Math 260A — Mathematical Logic — Scribe Notes UCSD — Winter Quarter 2012 Instructor: Sam Buss

Notes by: Bob Chen Wednesday, May 16, 2012

Remark 0.1. We can define LenNumOnes(x) = NumOnes(|x|) = number of 1s in the binary representation of |x|.

But we've only defined NumOnes(k) for k such that 2^k exists (this may not be all k if we have e.g. a nonstandard model).

Let $a = (a_l \cdots a_0)_2$ with l = |a| - 1. Let

$$b_i = \sum_{j=0}^i a_i$$

be the number of 1s in $(a_i \cdots a_0)$. Recall that x^* is the power of 2 that maximally divides x. Now define

$$c_i = \begin{cases} b_i^* & b_i \neq b_{i-1} \text{ or } i = 0\\ \epsilon & \text{else.} \end{cases}$$

so that if we code the sequence $(c_l \cdots c_0)$ we use only O(|a|) qits.

Therefore NumOnes(x) is Δ_0 defined in $I\Delta_0$.

1 Arithmetizing Metamathematics in $I\Sigma_1$ (Intensionally)

Remark 1.1. An intensional arithmetizing means that 'simple' properties are provable in $I\Delta_0$.

If we were to use an extensional method, it could handle Gödel's Incompleteness theorem for theories as weak as \mathbb{Q} , but the intensional method only works for things like $I\Sigma_1$.

Definition 1.2. We can code formulas into sequences (of integers) and then into integers. This resulting number is the $G\ddot{o}del\ number$ of the formula.

The symbols we have are

$$\land, \lor, \neg, \rightarrow, (,), comma, =, 0, 1, \forall, \exists, \Rightarrow, a, x,$$

and all the language specific symbols. This lets us write every formula with this finite language Σ (actually more: formulas, sequents, and proofs are all themselves members of Σ^*).

If A is a string of symbols we write $\lceil A \rceil$ for the Gödel number of A. We define the property WFF(x) if $x = \lceil A \rceil$ for a well-formed formula A (can do this with a parse tree etc.).

Remark 1.3. Our goal is to prove theorems about these concepts in $I\Delta_0$.

We can define stuff like BoundVar(w) easily. It's a bit trickier to define Term(w) where $w = \lceil t \rceil$ for some term t, but we can do it via recursive parsing. The point is these are all Δ_0 definable in $I\Delta_0$.

It turns out that $I\Delta_0$ can prove 'simple' facts such as

$$Term(w_1) \wedge Term(w_2) \rightarrow AtomicFormula(w_1 + \langle \vdash = \urcorner \rangle + w_2)$$

and

$$WFF(w_1) \wedge WFF(w_2) \rightarrow WFF(w_1 + \langle \lceil \wedge \rceil \rangle + w_2)$$

Remark 1.4. Next time we'll look at quantifiers. These are trickier.