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1 >;-defined Functions

Our goal has been to introduce A defined relation symbols R and :;-defined
function symbols f to be added to 1A, and which are usable in induction.
So we need Y1-defined functions now.

Recall that f is Xj-defined means that there is a Ag-formula ¢ (or a
¥;-formula ¢) such that:

e T'DIAg

o T'FVidly(p(7,y))

—

o T(f) is TU{VE(f((x)) =y < @(Z,y)}
Note that T'(f) is conservative over T

Claim. ForT a bounded theory, any Ao(f) formula is T f)-provably-equivalent
to a Ag formula.

First let’s make a preliminary remark. By Parikh’s Theorem, for T' D
IAy and T bounded, if T' E VZ3ly(p(Z,y)), then there is a term ¢ such that

T FV7dy < q(7)(p(7,y)) -
And if ¢ is Jz1 ... Iz0(Z, y, Z) then
TF Vfay S quzl S ry... Elzk S Tk(w(f7y> Z)) 3

again by Parikh’s Theorem. So we have that X1 definable implies Ag defin-
able.

Now back to the above claim. Let ¢ be a Ag(f) formula. We want an
equivalent ©* such that ¢* is Ag and T'(f) F ¢ < ¢*. Here’s our idea: We
will remove occurrences of f one at a time.

So find an atomic formula containing an occurrence of f of form s = ¢
or s <t. That is,

S f(ryy e oyrg)..) =t



where there are no f’s inside the terms r;. This is equivalent to (in T'(f))

By < q(ri, - re))(e(Zy) As(y..) = 1)

and this is clearly Ag.
Alternatively, we could consider

(Vy < q(M) (@, y)—s(...y...) =1)

which is also Ag. In either case, we have shown the above claim.
Here’s a more general theorem, which we will present without complete
proof (since the proof is so similar to the discussion above).

—

Theorem 1. If f((x)) = y is Xi-defined and if T D B, then any X;(f)
formula (or IL;(f) formula) is T(f) provably equivalent to a ¥; (respectively
I1;) formula.

The proof of this theorem works exactly in an analogous way as above,
except without the bounds on the quantifiers.

2 Some Bootstrapping

We have already introduced some things with Ag definitions:
e Restricted subtraction: x ~ y
e I is prime
o x divides y: x|y < Iz <y(x-z=1y)
Claim. Ay (z is prime A z|a-b—x|a V z|b.
But we’d like to have
IAg F Va(x has a unique prime factorization) .

And in IAg how can we even say that x has a unique prime factorization?
We want something along the lines of

YZ3p1,p2, - . pk(Vi, p; is prime and x = py - - - pg) -
Or more specifically:
VE(p1, ... p) (Vip; is prime and z = I1¥p;) .

So we are almost there, we just need to talk a little bit about sequence
coding. But here is a problem:



Theorem 2. A does not Ag-define the exponentiation function.
Proof. Suppose it did. So
p(z,y) oz =2

and
IAg FYy3zp(x,y) .

Then by Parikh’s Theorem,
IAg E VY3 < s(y)e(z,y)

for some term s. And s is made up of 0, S, +, -, so s is a polynomial.
So s(y) < y' +1 for some I € N. So N E Vy3dz < ¢! + I(z = 2¥), which is
clearly not true since Vy(2Y < y* + 1) is not true. O

And this is an issue for sequence coding since the Godel method used
prime powers.

Thus we have that any Ag definable function of IAg is bounded by a
polynomial s(y) < 4! 4+ 1. So we have completely characterized the growth
rates of function provably definable in IAj. (Note that this is what computer
scientists call “linear growth rate functions.”)

3 Some More Bootstrapping

Let’s define some more things:
e Predecessor: P(x) =z - 1=x = S(0)

e [Integer division: x,y —— |z/y| with
o, y,2) o (y-z2<axzANy-Sz>z)V(y=0A2z=0).

e zmody=z—y-|z/y].

o |Vr|]=z2zoz2-2<xANSz-Sz>ux.

e 1 is prime (we already did)

e 1 is a prime power < Jp < z(p is prime and Vz(z|z—z =1V p|z).
e 1 is a power of 2 (as in the previous bullet)

e (zis a power of 4)« (x is a power of 2 A (x mod 3 = 1)).



