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1 Monotone Craig Interpolation

Monotone Craig Interpolation provides another way to obtain exponential lower bounds on Reso-
lution proofs.

1.1 Propositional Case

Theorem 1 Let φ = φ(~p, ~q) be a formula in which the ~p variables occur only positively. Also,
suppose that |= φ → ψ where ψ(~p, ~r). Then there exists an interpolant C(~p) such that the ~p
variables occur only positively in C.

Formulae are built with ∧, ∨, ¬.

Definition An occurrence is positive if and only if it is under the scope of an even number of ¬
signs.

Note that application of De Morgan’s Laws or the distributive laws does not affect whether a
particular occurrence is positive.

Lemma 2 Let the variables in ~p be p1, p2, . . . , pk and let the variables ~p ′ be p′1, p′2, . . . , p′k. If pi → p′i
is true ∀i for some truth assignment, then C(~p) is true ⇒ C(~p ′) is true, assuming that the variables
of ~p occur only positively in C. (This last property is called monotonicity.)

Proof By induction on size of C.

Proof (of Theorem 1) φ(~p, ~q) → ψ(~p, ~r) is the same as ∃~q φ(~p, ~q) → ∀~r ψ(~p, ~r). Then let

C(~p) .=
∨∨

all T/F settings
of the variables in ~q

φ(~p, ~q). (1)

The p’s occur only positively so we can see that this interpolant has the proper form.
Alternately, it can be shown that a fitting interpolant is

C(~p) .=
∧∧

all T/F settings
of the variables in ~r

ψ(~p, ~r). (2)
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1.2 Resolution Case

Theorem 3 Let Γ = Γ(~p, ~q) be a set of clauses, and let ∆ = ∆(~p, ~r) be a set of clauses.
Assume that the ~p variables occur only positively in ∆ (that is, there are no ¬pi’s in clauses in

∆), or assume that the ~p variables occur only negatively in Γ (that is, there are no pi’s in clauses
in Γ). Also assume Γ∪∆ is unsatisfiable (i.e. has a refutation). Then there is an interpolant C(~p)
such that ∀ truth assignments τ

if τ̄(C(~p)) = T , then ∃ clause C ∈ Γ such that τ(C) =False,

if τ̄(C(~p)) = F , then ∃ clause C ∈ ∆ such that τ(C) =False,

and such that the ~p variables occur only positively in C.

Proof
Let

C(~p) .=
∧∧

all T/F settings
of the variables in ~q

∨∨

C∈Γ

¬C(~p, ~q). (3)

That C(~p) will be a fitting interpolant is immediate from the fact that if ∆ ∪ Γ is unsatisfiable
∧∧

C∈∆

C ⇒
∨∨

C∈Γ

¬C. (4)

Alternately we may let
C(~p) .=

∨∨

all T/F settings
of the variables in ~r

∧∧

C∈∆

C(~p, ~r). (5)

Theorem 4 Let R be a refutation of Γ ∪ ∆ of size s. Then C(~p) can be written with monotone
circuit size O(s). If R is tree-like, C(~p) has monotone formula size O(s).

Theorem 5 (Restatement of part of Theorem 4) Let Γ consist of clauses containing ~q’s and neg-
ative occurrences of ~p’s. Let ∆ consist of clauses containing ~r’s and ~p’s. (Note that we make no
assumption on whether these ~p occur positively or negatively in the clauses of ∆.) If R is a refuta-
tion of Γ∪∆, then there exists an interpolant φ, such that the size of φ is O(number of steps in R).

Definition For C a clause in R, we let φC be defined by

1. φC = T if C ∈ Γ

2. φC = F if C ∈ ∆

3. φC = φC1∪{pi} ∨ (pi ∧ φC2∪{p̄i}) if C is such that

C1 ∪ {pi} C2 ∪ {p̄i}
C = C1 ∪ C2

4. φC = φC1∪{qi} ∧ φC2∪{q̄i} if C is such that

C1 ∪ {qi} C2 ∪ {q̄i}
C = C1 ∪ C2
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5. φC = φC1∪{ri} ∨ φC2∪{r̄i} if C is such that

C1 ∪ {ri} C2 ∪ {r̄i}
C = C1 ∪ C2

Definition For C a clause, let CΓ = C ∩ {qi, q̄i, p̄i : i ≥ 0} and let C∆ = C ∩ {pi, p̄i, ri, r̄i : i ≥ 0}.

Claim For all τ , ∀C ∈ R,

A. if τ 6|= CΓ and τ(φC) = T , then ∃D ∈ Γ such that τ 6|= D.

B. if τ 6|= C∆ and τ(φC) = F , then ∃D ∈ ∆ such that τ 6|= D.

Proof of this claim will imply that φ∅ works as an interpolant, since ∅Γ = ∅ = ∅∆, which is not
satisfied by any τ .

Proof (of Claim)
Proof is by induction on inferences in R.

1. C ∈ Γ. Then φC = T . C ∈ Γ ⇒ CΓ = C ∩ {qi, q̄i, p̄i : i ≥ 0} = C. Then if τ 6|= CΓ, τ 6|= C,
and so trivially ∃C ∈ Γ such that τ 6|= C.

2. C ∈ ∆. Then φC = F . C ∈ ∆ ⇒ C∆ = C. Hence if τ 6|= C∆, trivially ∃C ∈ ∆ such that
τ 6|= C.

3. C = C1 ∪ C2 with C1∪{pi} C2∪{p̄i}
C=C1∪C2

. Then φC = φC1∪{pi} ∨ (pi ∧ φC2∪{p̄i}).

(a) Suppose τ 6|= CΓ and τ(φC) = T . Note that (C1 ∪{pi})Γ = CΓ
1 . Then τ 6|= (C1 ∪{pi})Γ,

since CΓ
1 ⊆ CΓ and τ 6|= CΓ imply that τ 6|= CΓ

1 .

i. If τ(φC1∪{pi}) = T , then since we have τ 6|= (C1∪{pi})Γ, by the induction hypothesis
we are done.

ii. Otherwise, τ(pi∧φC2∪{p̄i}) = T . Thus τ(φC2∪{p̄i}) = T . Also τ(pi) = T , so τ 6|= {p̄i}.
Note {p̄i} = {p̄i}Γ, so τ 6|= {p̄i}Γ. Also CΓ

2 ⊆ CΓ and τ 6|= CΓ imply τ 6|= CΓ
2 . Thus

τ 6|= CΓ
2 ∪ {p̄i}Γ and hence as CΓ

2 ∪ {p̄i}Γ = (C2 ∪ {p̄i})Γ, we get τ 6|= (C2 ∪ {p̄i})Γ.
Since we have τ(φC2∪{p̄i}) = T and τ 6|= (C2 ∪ {p̄i})Γ, the induction hypothesis
applies.

(b) Suppose τ 6|= C∆ and τ(φC) = F

i. If τ(pi) = T , then τ 6|= (C2 ∪ {p̄i})∆. Also τ(φC2∪{p̄i}) = F . Then the induction
hypothesis applies.

ii. If τ(pi) = F , then τ 6|= (C1 ∪ {pi})∆ and τ(φC1∪{pi}) = F . Then the induction
hypothesis applies.

4. C = C1 ∪ C2 with C1∪{qi} C2∪{q̄i}
C=C1∪C2

. Then φC = φC1∪{qi} ∧ φC2∪{q̄i}.

(a) Suppose τ 6|= CΓ and τ(φC) = T . τ(φC) = T implies that τ(φC1∪{qi}) = τ(φC2∪{q̄i}) = T .
Either τ 6|= (C1 ∪{qi})Γ (if τ(qi) = F ) or τ 6|= (C2 ∪{q̄i})Γ (if τ(qi) = T ). In either case,
the induction hypothesis applies.
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(b) Suppose τ 6|= C∆ and τ(φC) = F . Note that (C1∪{qi})∆ = C∆
1 and (C2∪{q̄i})∆ = C∆

2 .
So τ 6|= (C1∪{qi})∆ and τ 6|= (C2∪{q̄i})∆. Also, since τ(φC) = F , either τ(φC1∪{qi}) = F
or τ(φC2∪{q̄i}) = F so in either case the induction hypothesis applies.

5. C = C1 ∪ C2 with C1∪{ri} C2∪{r̄i}
C=C1∪C2

. Then φC = φC1∪{ri} ∨ φC2∪{r̄i}.

(a) Suppose τ 6|= CΓ and τ(φC) = T . Note that (C1 ∪ {ri})Γ = CΓ
1 , and (C2 ∪ {r̄i})Γ = CΓ

2 .
Hence τ 6|= (C1∪{ri})Γ and τ 6|= (C2∪{r̄i})Γ. Also, τ(φC1∪{ri}) = T or τ(φC2∪{r̄i}) = T .
Then the induction hypothesis applies to whichever one equals T .

(b) Suppose τ 6|= C∆ and τ(φC) = F . τ(φC) = F implies τ(φC1∪{ri}) = τ(φC2∪{r̄i}) = F .
Either τ 6|= (C1 ∪ {ri})∆ (if τ(ri) = F ) or τ 6|= (C2 ∪ {r̄i})∆ (if τ(ri) = T ). In either
case, the induction hypothesis applies.

Notice that φ is monotone in the pi’s.

1.3 Exponential Lower Bounds on Resolution Proofs for Clique and Coloring

Definition A k-coloring of a graph is an assignment of k colors to vertices such that no adjacent
vertices have the same color.

Definition A k-clique in a graph is a subset consisting of k nodes such that for any pair of nodes
in the subset there is an edge in the graph which joins them.

Theorem 6 A graph cannot have both a k + 1 clique and a k-coloring.
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