and denote this instance of the axiom A by A^i . We require that $y_i \doteq A^i$.

A substitution σ that satisfies these requirements is called a unifier, and the encoding corresponds to a valid $e\mathcal{F}_0$ -proof of φ if and only if such a σ exists. More on this next time.

References

- [1] S. A. COOK, *Feasibly constructive proofs and the propositional calculus*, in Proceedings of the Seventh Annual ACM Symposium on Theory of Computing, 1975, pp. 83–97.
- [2] S. A. COOK AND R. A. RECKHOW, The relative efficiency of propositional proof systems, Journal of Symbolic Logic, 44 (1979), pp. 36–50.
- [3] R. J. PARIKH, Some results on the lengths of proofs, Transactions of the American Mathematical Society, 177 (1973), pp. 29–36.