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1 Monotone Craig Interpolation

Monotone Craig Interpolation provides another way to obtain exponential lower bounds on Reso-
lution proofs.

1.1 Propositional Case

Theorem 1 Let ¢ = ¢(p,q) be a formula in which the P variables occur only positively. Also,
suppose that = ¢ — 1 where (P, 7). Then there exists an interpolant C(p) such that the p
variables occur only positively in C.

Formulae are built with A, Vv, —.

Definition An occurrence is positive if and only if it is under the scope of an even number of —
signs.

Note that application of De Morgan’s Laws or the distributive laws does not affect whether a
particular occurrence is positive.

Lemma 2 Let the variables in p be p1,p2, ..., pr and let the variables p’ be pi,ph, ..., py. If pi — P}
is true Vi for some truth assignment, then C(p) is true = C(p”) is true, assuming that the variables
of p occur only positively in C. (This last property is called monotonicity.)

Proof By induction on size of C.

Proof (of Theorem 1) ¢(p,q) — (p,7) is the same as 37 ¢(p, §) — V7 (P, 7). Then let

co= W e (1)

all T/F settings
of the variables in ¢

The p’s occur only positively so we can see that this interpolant has the proper form.
Alternately, it can be shown that a fitting interpolant is

cm= N eEn. (2)

all T/F settings
of the variables in 7
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1.2 Resolution Case

Theorem 3 Let I' =T'(p,q) be a set of clauses, and let A = A(p, ) be a set of clauses.

Assume that the P’ variables occur only positively in A (that is, there are no —p;’s in clauses in
A), or assume that the p variables occur only negatively in T' (that is, there are no p;’s in clauses
inT'). Also assume I'UA is unsatisfiable (i.e. has a refutation). Then there is an interpolant C(p)
such that ¥V truth assignments T

if 7(C(p)) =T, then 3 clause C' € T' such that T(C) =False,
if T(C(p)) = F, then 3 clause C' € A such that 7(C') =False,

and such that the P’ variables occur only positively in C.

Proof
Let

C(p) = )\ W/ ~C(#.d). (3)

all T/F settings Ce€l
of the variables in ¢

That C(p) will be a fitting interpolant is immediate from the fact that if A UT" is unsatisfiable
M\ ¢ = \X/-C. (4)
CeA cel’

Alternately we may let

com= W MNo@n. (5)
all T/F settings C€A
of the variables in 7

Theorem 4 Let R be a refutation of T' U A of size s. Then C(p) can be written with monotone
circuit size O(s). If R is tree-like, C(p) has monotone formula size O(s).

Theorem 5 (Restatement of part of Theorem 4) Let T' consist of clauses containing ¢’s and neg-
ative occurrences of p’s. Let A consist of clauses containing 7’s and p’s. (Note that we make no
assumption on whether these p’ occur positively or negatively in the clauses of A.) If R is a refuta-
tion of TUA, then there exists an interpolant ¢, such that the size of ¢ is O(number of steps in R).

Definition For C a clause in R, we let ¢ be defined by
l. pc =T ifCeTl
2. pc=FitCeA
3. ¢c = bc,ugpy V (Pi N deuugpy) if C s such that

CrU{pi} CyU{pi}
C=CyUCy

4. ¢ = dcyufgiy N Poyuggy i C is such that

CrU{q} CoU{q}
C=C1UCy
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5. ¢ = dcyufry V Goyufr;y i C is such that

cCiu {TI} CyU {771}
C=C1Uly

Definition For C a clause, let CT = C'N{q;, @, p; : i > 0} and let C2 = C N {p;, ps, i, 7 =7 > 0}.
Claim For all 7, VC € R,

A.if 7 £ CF and 7(¢¢) = T, then 3D € T such that 7 = D.

B.if 7 £ C? and 7(¢¢) = F, then 3D € A such that 7 £ D.

Proof of this claim will imply that ¢y works as an interpolant, since )7 = () = ¢, which is not
satisfied by any 7.

Proof (of Claim)
Proof is by induction on inferences in R.

1. Cel. Thengpc=T. CeT = C' =Cn{q,G,p;i :i >0} =C. Then if 7 = OV, 7 }£ C,
and so trivially 3C' € I" such that 7 = C.

2. C € A. Then ¢c = F. C € A = C» = C. Hence if 7 £ C*?, trivially 3C € A such that
T C.

3. C'=C1UCy with 2L 2P} Then g0 = po,u0 V (91 A deyugan)-

(a) Suppose 7 [~ C' and 7(¢c) = T. Note that (C1 U {p;})! = CI. Then 7 & (C1 U {p;})',
since C} C CF and 7 £ C! imply that 7 j£ CF.
i. I 7(¢cyupy) = T, then since we have 7 = (C1U{p;})", by the induction hypothesis
we are done.
ii. Otherwise, 7(piAdc,u(py) = T+ Thus 7(¢cyugpy) = T Also7(pi) = T, s0 7 = {pi}-
Note {p;} = {p:}', so 7 [~ {p;}'. Also CY C OV and 7 [~ OV imply 7 [~ C}. Thus
7 = CY U {p;i}! and hence as C3 U {p;}1 = (Co U {p;})', we get 7 = (Co U {p;})L.
Since we have 7(¢c,uqp,y) = T and 7 E (C2 U {p: N, the induction hypothesis
applies.
(b) Suppose 7 [ C» and 7(¢¢) = F
i. If 7(p;) = T, then 7 = (Co U {p;})®. Also 7(¢c,uipy) = F. Then the induction
hypothesis applies.
ii. If 7(p;) = F, then 7 = (C1 U {p;})® and 7(¢c,u{p;y) = F. Then the induction
hypothesis applies.

4. C = Cq1U(Cy with Clugiz}clgés{qi}. Then ¢¢ = ¢Clu{q¢} VAN ¢C’2u{q’¢}’

(a) Suppose 7 = C' and 7(¢pc) = T. 7(¢c) = T implies that T(9cyuta) = T(Pcuuigy) = T-
Either 7 (£ (C1 U{g )T (if 7(¢;) = F) or 7 = (CoU{g@})' (if 7(¢;) = T). In either case,
the induction hypothesis applies.
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(b) Suppose 7 £ C» and 7(¢¢) = F. Note that (C1U{g;})® = CP and (CoU{g})™ = CP.
So 7 = (C1U{g;})® and 7 [ (CoU{g;})?. Also, since 7(¢c) = F, either m(Pcyuigy) = F
or T((ﬁCZu{qi}) = F 5o in either case the induction hypothesis applies.

5. C = C; UCy with Clu{é,"iclucés{ﬂ}. Then ¢¢c = ¢C1U{ri} V QbCQU{Fi}-

(a) Suppose 7 = CT and 7(¢¢) = T. Note that (C; U {r;})!' = C], and (Cy U {7 })! = CF.
Hence 7 £ (C1U{r; )T and 7 £ (Co U {7 ). Also, T((bclu{ri}) =T or 7(¢pcyuiry) =T
Then the induction hypothesis applies to whichever one equals T.

(b) Suppose T C2 and T(pc) = F. 7(¢c) = F implies T(qf)ClU{ri}) = T(gbcw{ﬁ}) =F.
Either 7 j£ (Cy U {r;})® (if 7(r;) = F) or 7 [ (Co U {7 })® (if 7(r;) = T). In either
case, the induction hypothesis applies.

Notice that ¢ is monotone in the p;’s.

1.3 Exponential Lower Bounds on Resolution Proofs for Clique and Coloring

Definition A k-coloring of a graph is an assignment of k colors to vertices such that no adjacent
vertices have the same color.

Definition A k-clique in a graph is a subset consisting of k nodes such that for any pair of nodes
in the subset there is an edge in the graph which joins them.

Theorem 6 A graph cannot have both a k + 1 clique and a k-coloring.



