Math 261C: Randomized Algorithms

Lecture topic: WalkSat, part II \& Lovász Local Lemma, part I
Lecturer: Sam Buss
Scribe notes by: Christian Woods
Date: April 7, 2014

1. WalkSat, Part II

We now analyze the WalkSat algorithm described in the previous lecture for values of k at least 3.

Recall that the WalkSat algorithm can be compared to a Markov process on the states $\{0,1,2, \ldots, n\}$, where n is the number of variables in the given instance of k-SAT. These states represent the "distance" from the algorithm's current generated assignment to the nearest satisfying assignment. Let q_{j} be the probability of reaching state 0 in at most $m=3 n$ steps starting from the state j.

We will allow i "rightward" (away from 0) moves before ending up at state 0 . This requires $j+2 i$ moves, which is less than $3 n$ since $i, j \in\{0,1,2, \ldots, n\}$. The probability of a rightward move is $\frac{k-1}{k}$ and the probability of a leftward move is $\frac{1}{k}$.

Therefore we have

$$
\begin{aligned}
q_{j} & \geq P \text { [ending up at } 0 \text { after at most } j+2 i \text { moves }] \\
& \geq\binom{ j+2 i}{i}\left(\frac{1}{k}\right)^{j+i}\left(\frac{k-1}{k}\right)^{i} .
\end{aligned}
$$

Let $i=\left\lceil\frac{j}{k-2}\right\rceil$ so that $i \approx \alpha j$ for $\alpha=\frac{1}{k-2}$. Then $j+2 i \approx \beta j$ for $\beta=1+2 \alpha=\frac{k}{k-2}$.
Then by Stirling's Formula (which states $n!\approx \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}$) we have

$$
\begin{aligned}
\binom{j+2 i}{i} & \approx\binom{\beta j}{\alpha j} \\
& =\frac{(\beta j)!}{(\alpha j)!((\beta-\alpha) j)!} \\
& \approx \frac{1}{\sqrt{2 \pi}} \sqrt{\frac{\beta}{\alpha(\beta-\alpha)}} \frac{1}{\sqrt{j}}\left(\frac{\beta^{\beta}}{\alpha^{\alpha}(\beta-\alpha)^{\beta-\alpha}}\right)^{j} .
\end{aligned}
$$

Now $\beta-\alpha=\frac{k-1}{k-2}$. So, ignoring the constants out in front, we can say that the order of the binomial coefficient in question is

$$
\binom{j+2 i}{i} \approx \frac{1}{j^{\Theta(1)}}\left(\frac{k^{k / k-2}}{(k-1)^{(k-1) /(k-2)}}\right)^{j}
$$

Using this in our lower bound for q_{j} we find

$$
q_{j}>\frac{1}{j^{\Theta(1)}}\left(\frac{1}{k-1}\right)^{j}
$$

Now recall that the algorithm for WalkSat has the form

Algorithm: WalkSat($\Gamma, k, n)$

Loop: Choose at random a truth assignment for the variables.
Loop (at most 3n times): Check if formula is satisfied.
If not, flip a random literal in a random unsatisfied clause.

The probability p that the inner loop finds a satisfying assignment (assuming one exists) can be estimated by
$p>\sum_{j=0}^{n} P$ [we disagree from a satisfying assignment in j values] q_{j}
$\geq \sum_{j=0}^{n}\left(\frac{1}{2^{n}}\binom{n}{j}\right) \frac{1}{n^{\Theta(1)}}\left(\frac{1}{k-1}\right)^{j}$
$=\frac{1}{n^{\Theta(1)}} \frac{1}{2^{n}} \sum_{j=0}^{n}\binom{n}{j}\left(\frac{1}{k-1}\right)^{j}$
$=\frac{1}{n^{\Theta(1)}} \frac{1}{2^{n}}\left(1+\frac{1}{k-1}\right)^{n}$
$=\frac{1}{n^{\Theta(1)}} \frac{1}{2^{n}}\left(\frac{k}{k-1}\right)^{n}$
$=\frac{1}{n^{\Theta(1)}}\left(\frac{1}{2} \frac{k}{k-1}\right)^{n}$
$>\frac{1}{2^{n}}$,
and so the expected number of iterations of the outer loop before it succeeds is approximately

$$
n^{\Theta(1)}\left(2 \frac{k-1}{k}\right)^{n}<2^{n}
$$

This is an improvement over the previous algorithm, but still runs in exponential time.
Below is a table for the expected runtime of WalkSat for various values of k.

k	Expected Runtime
3	$\left(\frac{4}{3}\right)^{n}$
4	$\left(\frac{3}{2}\right)^{n}$
5	$\left(\frac{8}{5}\right)^{n}$
k	$\left(s_{k}\right)^{n}$

Compare this to the conjectured runtimes for deterministic algorithms for SAT.
Exponential Time Hypothesis: Let $k \geq 3$. Any deterministic algorithm for SAT takes time

Strong Exponential Time Hypothesis: For any deterministic algorithm for SAT, $\lim _{k \rightarrow \infty} s_{k}=$ 2.

For a derandomization of the WalkSat algorithm see [1].

2. Lovász Local Lemma, Part I

Definition. Let $E_{1}, E_{2}, \ldots, E_{n}$ be events in some probability space. We say G is a dependency graph for E_{1}, \ldots, E_{n} if G has vertex set $\{1,2, \ldots, n\}$ and for all $i E_{i}$ is independent of the set $\left\{E_{j}\right.$: there is no edge from i to $\left.j\right\}$.

We will use the notation

$$
\Gamma_{i}=\{j: \text { there is an edge from } i \text { to } j\}
$$

Lovász Local Lemma. Let E_{1}, \ldots, E_{n} and G be as in the definition. Also let $x_{1}, x_{2}, \ldots, x_{n} \in$ $[0,1)$ be such that

$$
P\left[E_{i}\right] \leq x_{i} \prod_{j \in \Gamma_{i}}\left(1-x_{j}\right)
$$

Then

$$
P\left[\overline{E_{1}} \wedge \ldots \wedge \overline{E_{n}}\right] \geq \prod_{i=1}^{n}\left(1-x_{i}\right)
$$

Corollary. Suppose G has degree at most d (i.e., for all i we have $\left|\Gamma_{i}\right| \leq d$). Suppose also that $P\left[E_{i}\right] \leq p$ for all i. If either

$$
e p(d+1) \leq 1 \text { or } 4 p d \leq 1
$$

then

$$
P\left(\overline{E_{1}} \wedge \ldots \wedge \overline{E_{n}}\right)>0
$$

Proof of the Corollary. Let $x_{i}=\frac{1}{d+1}$ for all i. To apply the Lovász Local Lemma we need to show that

$$
p \leq \frac{1}{d+1}\left(1-\frac{1}{d+1}\right)^{d}
$$

This will show that $P\left(E_{i}\right) \leq x_{i} \prod_{j \in \Gamma_{i}}\left(1-x_{j}\right)$ and it will follow that $P\left(\overline{E_{1}} \wedge \ldots \wedge \overline{E_{n}}\right)>$ 0.

In the first case, if $e p(d+1) \leq 1$, it suffices to show that $\frac{1}{e} \leq\left(1-\frac{1}{d+1}\right)^{d}$. We can show this easily by taking the logarithm of both sides.
Otherwise, if $4 p d \leq 1$, it suffices to show that

$$
\frac{1}{4 d} \leq \frac{1}{d+1}\left(1-\frac{1}{d+1}\right)^{d}=\frac{1}{d+1}\left(\frac{d}{d+1}\right)^{d}
$$

This is true if and only if

$$
\frac{1}{4} \leq\left(\frac{d}{d+1}\right)^{d+1}=\left(1-\frac{1}{d+1}\right)^{d+1}
$$

Taking logarithms, we need to verify that

$$
-\log (4) \leq(d+1) \log \left(1-\frac{1}{d+1}\right)
$$

which is true for all $d \geq 1$. Thus the corollary is proved.
For an improved, and optimal, version of the Corollary, see [2].

References

[1] Moser, R.A. and D. Scheder. A Full Derandomization of Schoening's k-SAT Algorithm. SToC 2011.
[2] Shearer. On a Problem of Spencer. Combinatorica 5 (1985) 241-245.

