
Math 260A — Mathematical Logic — Scribe Notes

UCSD — Spring Quarter 2012

Instructor: Sam Buss

Notes by: Sam Buss

May 11, 2012 — Part II

The Graph of Exponentiation — Simplifed ∆0 Definition

These notes present a new, simplified ∆0 definition of the graph of the
base 2 exponentiation function y = 2x. This definition is a key part of the
bootstrapping process for the theory I∆0, and is a key part of the approach
we use for giving ∆0 definitions for sequence coding functions.

The goal is to present ∆0 definitions of graph of x = 2y along with the
following functions:

|x| = ⌈log2(x+ 1)⌉, the length of x’s binary represenation.

2x = y : the graph of the base 2 exponentiation function.

Bit(i, x) = x/2i mod 2, the i-th bit of x.

Numones(x) = the number of 1’s in the binary representation of x.

β(i, w) = the i-th member of the sequence coded by w.

Len(w) = the number of member in the sequence coded by w.

The material replaces the material on pages 91-94 of Chapter II of the
Handbook of Proof Theory [1]. We use the notation and material developed
in the earlier part of that chapter (and in the Math 260 class lectures), and
presume this notation is familiar to the reader.

The original ∆0 definition of the graph of exponentiation, formalized in
the theory I∆0 is due to Gaifman and Dimitracopoulos [2]. Proofs are also
given in Hájek-Pudlḱ [3].

Compressed representation for consecutive counting. The first step
in our bootstrapping of ∆0 definitions is to define a compressed representa-
tion of consecutive counting is to encode the sequence of integers 1, 2, 3, 4, . . . , k
with a single value w ∈ N such |w| = O(k). We wish to do this in such a
way that we can pick out the location of each value i in the sequence in a
natural way.

1

Let ℓ ∈ N. Define ℓ∗ to be the maximum power of 2 that divides ℓ. That
is

y = ℓ∗ ⇔ i∗ is the largest power of 2 < ℓ s.t. ℓ∗|ℓ.

For example, the first eleven values have the binary representation as given
in the table:

ℓ ℓ∗

1 1
10 10
11 1
100 100
101 1
110 10
111 1

1000 1000
1001 1
1010 10
1011 1

The intuition is that ℓ∗ is giving just the bits of ℓ which are changed from
ℓ− 1.

The sequence 1, 2, . . . , k is then represented by the number w whose
binary representation is formed as the concatenation of the binary represen-
tations of the values 1∗, 2∗, . . . , k∗. For example, for k = 11 (eleven), the
compressed encoding w will have binary representation

1 10 1 100 1 10 1 1000 1 10 1.

(The spaces are included only for readability.)
The intuition is that we can recover k from w by finding the entries ℓ∗

in w which give bits of k: namely, the entries ℓ∗ such that no later entries
has longer length. In the example, these entries are the “1000”, the “10”,
and the “1” which are the values for ℓ∗ with ℓ = 8, 10, 11. These will be
called “dominant” entries.

Lemma 1. Let w be the number defined from k as above. Then,

|w| = k + ⌊k/2⌋ + ⌊k/22⌋+ ⌊k/23⌋+ · · · .

This sum has |k| many non-zero terms.

2

Proof. Note that there are k bits in w that are in the 1’s place of some ℓ∗, for
1 ≤ ℓ ≤ k. There are ⌊k/2⌋ many such bits in the 2’s place. More generally,
there are ⌊k/2i⌋ many such bits from the 2i’s place.

We can do even better than Lemma 1, by giving an exact formula for
the length of w:

Lemma 2. Let w be the number defined from k as above. Then,

|w| = 2k −Numones(k).

Proof. If k is a power of two, Lemma 1 implies |w| = 2k − 1, so Lemma 2
follows in this case. Otherwise, express k as a sum of distinct powers of 2,
k = k1 + k2 + · · · + ki, where i = Numones(k). Clearly,

⌊k/2j⌋ = ⌊k1/2
j⌋+ ⌊k2/2

j⌋+ · · · ⌊ki/2
j⌋.

Thus, we have |w| =
∑

j(2ki − 1), and Lemma 2 follows.

This suggests to add Numones(k) many bits back into w to get the length
of w exactly equal to 2k. For this, we define w to be like w, but with an
extra bit ”1” inserted just before every dominant entry. For example, for
k=11 again, w is equal to

1 10 1 100 1 10 1 1 1000 1 1 10 1 1.

The intuition for our ∆0 definition of x = 2k that we define w in this way,
and then note that x = 2k iff x is a power of 2 and x2 has the same length
as 2w. (That is, x2/2 ≤ 2w < x2.) Once the graph of exponentiation is
defined, it is trivial to define the length function |x| = y by 2y ≤ 2x < 2 · 2y .
We can then define Numones(k) as |w| − |w|.

We now give more formal details. Informally, a binary string ‘100 · · · 00’
is an “entry” in w if it is one of the maximal length such strings in the
binary representation of w. More formally, we define IsEntryAt(2i, 2i

′

, w)
and Entry(2i, 2i

′

, w) = x as follows. Recall that LenBit(2i, x) is the bit at
position i in x; it was ∆0-defined as x/2i mod 2.

IsEntryAt(2i, 2i
′

, w) ⇔ 2i < 2i
′

∧ LenBit(2i/2, w) = 1 ∧ LenBit(2i
′

/2, w) = 1 ∧

(∀2j ≤ w)(2i < 2k < 2i
′

/2→LenBit(2k/2, w) = 0).

Entry(2i, 2i
′

, w) = v ⇔ v = (w/2i) mod (2i
′

/2i).

3

Here, we write (∀2j ≤ x)ϕ(2j) as a shorthand notation for

(∀z ≤ x)(“z is a power of 2”→ϕ(z)).

Similar conventions hold for (∃2j ≤ x)ϕ(2j).
Note that if IsEntryAt(2i, 2i

′

, w) holds, then Entry(2i, 2i
′

, w) is a power
of 2. The Entry() function picks out a power of two encoded a substring of
the binary represenation of w, that is an ℓ∗ value for 1 ≤ ℓ ≤ k.

A “dominant” entry in w is a entry which is longer than all later entries.
In the example with k = 11 (eleven), there are three dominant entries:
namely the binary representations “1000”, “10” and “1”. Formally,

Dominant(2i, 2i
′

, w) ⇔ IsEntryAt(2i, 2i
′

, w) ∧

(∀2j < 2j
′

≤ 2i)(IsEntryAt(2j , 2j
′

, w) → 2j
′

/2j < 2i
′

/2i).

The number k for which w encodes the compressed sequential counting can
be extracted by the following ∆0-defined function.

CountsTo(w) = k ⇔ (∀2i ≤ k)[LenBit(2i, k) = 1 ↔

(∃2j
′

≤ w)(Dominant(2j , 2j
′

, w) ∧ 2i · 2j = 2j
′

].

The intuition is that we are determining k from w by looking at the last
place where a bit of k was specified.

It is also important to be able to verify when w correctly encodes a
compressed sequential counting. This is done by

IsCorrect(w) ⇔ (∀2i < 2i
′

< 2i
′′

≤ w)[IsEntryAt(2i, 2i
′

, w) ∧ IsEntryAt(2i
′

, 2i
′′

, w)

→ CountsTo(w/2i) = CountsTo(w/2i
′

) + 1].

A similar definition is used to define the correctness of w, but it needs extra
cases to handle the extra inserted bits after dominant entries. First, define

IsEntryAt(2i, 2i
′

, w) ⇔ IsEntryAt(2i, 2i
′

, w) ∧

¬(∃2j < 2i)[Dominant(2j , 2i, w)].

IsCorrect(w) ⇔ (∀2i < 2i
′

< 2i
′′

< 2i
′′′

≤ w)

[(IsEntryAt(2i, 2i
′

, w) ∧ IsEntryAt(2i
′′

, 2i
′′′

, w)

∧2i
′′

= 2i
′

∨ ((Dominant(2i, 2i
′

, w) ∧ 2i
′′

= 2 · 2i
′

))

→ CountsTo(w/2i) = CountsTo(w/2i
′′

) + 1]

∧(∀2i < 2i
′

≤ w)[Dominant(2i, 2i
′

, w) → LenBit(2i
′

, w) = 1].

4

The last clause of IsCorrect is to ensure that exactly one bit is inserted
before every dominant entry.

This completes the ∆0 definition of w and w as functions of k. Namely,
there are they unique values such that IsCorrect(w) and IsCorrect(w), with
CountsTo(w) = k and CountsTo(w) = k.

By the discussion after Lemma 2, it is now easy to ∆0-define the graph of
base 2 exponentiation, the Bit function, the LenNumones function, and the
function |x|. The function LenNumones(x) computes the number of ones in
the binary representation of |x|, namely LenNumones(x) = Numones(|x|).

Finally, we claim that all the standard “straightforward” properties of
these ∆0 relation and functions can be proved in I∆0.

Sequence coding Sequence coding can be done using base 4 representa-
tions. We call a base four digit a qit1; namely, a qit can be a “0”, “1”, “2”,
or “3”.

A sequence 〈a0, . . . , ak−1〉 can be defined by the base 4 representation

3 1∗ 2 a0 3 2∗ 2 a1 3 3∗ 2 a2 3 · · · k∗ 2 ak−1 3

The 2’s and 3’s mean the indicated qit 2 or 3. The values 1∗, a0, 2
∗, a1, etc,

are to be replaced by the 0/1 qits that correspond to the bits of their binary
representations.

An alternate version of sequence definitions (see the handbook article)
uses

2 a0 2 a1 2 a2 2 · · · 2 ak−1 2,

and uses a reduction to the Numones function to count the number of qits
“2” to determine the index of any entry ai in the sequence. The qits “2”
serve a commas. The Numones function is given a ∆0 definition on pages
93-94 of [1].

References

[1] S. R. Buss, First-order proof theory of arithmetic, in Handbook of Proof
Theory, S. R. Buss, ed., North-Holland, 1998, pp. 79–147.

1The only standard terms for digits in various bases seem to be: bit, trit, and digit

for bases 2, 3, and 10; and as well as either ban or hartley for base 10, or nat for base e.
The term “ban” was coined be A. Turing. The term hartley is for Ralph Hartley (1928).
However, these last three terms are used for measuring information content rather than
as names for digits. For names of digits in bases 2-10, I suggest: bit, trit, qit, qint, sit,
sipt, ict, nint, and digit.

5

[2] H. Gaifman and C. Dimitracopoulos, Fragments of Peano’s arith-

metic and the MRDP theorem, in Logic and Algorithmic: An Interna-
tional Symposium held in honour of Ernst Specker, Monographie #30
de L’Enseignement Mathématique, 1980, pp. 187–206.

[3] P. Hájek and P. Pudlák,Metamathematics of First-order Arithmetic,
Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1993.

6

