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1 Σ1-defined Functions

Our goal has been to introduce ∆0 defined relation symbolsR and Σ1-defined
function symbols f to be added to I∆0, and which are usable in induction.
So we need Σ1-defined functions now.

Recall that f is Σ1-defined means that there is a ∆0-formula ϕ (or a
Σ1-formula ϕ) such that:

• T ⊃ I∆0

• T ` ∀~x∃!y(ϕ(~x, y))

• T (f) is T ∪ {∀~x(f(~(x)) = y ↔ ϕ(~x, y)}.

Note that T (f) is conservative over T .

Claim. For T a bounded theory, any ∆0(f) formula is T (f)-provably-equivalent
to a ∆0 formula.

First let’s make a preliminary remark. By Parikh’s Theorem, for T ⊃
I∆0 and T bounded, if T � ∀~x∃!y(ϕ(~x, y)), then there is a term q such that

T � ∀~x∃y ≤ q(~x)(ϕ(~x, y)) .

And if ϕ is ∃z1 . . . ∃zkψ(~x, y, ~z) then

T � ∀~x∃y ≤ q∃z1 ≤ r1 . . . ∃zk ≤ rk(ψ(~x, y, ~z)) ,

again by Parikh’s Theorem. So we have that Σ1 definable implies ∆0 defin-
able.

Now back to the above claim. Let ψ be a ∆0(f) formula. We want an
equivalent ψ∗ such that ψ∗ is ∆0 and T (f) � ψ ↔ ψ∗. Here’s our idea: We
will remove occurrences of f one at a time.

So find an atomic formula containing an occurrence of f of form s = t
or s ≤ t. That is,

s(. . . f(r1, . . . , rk) . . .) = t
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where there are no f ’s inside the terms ri. This is equivalent to (in T (f))

(∃y ≤ q(r1, . . . rk))(ϕ(~x, y) ∧ s(. . . y . . .) = t)

and this is clearly ∆0.
Alternatively, we could consider

(∀y ≤ q(~r))(ϕ(~x, y)→s(. . . y . . .) = t)

which is also ∆0. In either case, we have shown the above claim.
Here’s a more general theorem, which we will present without complete

proof (since the proof is so similar to the discussion above).

Theorem 1. If f(~(x)) = y is Σ1-defined and if T ⊃ BΣ1, then any Σi(f)
formula (or Πi(f) formula) is T (f) provably equivalent to a Σi (respectively
Πi) formula.

The proof of this theorem works exactly in an analogous way as above,
except without the bounds on the quantifiers.

2 Some Bootstrapping

We have already introduced some things with ∆0 definitions:

• Restricted subtraction: x .− y

• x is prime

• x divides y: x|y ↔ ∃z ≤ y(x · z = y)

Claim. I∆0 ` (x is prime ∧ x|a · b→x|a ∨ x|b.

But we’d like to have

I∆0 ` ∀x(x has a unique prime factorization) .

And in I∆0 how can we even say that x has a unique prime factorization?
We want something along the lines of

∀~x∃p1, p2, . . . pk(∀i, pi is prime and x = p1 · · · pk) .

Or more specifically:

∀~x∃〈p1, . . . pk〉(∀ipi is prime and x = Πk
i pi) .

So we are almost there, we just need to talk a little bit about sequence
coding. But here is a problem:
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Theorem 2. I∆0 does not ∆0-define the exponentiation function.

Proof. Suppose it did. So

ϕ(x, y)↔ x = 2y

and
I∆0 ` ∀y∃xϕ(x, y) .

Then by Parikh’s Theorem,

I∆0 ` ∀y∃x ≤ s(y)ϕ(x, y)

for some term s. And s is made up of 0, S, +, ·, so s is a polynomial.
So s(y) ≤ yl + l for some l ∈ N. So N � ∀y∃x ≤ yl + l(x = 2y), which is

clearly not true since ∀y(2y < yl + l) is not true.

And this is an issue for sequence coding since the Gödel method used
prime powers.

Thus we have that any ∆0 definable function of I∆0 is bounded by a
polynomial s(y) ≤ yl + l. So we have completely characterized the growth
rates of function provably definable in I∆0. (Note that this is what computer
scientists call “linear growth rate functions.”)

3 Some More Bootstrapping

Let’s define some more things:

• Predecessor : P (x) = x .− 1 = x .− S(0)

• Integer division: x, y 7−→ bx/yc with
ϕ(x, y, z)↔ (y · z ≤ x ∧ y · Sz > x) ∨ (y = 0 ∧ z = 0).

• x mod y = x− y · bx/yc.

• b
√
xc = z ↔ z · z ≤ x ∧ Sz · Sz > x.

• x is prime (we already did)

• x is a prime power ↔ ∃p ≤ x(p is prime and ∀z(z|x→z = 1 ∨ p|z).

• x is a power of 2 (as in the previous bullet)

• (x is a power of 4)↔ (x is a power of 2 ∧ (x mod 3 = 1)).
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