
Math 261C: Randomized Algorithms

Lecture topic: WalkSat, part II & Lovász Local Lemma, part I

Lecturer: Sam Buss
Scribe notes by: Christian Woods

Date: April 7, 2014

1. WalkSat, Part II

We now analyze the WalkSat algorithm described in the previous lecture for values of k at
least 3.

Recall that the WalkSat algorithm can be compared to a Markov process on the states
{0, 1, 2, . . . , n}, where n is the number of variables in the given instance of k-SAT. These
states represent the “distance” from the algorithm’s current generated assignment to the
nearest satisfying assignment. Let qj be the probability of reaching state 0 in at most
m = 3n steps starting from the state j.

We will allow i “rightward” (away from 0) moves before ending up at state 0. This requires
j+2i moves, which is less than 3n since i, j ∈ {0, 1, 2, . . . , n}. The probability of a rightward
move is k−1

k and the probability of a leftward move is 1
k .

Therefore we have

qj ≥ P [ending up at 0 after at most j + 2i moves]

≥
(
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i

)(
1

k

)j+i(k − 1

k

)i
.

Let i =
⌈

j
k−2

⌉
so that i ≈ αj for α = 1

k−2 . Then j + 2i ≈ βj for β = 1 + 2α = k
k−2 .

Then by Stirling’s Formula (which states n! ≈
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)n
) we have(
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Now β−α = k−1
k−2 . So, ignoring the constants out in front, we can say that the order of the

binomial coefficient in question is(
j + 2i

i

)
≈ 1

jΘ(1)

(
kk/k−2

(k − 1)(k−1)/(k−2)

)j
.

Using this in our lower bound for qj we find

qj >
1

jΘ(1)

(
1

k − 1

)j
.

Now recall that the algorithm for WalkSat has the form

Algorithm: WalkSat(Γ, k, n)

Loop: Choose at random a truth assignment for the variables.
Loop (at most 3n times): Check if formula is satisfied.

If not, flip a random literal in a random unsatisfied clause.

The probability p that the inner loop finds a satisfying assignment (assuming one exists)
can be estimated by

p >
n∑
j=0

P [we disagree from a satisfying assignment in j values] qj
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by the binomial theorem
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and so the expected number of iterations of the outer loop before it succeeds is approxi-
mately

nΘ(1)

(
2
k − 1

k

)n
< 2n.
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This is an improvement over the previous algorithm, but still runs in exponential time.

Below is a table for the expected runtime of WalkSat for various values of k.

k Expected Runtime
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)n
k (sk)

n

Compare this to the conjectured runtimes for deterministic algorithms for SAT.

Exponential Time Hypothesis: Let k ≥ 3. Any deterministic algorithm for SAT takes time

nΘ(1)(sk)
n in k-SAT instances for some constant sk > 1.

Strong Exponential Time Hypothesis: For any deterministic algorithm for SAT, limk→∞ sk =
2.

For a derandomization of the WalkSat algorithm see [1].

2. Lovász Local Lemma, Part I

Definition. Let E1, E2, . . . , En be events in some probability space. We say G is a depen-
dency graph for E1, . . . , En if G has vertex set {1, 2, . . . , n} and for all i Ei is independent
of the set {Ej : there is no edge from i to j}.

We will use the notation

Γi = {j : there is an edge from i to j}.

Lovász Local Lemma. Let E1, . . . , En and G be as in the definition. Also let x1, x2, . . . , xn ∈
[0, 1) be such that

P [Ei] ≤ xi
∏
j∈Γi

(1− xj).

Then

P [E1 ∧ . . . ∧ En] ≥
n∏
i=1

(1− xi).

Corollary. Suppose G has degree at most d (i.e., for all i we have |Γi| ≤ d). Suppose also
that P [Ei] ≤ p for all i. If either

ep(d+ 1) ≤ 1 or 4pd ≤ 1

then

P (E1 ∧ . . . ∧ En) > 0.
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Proof of the Corollary. Let xi = 1
d+1 for all i. To apply the Lovász Local Lemma we need

to show that

p ≤ 1

d+ 1

(
1− 1

d+ 1

)d
.

This will show that P (Ei) ≤ xi
∏
j∈Γi

(1 − xj) and it will follow that P (E1 ∧ . . . ∧ En) >
0.

In the first case, if ep(d + 1) ≤ 1, it suffices to show that 1
e ≤

(
1− 1

d+1

)d
. We can show

this easily by taking the logarithm of both sides.

Otherwise, if 4pd ≤ 1, it suffices to show that

1

4d
≤ 1

d+ 1

(
1− 1

d+ 1

)d
=

1

d+ 1

(
d

d+ 1

)d
.

This is true if and only if

1

4
≤
(

d

d+ 1

)d+1

=

(
1− 1

d+ 1

)d+1

.

Taking logarithms, we need to verify that

− log(4) ≤ (d+ 1) log

(
1− 1

d+ 1

)
,

which is true for all d ≥ 1. Thus the corollary is proved. �

For an improved, and optimal, version of the Corollary, see [2].
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