Math 260A — Mathematical Logic — Scribe Notes UCSD — Spring Quarter 2012 Instructor: Sam Buss

Notes by: Angela Hicks May 14th

Last time we talked about the Δ_0 definition of the graph of $2^x = y$.

Claim 1. $I\Delta_0$ proves "simple" properties of exponentiation, such as:

1. $(2^{x} = y) \rightarrow (2^{x+y} = 2y)$ 2. $(2^{x} = y) \cup (2^{x'} = y') \rightarrow (2^{x+x'} = yy')$ 3. $2^{0} = 1$

Note that we technically proved only expressibility, not provability. Recall how we incrementally expressed i and i^* :

i	<i>i</i> *]	$\frac{i}{1}$	$\frac{i^*}{1}$	$\begin{array}{c} i \\ 1 \\ 10 \end{array}$	i^* 1 10				
10 11 100 101	10 1 x100 x1	or	$ 10 \\ 11 \\ 100 \\ 101 \\ 110 $	10 1 x100 1 x10	10 1 or 100 1 x10	10 11 100 101 110 111	10 1 x100 1 x10 x1	or finally,	11 100 101 110 111 1000	1 100 1 10 1 x1000

Note that with each table, we add (in net) two more symbols from one table to the next. This can be formalized in $I\Delta_0$. Let

$$w = 1^* 2^* \dots k^*$$

As we showed in class last week,

$$|w| = 2k - \operatorname{Numones}(k).$$

Let \overline{w} give w with the 'x's in the above table recorded as 1s.

Example 1. w = 11011001 and $\overline{w} = 1101110011$.

The sketched inductive argument from the tables above gives us that $|\overline{w}| = 2^k$.

Theorem 1. $I\Delta_0 \ can \Delta_0 \ define \ Number Number (x) = i \leftrightarrow (|\overline{w}| - |w| = 2i)$, where $|w| := least \ i \leq w : 2^i > w$

Example 2. $5 = (101)_2$ so |5| = 3 since $2^3 > 5 > 2^2$

Claim 2. $I\Delta_0$ proves "simple" properties of Numones(x), such as:

- 1. Numones $(x) \leq |x|$
- 2. Numones(2x) =Numones(x)
- 3. Numones(2x + 1) = Numones(x) + 1
- 4. "z is a power of 2" implies Numones(z) = 1
- 5. Numones $(x + 2^{|x|}y) =$ Numones(x) +Numones(y)

1 An Alternated Method for Sequence Encoding Based on Numones

In base 4, use 2 as a comma. Thus represent $\langle a_0, \ldots, a_{k-1} \rangle$ as $2a_02a_1 \ldots 2a_{k-1}$, with each a_i written in binary notation. Then Numones can be used to count the number of 2s.

 $w \to x; \forall i \le x \operatorname{Bit}(i, x) = 1 \leftrightarrow \operatorname{Qit}(i, w) = 2 \operatorname{Bit}(2i+1, w) \cap \operatorname{Qit}(i, w) = \operatorname{Bit}(i, w) + 2 \operatorname{Qit}(i, w) = 2 \operatorname{Qit$

Then Numones(x) = Numcommas(w). Also let

 $\operatorname{Len}(w) := \operatorname{Numcommas}(w),$

 $Last(w) := w \mod 4^i$, where *i* is the least value such that Qit(i, w) = 2,

$$\begin{split} \mathrm{Pickout}(i,w) &= \frac{w}{4^j} \text{ where } j \text{ least such that } \mathrm{Len}(\frac{w}{4^j}=i), \\ \beta(i,w) &:= \mathrm{Last}(\mathrm{Pickout}(i+1,w)) \end{split}$$

Claim 3. $I\Delta_0$ proves "simple" properties of sequence coding, along with Δ_0 defining $x \to \langle x \rangle$, $w \frown x$ (appending), and $w_1 * w_2$ (concatenating):

1. $\beta(0, \langle x \rangle) = x$ $\operatorname{Len}(\langle x \rangle) = 1$ $\operatorname{Len}(\langle \rangle) = 0$

2. Len $(w \frown x) = \text{Len}(w) + 1$

- 3. $\operatorname{Len}(w_1 * w_2) = \operatorname{Len}(w_1) + \operatorname{Len}(w_2)$
- 4. $i < \operatorname{Len}(w) \rightarrow \beta(i, w) = \beta(i, w \frown x) = \beta(i, w * w)$
- 5. $\beta(\operatorname{Len}(w), w \frown x) = x$ $\beta(i + \operatorname{Len}(w), w * w') = \beta(i, w)$
- 6. $|\langle a_0, \ldots a_{k-1} \rangle| = 2 \left(k + \sum_{i=0}^{k-1} |a_i| \right)$, where the sequence has no extraneous leading 0s, is in base 4 representation with no 3s, and any 2 in base four notation is not followed by a 0.

Unassigned homework:

$$|\langle a_0, \dots a_{k-1} \rangle| = \sum_{i=0}^{k-1} a_i$$

is Δ_0 definable in $I\Delta_0$.

Recall $I\Delta_0$ does not prove $\forall x \exists y (2^x = y)$.

Theorem 2. $I\Sigma_1 \vdash \forall x \exists y (2^x = y).$

Proof. Recall that $I\Sigma_1$ is $I\Delta_0$ and induction on Σ_1 formulas. Arguing informally, $I\Sigma_1$ with define the sequence $w = \langle 1, 2, 4, 8, 16, \ldots$ where $\beta(i, w) = 2^i$. Then w satisfies $\phi(w)$ where

$$\begin{split} \phi(w) &:= (\beta(0,w) = 1) \cap (\forall i < \operatorname{Len}(w) - 1)\beta(i+1,w) = 2\beta(i,w). \\ &I\Sigma_1 \vdash \forall i \exists w (\phi(w) \cap \operatorname{Len}(w) = i+1) \end{split}$$

using induction on i.

 $I\Sigma_1 \vdash \phi(0)$ using $w = \langle 1 \rangle$. $I\Sigma_1 \vdash \phi(i) \to \phi(i+1)$ using $w \to w \frown 2\beta(\operatorname{Len}(w) - 1, w)$. Thus $I\Sigma_1 \vdash \forall i\phi(i)$ Then 2^x as a function is Σ_1 defined by

Then
$$2^{-}$$
 as a function is \mathbb{Z}_1 defined by

$$2^{x} = y \leftrightarrow \exists w (\operatorname{Len}(w) = x + 1 \cap \phi(w) \cap \beta(x, w) = y).$$

This Σ_1 definition of 2^x is $I\Sigma_1$.

Theorem 3. $I\Sigma_1$ can Σ_1 define every primitive recursive function.

Proof. (Sketch.) By induction, starting with 0, S, and the projection maps, and then inductively working with composition and primitive recursion. (We show the latter.) Suppose $I\Sigma_1 \operatorname{can} \Sigma_1$ define g(x) and h(m, s, x) and suppose

$$f(0,x) = g(x)$$

$$f(m+1, x) = h(m, f(m, x), x).$$

We want to show that $I\Sigma_1$ can Σ_1 define f. By assumption we have

$$\begin{split} \Phi_y(\overline{x},y) &\leftrightarrow g(\overline{x}) = y, \\ \Phi_h(m,s,\overline{x},y) &\leftrightarrow h(m,s,\overline{x}) = y, \end{split}$$

and that Φ_g and Φ_h are in Σ_1 . Define $f(\overline{x}) = y$ by

$$w = \langle f(0, \overline{x}), dots, f(m, \overline{x}) \rangle$$

$$\begin{split} f(m,\overline{x}) = & y \leftrightarrow \exists w (\operatorname{Len}(w) = m + 1 \cap \beta(0,w) = g(\overline{x}) \cap \\ (\forall i < \operatorname{Len}(w) - 1)(\beta(i+1,w) = h(i+1,\beta(i,w),x)) \cap \beta(m,w) = y). \end{split}$$

Thus

$$f(m,\overline{x}) = y \leftrightarrow \exists w (\operatorname{Len}(w) = m + 1 \cap \Phi_g(\overline{x}, \beta(0, w)) \cap (\forall i < \operatorname{Len}(w) - 1) \Phi_h(i + 1, \beta(i, w), \overline{x}, \beta(i + 1, w))).$$