Math 267a - Propositional Proof Complexity

Lecture \#11: 27 February 2002

Lecturer: Sam Buss

Scribe Notes by: Liz Arentzen

1 Monotone Craig Interpolation

Monotone Craig Interpolation provides another way to obtain exponential lower bounds on Resolution proofs.

1.1 Propositional Case

Theorem 1 Let $\phi=\phi(\vec{p}, \vec{q})$ be a formula in which the \vec{p} variables occur only positively. Also, suppose that $\models \phi \rightarrow \psi$ where $\psi(\vec{p}, \vec{r})$. Then there exists an interpolant $C(\vec{p})$ such that the \vec{p} variables occur only positively in C.

Formulae are built with \wedge, \vee, \neg.
Definition An occurrence is positive if and only if it is under the scope of an even number of \neg signs.

Note that application of De Morgan's Laws or the distributive laws does not affect whether a particular occurrence is positive.

Lemma 2 Let the variables in \vec{p} be $p_{1}, p_{2}, \ldots, p_{k}$ and let the variables \vec{p}^{\prime} be $p_{1}^{\prime}, p_{2}^{\prime}, \ldots, p_{k}^{\prime}$. If $p_{i} \rightarrow p_{i}^{\prime}$ is true $\forall i$ for some truth assignment, then $C(\vec{p})$ is true $\Rightarrow C\left(\vec{p}^{\prime}\right)$ is true, assuming that the variables of \vec{p} occur only positively in C. (This last property is called monotonicity.)

Proof By induction on size of C.
Proof (of Theorem 1) $\phi(\vec{p}, \vec{q}) \rightarrow \psi(\vec{p}, \vec{r})$ is the same as $\exists \vec{q} \phi(\vec{p}, \vec{q}) \rightarrow \forall \vec{r} \psi(\vec{p}, \vec{r})$. Then let

$$
\begin{equation*}
C(\vec{p}) \doteq \prod_{\substack{\text { all T/F settings } \\ \text { of the variables in } \vec{q}}}^{W} \phi(\vec{p}, \vec{q}) . \tag{1}
\end{equation*}
$$

The p 's occur only positively so we can see that this interpolant has the proper form.
Alternately, it can be shown that a fitting interpolant is

$$
\begin{equation*}
C(\vec{p}) \doteq \prod_{\substack{\text { all T/F settings } \\ \text { of the variables in } \vec{r}}} \psi(\vec{p}, \vec{r}) . \tag{2}
\end{equation*}
$$

1.2 Resolution Case

Theorem 3 Let $\Gamma=\Gamma(\vec{p}, \vec{q})$ be a set of clauses, and let $\Delta=\Delta(\vec{p}, \vec{r})$ be a set of clauses.
Assume that the \vec{p} variables occur only positively in Δ (that is, there are no $\neg p_{i}$'s in clauses in Δ), or assume that the \vec{p} variables occur only negatively in Γ (that is, there are no p_{i} 's in clauses in Γ). Also assume $\Gamma \cup \Delta$ is unsatisfiable (i.e. has a refutation). Then there is an interpolant $C(\vec{p})$ such that \forall truth assignments τ

$$
\begin{aligned}
& \text { if } \bar{\tau}(C(\vec{p}))=T \text {, then } \exists \text { clause } C \in \Gamma \text { such that } \tau(C)=\text { False, } \\
& \text { if } \bar{\tau}(C(\vec{p}))=F \text {, then } \exists \text { clause } C \in \Delta \text { such that } \tau(C)=\text { False, }
\end{aligned}
$$

and such that the \vec{p} variables occur only positively in C.

Proof

Let

$$
\begin{equation*}
C(\vec{p}) \doteq \prod_{\substack{\text { all T/F settings } \\ \text { of the variables in } \vec{q}}} W_{C \in \Gamma}^{\mathrm{X}} \neg C(\vec{p}, \vec{q}) . \tag{3}
\end{equation*}
$$

That $C(\vec{p})$ will be a fitting interpolant is immediate from the fact that if $\Delta \cup \Gamma$ is unsatisfiable

$$
\begin{equation*}
\bigwedge_{C \in \Delta} C \Rightarrow \bigvee_{C \in \Gamma} \neg \neg C \tag{4}
\end{equation*}
$$

Alternately we may let

$$
\begin{equation*}
C(\vec{p}) \doteq \varliminf_{\substack{\text { all T/F settings } \\ \text { of the variables in } \vec{r}}} \bigwedge_{C \in \Delta} C(\vec{p}, \vec{r}) . \tag{5}
\end{equation*}
$$

Theorem 4 Let R be a refutation of $\Gamma \cup \Delta$ of size s. Then $C(\vec{p})$ can be written with monotone circuit size $O(s)$. If R is tree-like, $C(\vec{p})$ has monotone formula size $O(s)$.

Theorem 5 (Restatement of part of Theorem 4) Let Γ consist of clauses containing \vec{q} 's and negative occurrences of \vec{p} 's. Let Δ consist of clauses containing \vec{r} 's and \vec{p} 's. (Note that we make no assumption on whether these \vec{p} occur positively or negatively in the clauses of Δ.) If R is a refutation of $\Gamma \cup \Delta$, then there exists an interpolant ϕ, such that the size of ϕ is O (number of steps in R).

Definition For C a clause in R, we let ϕ_{C} be defined by

1. $\phi_{C}=T$ if $C \in \Gamma$
2. $\phi_{C}=F$ if $C \in \Delta$
3. $\phi_{C}=\phi_{C_{1} \cup\left\{p_{i}\right\}} \vee\left(p_{i} \wedge \phi_{C_{2} \cup\left\{\bar{p}_{i}\right\}}\right)$ if C is such that

$$
\frac{C_{1} \cup\left\{p_{i}\right\} \quad C_{2} \cup\left\{\bar{p}_{i}\right\}}{C=C_{1} \cup C_{2}}
$$

4. $\phi_{C}=\phi_{C_{1} \cup\left\{q_{i}\right\}} \wedge \phi_{C_{2} \cup\left\{\bar{q}_{i}\right\}}$ if C is such that

$$
\frac{C_{1} \cup\left\{q_{i}\right\} \quad C_{2} \cup\left\{\bar{q}_{i}\right\}}{C=C_{1} \cup C_{2}}
$$

5. $\phi_{C}=\phi_{C_{1} \cup\left\{r_{i}\right\}} \vee \phi_{C_{2} \cup\left\{\bar{r}_{i}\right\}}$ if C is such that

$$
\frac{C_{1} \cup\left\{r_{i}\right\} \quad C_{2} \cup\left\{\bar{r}_{i}\right\}}{C=C_{1} \cup C_{2}}
$$

Definition For C a clause, let $C^{\Gamma}=C \cap\left\{q_{i}, \bar{q}_{i}, \bar{p}_{i}: i \geq 0\right\}$ and let $C^{\Delta}=C \cap\left\{p_{i}, \bar{p}_{i}, r_{i}, \bar{r}_{i}: i \geq 0\right\}$.
Claim For all $\tau, \forall C \in R$,
A. if $\tau \not \vDash C^{\Gamma}$ and $\tau\left(\phi_{C}\right)=T$, then $\exists D \in \Gamma$ such that $\tau \not \vDash D$.
B. if $\tau \not \vDash C^{\Delta}$ and $\tau\left(\phi_{C}\right)=F$, then $\exists D \in \Delta$ such that $\tau \not \vDash D$.

Proof of this claim will imply that ϕ_{\emptyset} works as an interpolant, since $\emptyset^{\Gamma}=\emptyset=\emptyset^{\Delta}$, which is not satisfied by any τ.

Proof (of Claim)
Proof is by induction on inferences in R.

1. $C \in \Gamma$. Then $\phi_{C}=T . C \in \Gamma \Rightarrow C^{\Gamma}=C \cap\left\{q_{i}, \bar{q}_{i}, \bar{p}_{i}: i \geq 0\right\}=C$. Then if $\tau \not \vDash C^{\Gamma}, \tau \not \vDash C$, and so trivially $\exists C \in \Gamma$ such that $\tau \not \vDash C$.
2. $C \in \Delta$. Then $\phi_{C}=F . C \in \Delta \Rightarrow C^{\Delta}=C$. Hence if $\tau \not \vDash C^{\Delta}$, trivially $\exists C \in \Delta$ such that $\tau \notin C$.
3. $C=C_{1} \cup C_{2}$ with $\frac{C_{1} \cup\left\{p_{i}\right\} \quad C_{2} \cup\left\{\bar{p}_{i}\right\}}{C=C_{1} \cup C_{2}}$. Then $\phi_{C}=\phi_{C_{1} \cup\left\{p_{i}\right\}} \vee\left(p_{i} \wedge \phi_{C_{2} \cup\left\{\bar{p}_{i}\right\}}\right)$.
(a) Suppose $\tau \not \models C^{\Gamma}$ and $\tau\left(\phi_{C}\right)=T$. Note that $\left(C_{1} \cup\left\{p_{i}\right\}\right)^{\Gamma}=C_{1}^{\Gamma}$. Then $\tau \not \vDash\left(C_{1} \cup\left\{p_{i}\right\}\right)^{\Gamma}$, since $C_{1}^{\Gamma} \subseteq C^{\Gamma}$ and $\tau \not \vDash C^{\Gamma}$ imply that $\tau \not \vDash C_{1}^{\Gamma}$.
i. If $\tau\left(\phi_{C_{1} \cup\left\{p_{i}\right\}}\right)=T$, then since we have $\tau \not \vDash\left(C_{1} \cup\left\{p_{i}\right\}\right)^{\Gamma}$, by the induction hypothesis we are done.
ii. Otherwise, $\tau\left(p_{i} \wedge \phi_{C_{2} \cup\left\{\bar{p}_{i}\right\}}\right)=T$. Thus $\tau\left(\phi_{C_{2} \cup\left\{\bar{p}_{i}\right\}}\right)=T$. Also $\tau\left(p_{i}\right)=T$, so $\tau \not \vDash\left\{\bar{p}_{i}\right\}$. Note $\left\{\bar{p}_{i}\right\}=\left\{\bar{p}_{i}\right\}^{\Gamma}$, so $\tau \not \vDash\left\{\bar{p}_{i}\right\}^{\Gamma}$. Also $C_{2}^{\Gamma} \subseteq C^{\Gamma}$ and $\tau \not \vDash C^{\Gamma}$ imply $\tau \not \vDash C_{2}^{\Gamma}$. Thus $\tau \not \vDash C_{2}^{\Gamma} \cup\left\{\bar{p}_{i}\right\}^{\Gamma}$ and hence as $C_{2}^{\Gamma} \cup\left\{\bar{p}_{i}\right\}^{\Gamma}=\left(C_{2} \cup\left\{\bar{p}_{i}\right\}\right)^{\Gamma}$, we get $\tau \not \vDash\left(C_{2} \cup\left\{\bar{p}_{i}\right\}\right)^{\Gamma}$. Since we have $\tau\left(\phi_{C_{2} \cup\left\{\bar{p}_{i}\right\}}\right)=T$ and $\tau \not \vDash\left(C_{2} \cup\left\{\bar{p}_{i}\right\}\right)^{\Gamma}$, the induction hypothesis applies.
(b) Suppose $\tau \not \vDash C^{\Delta}$ and $\tau\left(\phi_{C}\right)=F$
i. If $\tau\left(p_{i}\right)=T$, then $\tau \not \vDash\left(C_{2} \cup\left\{\bar{p}_{i}\right\}\right)^{\Delta}$. Also $\tau\left(\phi_{C_{2} \cup\left\{\bar{p}_{i}\right\}}\right)=F$. Then the induction hypothesis applies.
ii. If $\tau\left(p_{i}\right)=F$, then $\tau \not \vDash\left(C_{1} \cup\left\{p_{i}\right\}\right)^{\Delta}$ and $\tau\left(\phi_{C_{1} \cup\left\{p_{i}\right\}}\right)=F$. Then the induction hypothesis applies.
4. $C=C_{1} \cup C_{2}$ with $\frac{C_{1} \cup\left\{q_{i}\right\} \quad C_{2} \cup\left\{\bar{q}_{i}\right\}}{C=C_{1} \cup C_{2}}$. Then $\phi_{C}=\phi_{C_{1} \cup\left\{q_{i}\right\}} \wedge \phi_{C_{2} \cup\left\{\bar{q}_{i}\right\}}$.
(a) Suppose $\tau \not \vDash C^{\Gamma}$ and $\tau\left(\phi_{C}\right)=T . \tau\left(\phi_{C}\right)=T$ implies that $\tau\left(\phi_{C_{1} \cup\left\{q_{i}\right\}}\right)=\tau\left(\phi_{C_{2} \cup\left\{\bar{q}_{i}\right\}}\right)=T$. Either $\tau \not \vDash\left(C_{1} \cup\left\{q_{i}\right\}\right)^{\Gamma}$ (if $\left.\tau\left(q_{i}\right)=F\right)$ or $\tau \not \vDash\left(C_{2} \cup\left\{\bar{q}_{i}\right\}\right)^{\Gamma}$ (if $\left.\tau\left(q_{i}\right)=T\right)$. In either case, the induction hypothesis applies.
(b) Suppose $\tau \not \models C^{\Delta}$ and $\tau\left(\phi_{C}\right)=F$. Note that $\left(C_{1} \cup\left\{q_{i}\right\}\right)^{\Delta}=C_{1}^{\Delta}$ and $\left(C_{2} \cup\left\{\bar{q}_{i}\right\}\right)^{\Delta}=C_{2}^{\Delta}$. So $\tau \not \vDash\left(C_{1} \cup\left\{q_{i}\right\}\right)^{\Delta}$ and $\tau \not \vDash\left(C_{2} \cup\left\{\bar{q}_{i}\right\}\right)^{\Delta}$. Also, since $\tau\left(\phi_{C}\right)=F$, either $\tau\left(\phi_{C_{1} \cup\left\{q_{i}\right\}}\right)=F$ or $\tau\left(\phi_{C_{2} \cup\left\{\bar{q}_{i}\right\}}\right)=F$ so in either case the induction hypothesis applies.
5. $C=C_{1} \cup C_{2}$ with $\frac{C_{1} \cup\left\{r_{i}\right\} \quad C_{2} \cup\left\{\bar{r}_{i}\right\}}{C=C_{1} \cup C_{2}}$. Then $\phi_{C}=\phi_{C_{1} \cup\left\{r_{i}\right\}} \vee \phi_{C_{2} \cup\left\{\bar{r}_{i}\right\}}$.
(a) Suppose $\tau \not \vDash C^{\Gamma}$ and $\tau\left(\phi_{C}\right)=T$. Note that $\left(C_{1} \cup\left\{r_{i}\right\}\right)^{\Gamma}=C_{1}^{\Gamma}$, and $\left(C_{2} \cup\left\{\bar{r}_{i}\right\}\right)^{\Gamma}=C_{2}^{\Gamma}$. Hence $\tau \not \vDash\left(C_{1} \cup\left\{r_{i}\right\}\right)^{\Gamma}$ and $\tau \not \vDash\left(C_{2} \cup\left\{\bar{r}_{i}\right\}\right)^{\Gamma}$. Also, $\tau\left(\phi_{C_{1} \cup\left\{r_{i}\right\}}\right)=T$ or $\tau\left(\phi_{C_{2} \cup\left\{\bar{r}_{i}\right\}}\right)=T$. Then the induction hypothesis applies to whichever one equals T.
(b) Suppose $\tau \not \vDash C^{\Delta}$ and $\tau\left(\phi_{C}\right)=F . \tau\left(\phi_{C}\right)=F$ implies $\tau\left(\phi_{C_{1} \cup\left\{r_{i}\right\}}\right)=\tau\left(\phi_{C_{2} \cup\left\{\bar{r}_{i}\right\}}\right)=F$. Either $\tau \not \vDash\left(C_{1} \cup\left\{r_{i}\right\}\right)^{\Delta}$ (if $\left.\tau\left(r_{i}\right)=F\right)$ or $\tau \not \vDash\left(C_{2} \cup\left\{\bar{r}_{i}\right\}\right)^{\Delta}$ (if $\tau\left(r_{i}\right)=T$). In either case, the induction hypothesis applies.

Notice that ϕ is monotone in the p_{i} 's.

1.3 Exponential Lower Bounds on Resolution Proofs for Clique and Coloring

Definition A k-coloring of a graph is an assignment of k colors to vertices such that no adjacent vertices have the same color.

Definition A k-clique in a graph is a subset consisting of k nodes such that for any pair of nodes in the subset there is an edge in the graph which joins them.

Theorem 6 A graph cannot have both a $k+1$ clique and a k-coloring.

