
Math 260A — Mathematical Logic — Scribe Notes
UCSD — Winter Quarter 2012

Instructor: Sam Buss

Notes by: Bob Chen
Wednesday, May 16, 2012

Remark 0.1. We can define LenNumOnes(x) = NumOnes(|x|) = number of 1s in the binary representation
of |x|.

But we’ve only defined NumOnes(k) for k such that 2k exists (this may not be all k if we have e.g. a
nonstandard model).

Let a = (al · · · a0)2 with l = |a| − 1. Let

bi =

i∑
j=0

ai

be the number of 1s in (ai · · · a0). Recall that x? is the power of 2 that maximally divides x. Now define

ci =

{
b?i bi 6= bi−1 or i = 0

ε else.

so that if we code the sequence (cl · · · c0) we use only O(|a|) qits.
Therefore NumOnes(x) is ∆0 defined in I∆0.

1 Arithmetizing Metamathematics in IΣ1 (Intensionally)

Remark 1.1. An intensional arithmetizing means that ‘simple’ properties are provable in I∆0.
If we were to use an extensional method, it could handle Gödel’s Incompleteness theorem for theories as

weak as Q, but the intensional method only works for things like IΣ1.

Definition 1.2. We can code formulas into sequences (of integers) and then into integers. This resulting
number is the Gödel number of the formula.

The symbols we have are

∧,∨,¬,→, (,), comma,=, 0, 1,∀,∃,⇒, a, x,

and all the language specific symbols. This lets us write every formula with this finite language Σ (actually
more: formulas, sequents, and proofs are all themselves members of Σ?).

If A is a string of symbols we write pAq for the Gödel number of A. We define the property WFF (x) if
x = pAq for a well-formed formula A (can do this with a parse tree etc.).

Remark 1.3. Our goal is to prove theorems about these concepts in I∆0.
We can define stuff like BoundV ar(w) easily. It’s a bit trickier to define Term(w) where w = ptq for

some term t, but we can do it via recursive parsing. The point is these are all ∆0 definable in I∆0.
It turns out that I∆0 can prove ‘simple’ facts such as

Term(w1) ∧ Term(w2)→ AtomicFormula(w1 + 〈p=q〉+ w2)

and
WFF (w1) ∧WFF (w2)→WFF (w1 + 〈p∧q〉+ w2)

Remark 1.4. Next time we’ll look at quantifiers. These are trickier.

1

