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1. WALKSAT, PART II

We now analyze the WalkSat algorithm described in the previous lecture for values of k at
least 3.

Recall that the WalkSat algorithm can be compared to a Markov process on the states
{0,1,2,...,n}, where n is the number of variables in the given instance of k-SAT. These
states represent the “distance” from the algorithm’s current generated assignment to the
nearest satisfying assignment. Let g; be the probability of reaching state 0 in at most
m = 3n steps starting from the state j.

We will allow ¢ “rightward” (away from 0) moves before ending up at state 0. This requires

j+2i moves, which is less than 3n since 4, j € {0,1,2,...,n}. The probability of a rightward
k—1 :
k

Therefore we have

q; > P [ending up at 0 after at most j + 2i moves]
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Now S —a = % So, ignoring the constants out in front, we can say that the order of the
binomial coefficient in question is
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Using this in our lower bound for ¢; we find
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Now recall that the algorithm for WalkSat has the form
Algorithm: WalkSat(T", k, n)

Loop: Choose at random a truth assignment for the variables.
Loop (at most 3n times): Check if formula is satisfied.
If not, flip a random literal in a random unsatisfied clause.

The probability p that the inner loop finds a satisfying assignment (assuming one exists)
can be estimated by
n
D> Z P [we disagree from a satisfying assignment in j values] g;
j=0
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and so the expected number of iterations of the outer loop before it succeeds is approxi-

mately
O (2’“;1) <o,



This is an improvement over the previous algorithm, but still runs in exponential time.
Below is a table for the expected runtime of WalkSat for various values of k.
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Compare this to the conjectured runtimes for deterministic algorithms for SAT.

Exponential Time Hypothesis: Let & > 3. Any deterministic algorithm for SAT takes time

n®W (s;)™ in k-SAT instances for some constant sj, > 1.

Strong Exponential Time Hypothesis: For any deterministic algorithm for SAT, limg_,o Sk =
2.

For a derandomization of the WalkSat algorithm see [1].

2. LovAsz LOCAL LEMMA, PART I

Definition. Let F1, Es, ..., E, be events in some probability space. We say G is a depen-
dency graph for Ex, ..., E, if G has vertex set {1,2,...,n} and for alli E; is independent
of the set {E; : there is no edge from i to j}.

We will use the notation
I'; ={j: there is an edge from i to j}.

Lovasz Local Lemma. Let Fy, ..., E, and G be as in the definition. Also let x1,x2,...,Ty €
[0,1) be such that

PE)] < [J (1 —).
jels
Then
PE\A...ANEy) > [](1 = ).
=1

Corollary. Suppose G has degree at most d (i.e., for all i we have |I';| < d). Suppose also
that P|E;] < p for alli. If either

ep(d+1) <1 ordpd <1

then
P(E1A...NE,) > 0.
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Proof of the Corollary. Let z; = d%—l for all 4. To apply the Lovasz Local Lemma we need
to show that

< Loy
P=a dri)
This will show that P(E;) < a;[[;cp,(1 — ;) and it will follow that P(Ey A ... A Ey) >
0.

d
In the first case, if ep(d + 1) < 1, it suffices to show that % < (1 — ﬁ) . We can show
this easily by taking the logarithm of both sides.

Otherwise, if 4pd < 1, it suffices to show that
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This is true if and only if

1< d d+1_ . 1 d+1
4~ \d+1 - d+1 '

Taking logarithms, we need to verify that

—log(4) < (d+1)log <1 - dj—l) ,

which is true for all d > 1. Thus the corollary is proved. g

For an improved, and optimal, version of the Corollary, see [2].
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