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1 Introduction to Frege Proof Systems

Last time we stated the Completeness and the Soundness theorems for the Frege Proof Systems,
today we focus on the Completeness Theorem. The main point of the Completeness Theorem is
that there exists a Frege Proof System which is complete.

We begin with an example of F0-proof. The axioms of the Frege system we will use, are the
Schematic Tautologies, defined in the previous lecture (Ax1 denoting the first axiom, Ax2 the
second, etc.).

Example (A → A) has an F0-proof.

Proof
The following five lines form an F0-proof of (A → A).

A → (A→A) → A, an instance of axiom Ax1
A → A → A, an instance of axiom Ax1
(A→(A→A)) → (A→(A→A)→A)) → (A→A), an instance of axiom Ax2
(A → (A→A) → A) → (A→A), by MP
A→A. 2

Proof Complexity The F0-proof has O(1) lines and O(|A|) symbols.

Theorem 1 (Deduction Theorem) Γ F0
A → B iff Γ, A F B.

Proof

1. Γ F0
A → B =⇒ Γ, A F B.

Suppose an F0-proof of Γ F0
A → B is given by lines (1)-(3). We can form an F0 proof of

Γ, A F B by adding two lines as shown:

F0 : Γ (1)
... (2)

A → B (3)
A (4)
B (5)
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Line (4) is the added new hypothesis. Line (5) is derived by MP. Thus we obtain F0-proof
for Γ, A F B.

Proof Complexity O(n) lines and O(nm) symbols.

2. Γ, A F0
B =⇒ Γ F A → B.

Proof Idea: Let the F0-proof of Γ, A F0
B be a sequence B = ϕ1, . . . , ϕn. We shall use the

substitution rule and replace each ϕi by A→ϕi. The sequence of formulas A→ϕi is not a
valid proof, but it can be converted into a valid proof as follows. Each ϕi either is A, or is
inferred from A by MP, or is an axiom, or is a member of Γ. Thus to patch the proof we
need to exhaust the following four cases.

• Case 1: ϕi is A
Then we re-use the 5-line proof of A→ A.

• Case 2: ϕi is inferred by MP:
ϕj ϕk = ϕj → ϕi

ϕi
, j, k < i

A → ϕj

A → ϕj → ϕi

(A→ϕj) → (A→(ϕi → ϕj)) → (A → ϕi), by Ax2
A → ϕi, by MP.

• Case 3: ϕi is an axiom
ϕi → (A → ϕi) , by Ax1 .
So ϕi can be replaced by the three line proof of A→ϕi.

• Case 4: ϕi ∈ Γ
ϕi → (A → ϕi) , by Ax1 .

2

Proof Complexity
Each line in the original F0-proof becomes either three or five lines in the F0-proof of
Γ F0

A → B. The proof complexity remains O(n) lines and O(nm) symbols.

1.1 Usage of the Deduction Theorem

Let
∧∧k

i=1Ai, denotes any parenthesization of the conjunction of A1, . . . , An.

Example Given F0

∧∧k
i=1Ai → Ai0, with proof complexity O(k) lines and O(k|B|) symbols, where

B =
∧∧k

i=1Ai, prove that
∧∧k

i=1Ai F0
Ai0.

Proof We follow the F0-proof. Begin with
∧∧k

i=1Ai. Repeatedly use the axioms (A∧B → B) and
(A ∧ B → A) with MP. All the lines are well behaved. 2
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2 The Completeness and Implicational Completeness Theorems

Recall that the Completeness theorem states: φ ∈ TAUT =⇒ F0
φ, for some proof F0. Now we

state and prove the Implicational Completeness Theorem.

Theorem 2 (Implicational Completeness Theorem) If Γ |= A then Γ F0 A.

Proof If Γ |= A, then there exists a finite Σ, Σ ⊂ Γ, s.t. Σ |= A. So w.l.o.g. Γ is finite. Let
Γ = {B1, . . . Bk}, then |= B1 → (B2 → (. . . → (Bk → A) . . . )).
By the Completeness Theorem there exists an F0-proof of the tautology. By applying the Deduction
Theorem k times we obtain Γ F0 A. 2

Theorem 3 (Completeness Theorem) A ∈ TAUT , then F0
A.

Proof We mimic the method of the Truth Table proofs. We consider all possible truth assignments.
Let A = A(x1, . . . , xk) and A ∈ TAUT . Let τ is a truth assignment, and

xτ
i =

{
xi if τ(xi) = T
¬xi if τ(xi) = F

Aτ =

{
A if τ(A) = T
¬A if τ(A) = F

The proof follows from the following three claims:

Claim If F0

∧∧k
i=1x

τ
i → A(τ) then

∧∧k
i=1x

τ
i F0

A(τ)

Proof The proof of the claim is based on the complexity of A.
Base case: If A is atomic then A is one of the xi.
Suppose A = B • C, where • is one of {∨,∧,→,¬}, then Bτ , Cτ F0 Aτ .
For each connective there are four cases for B and C. For example let ”•“ = ”→“ then:

B, C F (B → C)
B,¬C F ¬(B → C)
¬B, C F (B → C)
¬B,¬C F (B → C)

Proof Complexity The base case contributes O(k) line, and for each connective the proof grows
by finitely many lines, thus the total number of lines is O(k + |A|) = O(|A|). Each line has O(|A|)
symbols, thus in total the proof has O(|A|2) symbols. However, we have to repeat this for all 2k

truth assignments to x1, x2, · · · , xk.

The following two claims would be used without a proof:

Claim F0
((Z ∧ C) → D) → ((¬Z ∧ C) → D) → (C → D)

Claim F0
((Z → A) → (¬Z → A) → A
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Now associating the conjunctions,
∧∧k

i=1x
τ
i , from right to left w.l.o.g. we obtain:

±x1 ∧ (±x2 ∧ (. . . (±xk−1 ∧ ±xk) . . .) → A. We peel off all the variables one by one to obtain A.
E.g. the last steps (using the second claim) are:

xk−1 ∧ xk → A
¬xk−1 ∧ xk → A

}
xk → A

xk−1 ∧ ¬xk → A
¬xk−1 ∧ ¬xk → A

}
¬xk → A

thus F0
xk → A and F0

¬xk → A. From this and the third claim, F0
A.

2

Proof Complexity The last part of the proof contributes O(2k) new lines, with O(|A|) symbols
per line. Thus A has F0-proof of O(|A|2k) lines. The total number of symbols is O(|A|22k), where
k is the number of distinct variables in A.

3 Observations

The Completeness Theorem states that all valid tautologies can be proved. We observe that the
size bounds of the F0-proofs are the same as the size bounds of the Truth Table Proofs (TTP).
However, the F0 can be separated from the TTP. We demonstrate the separation by the following
example.

Example φ = (A1 ∧ ¬A1) ∨ (A2 ∧ A3 ∧ · · · ∧ Ak).

φ has a short F0-proof and exponentially large TTP. Thus in the best case F0-proofs are better
than TTP, but it is an open question whether they are better than TTP in the worst case.

A Proof System must be sound and the proofs ought to be checkable efficiently (in polynomial
time). Completeness is another property which is nice and desirable, but not required.

4 P-simulate

The next theorem states that Truth Table Proofs (TTP) can be converted into F0 proofs by a
polynomial time algorithm.

Theorem 4 (Simulation) Frege Proof Systems p-simulate Truth Table Proofs.

The converse does not hold as it can be seen from the example above. Thus TTP do not simulate
Frege Proof System.

Definition An abstract propositional proof system over the propositional language
L = {∨,∧,→,¬} is a polynomial time computable function f with domain strings of symbols and
range(f) ⊂ TAUT .

Definition The function f is complete if the range(f) = TAUT .
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Definition An f -proof of a formula ϕ is any x s.t. f(x) = ϕ.

Definition F0 as an abstract proof system is defined as:

fF0(x) =

{
ϕ if x codes a valid F0-proof of ϕ
(x1 ∨ ¬x1) otherwise

This idea for constructing an abstract proof systems works for many other proof systems too. For
example, let ZF be the usual theory of set theory, then

fZF (x) =

{
ϕ if x codes a valid ZF proof of ”ϕ is a tautology“
(x1 ∨ ¬x1) otherwise

is an abstract proof system.
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