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1 Remarks on Parikh’s Theorem

We needed that T was a bounded theory. Also take T ⊃ I∆0 (or at least I(Open), induction on quantifier-free
formulas) as an extra assumption.

We need the following assumtions.

T ` t1 ≤ t1 + · · ·+ tk

T ` x ≤ ci ∧ y ≤ cj → x · y ≤ ci+j

T ` x ≤ ci ∧ y ≤ cj → x+ y ≤ ci+j

T ` x ≤ ci → Sx ≤ ci+1

2 Finishing the Proof of Parikh’s Theorem

Claim 2.1. (Claim 3.) Let T ⊃ Q + I(Open). Suppose M |= T and M′ is an initial segment and
a substructure of M. Let ψ = ψ(x1, . . . , xk) be a ∆0 formula, and let m1, . . . ,mk ∈ M′. Then M |=
ψ(m1, . . . ,mk) ⇐⇒ M′ |= ψ(m1, . . . ,mk).

Proof. Instead of contradiction, we’ll do a proof by blahblahblah-tion, for some blahblahblah 6= contradic.
We’ll use induction on the complexity of ψ.

The base case is that ψ is atomic; that is, ψ is s = t or s ≤ t for some terms s, t on k variables. But the
meanings of +, ·, S, 0 are the same in M′ as in M by virtue of being a substructure, so the claim holds.

Now let ψ = ¬χ. We have

M |= ψ ⇐⇒ M 6|= χ

⇐⇒ M′ 6|= χ

⇐⇒ M′ |= ψ

by the induction hypothesis. The other induction steps for the logical connectors are clear.
Now suppose ψ is (∃y ≤ s)χ = ∃y(y ≤ s ∧ χ). Then

M |= (∃y ≤ s(m1, . . . ,mk))χ(y,m1, . . . ,mk) ⇐⇒ ∃m0 ∈ |M|(M |= m0 ≤ s(m1, . . . ,mk)

and M |= χ(m0,m1, . . . ,mk))

⇐⇒ ∃m0 ∈ |M′|(M |= m0 ≤ s(m1, . . . ,mk)

and M |= χ(m0,m1, . . . ,mk))

⇐⇒ ∃m0 ∈ |M′|(M′ |= m0 ≤ s(m1, . . . ,mk)

and M′ |= χ(m0,m1, . . . ,mk))

⇐⇒M′ |= (∃y ≤ s(m1, . . . ,mk))χ(y,m1, . . . ,mk).

The universal quantifier is now also clear, becase it’s the negation of an existential quantifier. This completes
the proof.

Let R be ∆0-defined by T ⊃ I∆0. Then T (R) is conservative over T , so that every ∆0(R) formula is
T (R)-provably equivalent to a ∆0-formula.

Theorem 2.2. (Theorem 1.) For T bounded (e.g. I∆0), having R be ∆1-defined suffices.
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Corollary 2.3. In the above setting, T ` induction for ∆(R)-formulas.

Proof. T proves ∆0-induction.

So we can bootstrap by introducing an R which we can then use freely in the induction axioms (e.g. ‘s
is prime’).

Definition 2.4. Let f : Nk → N be a function. We say f is Σ1 defined by I∆0 if and only if it has a defining
equation

∀y∀~x(f(~x) = y ←→ ϕ(~x, y))

such that this is true in N and
I∆0 ` ∀~x∃!yϕ(~x, y)

for some ϕ ∈ ∆0 (sometimes we take ϕ ∈ Σ1).

Remark 2.5. For ϕ ∈ ∆0, we get uniqueness ‘almost’ automatically. For suppose I∆0 ` ∀~x∃yϕ(~x, y). Let
ψ(~x, y) be ϕ(~x, y) ∧ ∀y′ < y¬ϕ(~x, y′). Then

I∆0 ` ∀~x∃!yψ(~x, y),

because I∆0 ` ∆0-minimization.

Example 2.6. Define f(x, y) = x .− y (restricted subtraction). Then

ϕ(x, y, z) := (x ≥ y ∧ y + z = x) ∨ (x < y ∧ z = 0).

The claim is now that I∆0 ` ∀x∀y∃!zϕ(x, y, z).
We argue in I∆0. If x ≥ y then y + z = x, y + z′ = x implies that z = z′ by cancellation. Uniqueness in

the other case is obvious. The existence of z is clear (by induction). So we win and f is defined by I∆0.

Remark 2.7. Next time we’ll show that Σ1-defined functions can be added to I∆0 and used freely in the
induction axioms.
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