
Math 260A — Mathematical Logic — Scribe Notes
UCSD — Spring Quarter 2012

Instructor: Sam Buss

Notes by: Angela Hicks
May 14th

Last time we talked about the ∆0 definition of the graph of 2x = y.

Claim 1. I∆0 proves “simple” properties of exponentiation, such as:

1. (2x = y)→ (2x+y = 2y)

2. (2x = y) ∪ (2x
′

= y′)→ (2x+x′
= yy′)

3. 20 = 1

Note that we technically proved only expressibility, not provability.
Recall how we incrementally expressed i and i∗:

i i∗
1 1
10 10
11 1
100 x100
101 x1

or

i i∗

1 1
10 10
11 1
100 x100
101 1
110 x10

or

i i∗

1 1
10 10
11 1
100 x100
101 1
110 x10
111 x1

or finally,

i i∗

1 1
10 10
11 1
100 100
101 1
110 10
111 1
1000 x1000

Note that with each table, we add (in net) two more symbols from one table
to the next. This can be formalized in I∆0. Let

w = 1∗2∗ . . . k∗.

As we showed in class last week,

|w| = 2k −Numones(k).

Let w give w with the ‘x’s in the above table recorded as 1s.

Example 1. w = 11011001 and w = 1101110011.

The sketched inductive argument from the tables above gives us that
|w| = 2k.

1

Theorem 1. I∆0 can ∆0 define Numones(x) = i↔ (|w|− |w| = 2i), where
|w| := least i ≤ w : 2i > w

Example 2. 5 = (101)2 so |5| = 3 since 23 > 5 > 22

Claim 2. I∆0 proves “simple” properties of Numones(x), such as:

1. Numones(x) ≤ |x|

2. Numones(2x) = Numones(x)

3. Numones(2x+ 1) = Numones(x) + 1

4. “z is a power of 2” implies Numones(z) = 1

5. Numones(x+ 2|x|y) = Numones(x) + Numones(y)

1 An Alternated Method for Sequence Encoding
Based on Numones

In base 4, use 2 as a comma. Thus represent 〈a0, . . . , ak−1〉 as 2a02a1 . . . 2ak−1,
with each ai written in binary notation. Then Numones can be used to count
the number of 2s.

w → x; ∀i ≤ xBit(i, x) = 1↔ Qit(i, w) = 2 Bit(2i+1, w)∩Qit(i, w) = Bit(i, w)+2

Then Numones(x) = Numcommas(w). Also let

Len(w) := Numcommas(w),

Last(w) := wmod 4i, where i is the least value such that Qit(i, w) = 2,

Pickout(i, w) =
w

4j
where j least such that Len(

w

4j
= i),

β(i, w) := Last(Pickout(i+ 1, w))

Claim 3. I∆0 proves “simple” properties of sequence coding, along with ∆0

defining x→ 〈x〉, w _ x (appending), and w1 ∗ w2 (concatenating):

1. β(0, 〈x〉) = x

Len(〈x〉) = 1

Len(〈〉) = 0

2. Len(w _ x) = Len(w) + 1

2

3. Len(w1 ∗ w2) = Len(w1) + Len(w2)

4. i < Len(w)→ β(i, w) = β(i, w _ x) = β(i, w ∗ w)

5. β(Len(w), w _ x) = x

β(i+ Len(w), w ∗ w′) = β(i, w)

6. |〈a0, . . . ak−1〉| = 2
(
k +

∑k−1
i=0 |ai|

)
, where the sequence has no extra-

neous leading 0s, is in base 4 representation with no 3s, and any 2 in
base four notation is not followed by a 0.

Unassigned homework:

|〈a0, . . . ak−1〉| =
k−1∑
i=0

ai

is ∆0 definable in I∆0.
Recall I∆0 does not prove ∀x∃y(2x = y).

Theorem 2. IΣ1 ` ∀x∃y(2x = y).

Proof. Recall that IΣ1 is I∆0 and induction on Σ1 formulas. Arguing infor-
mally, IΣ1 with define the sequence w = 〈1, 2, 4, 8, 16, . . . where β(i, w) = 2i.
Then w satisfies φ(w) where

φ(w) := (β(0, w) = 1) ∩ (∀i < Len(w)− 1)β(i+ 1, w) = 2β(i, w).

IΣ1 ` ∀i∃w(φ(w) ∩ Len(w) = i+ 1)

using induction on i.
IΣ1 ` φ(0) using w = 〈1〉.
IΣ1 ` φ(i)→ φ(i+ 1) using w → w _ 2β(Len(w)− 1, w).
Thus IΣ1 ` ∀iφ(i)
Then 2x as a function is Σ1 defined by

2x = y ↔ ∃w(Len(w) = x+ 1 ∩ φ(w) ∩ β(x,w) = y).

This Σ1 definition of 2x is IΣ1.

Theorem 3. IΣ1 can Σ1 define every primitive recursive function.

3

Proof. (Sketch.) By induction, starting with 0, S, and the projection maps,
and then inductively working with composition and primitive recursion. (We
show the latter.) Suppose IΣ1 can Σ1 define g(x) and h(m, s, x) and suppose

f(0, x) = g(x)

f(m+ 1, x) = h(m, f(m,x), x).

We want to show that IΣ1 can Σ1 define f . By assumption we have

Φy(x, y)↔ g(x) = y,

Φh(m, s, x, y)↔ h(m, s, x) = y,

and that Φg and Φh are in Σ1. Define f(x) = y by

w = 〈f(0, x), dots, f(m,x)〉,

f(m,x) =y ↔ ∃w(Len(w) = m+ 1 ∩ β(0, w) = g(x)∩
(∀i < Len(w)− 1)(β(i+ 1, w) = h(i+ 1, β(i, w), x)) ∩ β(m,w) = y).

Thus

f(m,x) =y ↔ ∃w(Len(w) = m+ 1 ∩ Φg(x, β(0, w))∩
(∀i < Len(w)− 1)Φh(i+ 1, β(i, w), x, β(i+ 1, w))).

4

