Math 260A - Mathematical Logic - Scribe Notes
 UCSD - Spring Quarter 2012
 Instructor: Sam Buss

Notes by: Angela Hicks
May 14th
Last time we talked about the Δ_{0} definition of the graph of $2^{x}=y$.
Claim 1. $I \Delta_{0}$ proves "simple" properties of exponentiation, such as:

1. $\left(2^{x}=y\right) \rightarrow\left(2^{x+y}=2 y\right)$
2. $\left(2^{x}=y\right) \cup\left(2^{x^{\prime}}=y^{\prime}\right) \rightarrow\left(2^{x+x^{\prime}}=y y^{\prime}\right)$
3. $2^{0}=1$

Note that we technically proved only expressibility, not provability.
Recall how we incrementally expressed i and i^{*} :

i	$i *$
1	1
10	10
11	1
100	x 100
101	x 1

or | i | i^{*} |
| :---: | :---: |
| 1 | 1 |
| 10 | 10 |
| 11 | 1 |
| 100 | x100 |
| 101 | 1 |
| 110 | x10 |

or | i | i^{*} |
| :---: | :---: |
| 1 | 1 |
| 10 | 10 |
| 11 | 1 |
| 100 | x 100 |
| 101 | 1 |
| 110 | x 10 |
| 111 | x 1 |

i	i^{*}
1	1
10	10
11	1
100	100
101	1
110	10
111	1
1000	x 1000

Note that with each table, we add (in net) two more symbols from one table to the next. This can be formalized in $I \Delta_{0}$. Let

$$
w=1^{*} 2^{*} \ldots k^{*} .
$$

As we showed in class last week,

$$
|w|=2 k-\operatorname{Numones}(k) .
$$

Let \bar{w} give w with the ' x 's in the above table recorded as 1 s .
Example 1. $w=11011001$ and $\bar{w}=1101110011$.
The sketched inductive argument from the tables above gives us that $|\bar{w}|=2^{k}$.

Theorem 1. $I \Delta_{0}$ can Δ_{0} define Numones $(x)=i \leftrightarrow(|\bar{w}|-|w|=2 i)$, where $|w|:=$ least $i \leq w: 2^{i}>w$

Example 2. $5=(101)_{2}$ so $|5|=3$ since $2^{3}>5>2^{2}$
Claim 2. $I \Delta_{0}$ proves "simple" properties of $\operatorname{Numones}(x)$, such as:

1. Numones $(x) \leq|x|$
2. $\operatorname{Numones}(2 x)=\operatorname{Numones}(x)$
3. $\operatorname{Numones}(2 x+1)=\operatorname{Numones}(x)+1$
4. "z is a power of 2 " implies Numones $(z)=1$
5. Numones $\left(x+2^{|x|} y\right)=\operatorname{Numones}(x)+\operatorname{Numones}(y)$

1 An Alternated Method for Sequence Encoding Based on Numones

In base 4 , use 2 as a comma. Thus represent $\left\langle a_{0}, \ldots, a_{k-1}\right\rangle$ as $2 a_{0} 2 a_{1} \ldots 2 a_{k-1}$, with each a_{i} written in binary notation. Then Numones can be used to count the number of 2 s .
$w \rightarrow x ; \forall i \leq x \operatorname{Bit}(i, x)=1 \leftrightarrow \operatorname{Qit}(i, w)=2 \operatorname{Bit}(2 i+1, w) \cap \operatorname{Qit}(i, w)=\operatorname{Bit}(i, w)+2$
Then Numones $(x)=$ Numcommas (w). Also let

$$
\operatorname{Len}(w):=\operatorname{Numcommas}(w)
$$

$\operatorname{Last}(w):=w \bmod 4^{i}$, where i is the least value such that $\operatorname{Qit}(i, w)=2$,

$$
\begin{gathered}
\operatorname{Pickout}(i, w)=\frac{w}{4^{j}} \text { where } j \text { least such that } \operatorname{Len}\left(\frac{w}{4^{j}}=i\right) \\
\beta(i, w):=\operatorname{Last}(\operatorname{Pickout}(i+1, w))
\end{gathered}
$$

Claim 3. $I \Delta_{0}$ proves "simple" properties of sequence coding, along with Δ_{0} defining $x \rightarrow\langle x\rangle, w \frown x$ (appending), and $w_{1} * w_{2}$ (concatenating):

1. $\beta(0,\langle x\rangle)=x$
$\operatorname{Len}(\langle x\rangle)=1$
$\operatorname{Len}(\rangle)=0$
2. $\operatorname{Len}(w \frown x)=\operatorname{Len}(w)+1$
3. $\operatorname{Len}\left(w_{1} * w_{2}\right)=\operatorname{Len}\left(w_{1}\right)+\operatorname{Len}\left(w_{2}\right)$
4. $i<\operatorname{Len}(w) \rightarrow \beta(i, w)=\beta(i, w \frown x)=\beta(i, w * w)$
5. $\beta(\operatorname{Len}(w), w \frown x)=x$ $\beta\left(i+\operatorname{Len}(w), w * w^{\prime}\right)=\beta(i, w)$
6. $\left|\left\langle a_{0}, \ldots a_{k-1}\right\rangle\right|=2\left(k+\sum_{i=0}^{k-1}\left|a_{i}\right|\right)$, where the sequence has no extraneous leading 0s, is in base 4 representation with no 3s, and any 2 in base four notation is not followed by a 0 .

Unassigned homework:

$$
\left|\left\langle a_{0}, \ldots a_{k-1}\right\rangle\right|=\sum_{i=0}^{k-1} a_{i}
$$

is Δ_{0} definable in $I \Delta_{0}$.
Recall $I \Delta_{0}$ does not prove $\forall x \exists y\left(2^{x}=y\right)$.
Theorem 2. $I \Sigma_{1} \vdash \forall x \exists y\left(2^{x}=y\right)$.
Proof. Recall that $I \Sigma_{1}$ is $I \Delta_{0}$ and induction on Σ_{1} formulas. Arguing informally, $I \Sigma_{1}$ with define the sequence $w=\left\langle 1,2,4,8,16, \ldots\right.$ where $\beta(i, w)=2^{i}$. Then w satisfies $\phi(w)$ where

$$
\begin{gathered}
\phi(w):=(\beta(0, w)=1) \cap(\forall i<\operatorname{Len}(w)-1) \beta(i+1, w)=2 \beta(i, w) . \\
I \Sigma_{1} \vdash \forall i \exists w(\phi(w) \cap \operatorname{Len}(w)=i+1)
\end{gathered}
$$

using induction on i.
$I \Sigma_{1} \vdash \phi(0)$ using $w=\langle 1\rangle$.
$I \Sigma_{1} \vdash \phi(i) \rightarrow \phi(i+1)$ using $w \rightarrow w \frown 2 \beta(\operatorname{Len}(w)-1, w)$.
Thus $I \Sigma_{1} \vdash \forall i \phi(i)$
Then 2^{x} as a function is Σ_{1} defined by

$$
2^{x}=y \leftrightarrow \exists w(\operatorname{Len}(w)=x+1 \cap \phi(w) \cap \beta(x, w)=y) .
$$

This Σ_{1} definition of 2^{x} is $I \Sigma_{1}$.
Theorem 3. $I \Sigma_{1}$ can Σ_{1} define every primitive recursive function.

Proof. (Sketch.) By induction, starting with $0, S$, and the projection maps, and then inductively working with composition and primitive recursion. (We show the latter.) Suppose $I \Sigma_{1}$ can Σ_{1} define $g(x)$ and $h(m, s, x)$ and suppose

$$
\begin{gathered}
f(0, x)=g(x) \\
f(m+1, x)=h(m, f(m, x), x)
\end{gathered}
$$

We want to show that $I \Sigma_{1}$ can Σ_{1} define f. By assumption we have

$$
\begin{aligned}
\Phi_{y}(\bar{x}, y) & \leftrightarrow g(\bar{x})=y \\
\Phi_{h}(m, s, \bar{x}, y) & \leftrightarrow h(m, s, \bar{x})=y
\end{aligned}
$$

and that Φ_{g} and Φ_{h} are in Σ_{1}. Define $f(\bar{x})=y$ by

$$
\begin{gathered}
w=\langle f(0, \bar{x}), \operatorname{dots}, f(m, \bar{x})\rangle \\
f(m, \bar{x})=y \leftrightarrow \exists w(\operatorname{Len}(w)=m+1 \cap \beta(0, w)=g(\bar{x}) \cap \\
(\forall i<\operatorname{Len}(w)-1)(\beta(i+1, w)=h(i+1, \beta(i, w), x)) \cap \beta(m, w)=y)
\end{gathered}
$$

Thus

$$
\begin{aligned}
f(m, \bar{x})= & y \leftrightarrow \exists w\left(\operatorname{Len}(w)=m+1 \cap \Phi_{g}(\bar{x}, \beta(0, w)) \cap\right. \\
& \left.(\forall i<\operatorname{Len}(w)-1) \Phi_{h}(i+1, \beta(i, w), \bar{x}, \beta(i+1, w))\right)
\end{aligned}
$$

