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1 Remarks on Parikh’s Theorem

We needed that T was a bounded theory. Also take T' D> IAg (or at least I(Open), induction on quantifier-free
formulas) as an extra assumption.
We need the following assumtions.

Tht <tp+---+t
Tl—xgci/\ygcj%w-ygc“'j
Tl—xﬁci/\ygcj%x—l—ygc”j
Tz <c — Sz <t

2 Finishing the Proof of Parikh’s Theorem

Claim 2.1. (Claim 3.) Let T D @ + I(Open). Suppose M = T and M’ is an initial segment and
a substructure of M. Let ¥ = ¥(x1,...,2x) be a Ao formula, and let mq,...,my € M'. Then M |
’l/)(mla"'vmk’) <~ Mllzw(mlv"'7mk)'

Proof. Instead of contradiction, we’ll do a proof by blahblahblah-tion, for some blahblahblah # contradic.
We'll use induction on the complexity of 1.
The base case is that v is atomic; that is, ¢ is s =t or s < t for some terms s, on k variables. But the
meanings of +, -, 9,0 are the same in M’ as in M by virtue of being a substructure, so the claim holds.
Now let ¢ = =x. We have

MEY = MEx
= M FEx
= M1

by the induction hypothesis. The other induction steps for the logical connectors are clear.
Now suppose 9 is (Jy < s)x = Jy(y < s A x). Then

ME By < s(my,...,mp))x(y,m1,...,mg) < Img € IM|(M Emg < s(ma,...,mg)
and M = x(mo, m1,...,my))
< Img € IM'|(M |Emgy < s(ma,...,my)
and M E x(mg, m1,...,myg))
< Img € IM'|(M' Emo < s(mq,...,my)
and M’ = x(mg,m1,...,myg))
= M' = (Jy < s(ma,...,me))x(y,mi,...,mg).

The universal quantifier is now also clear, becase it’s the negation of an existential quantifier. This completes
the proof. ]

Let R be Ag-defined by T' O IAy. Then T(R) is conservative over T, so that every Ag(R) formula is
T(R)-provably equivalent to a Ag-formula.

Theorem 2.2. (Theorem 1.) For T bounded (e.g. IAg), having R be Aq-defined suffices.



Corollary 2.3. In the above setting, T & induction for A(R)-formulas.
Proof. T proves Ag-induction. O

So we can bootstrap by introducing an R which we can then use freely in the induction axioms (e.g. ‘s
is prime’).

Definition 2.4. Let f : N¥ — N be a function. We say f is ¥, defined by A, if and only if it has a defining
equation
VYVE(f(T) = y «— (T, y))

such that this is true in N and
IA FVElye(Z,y)

for some @ € Ay (sometimes we take ¢ € ¥7).

Remark 2.5. For ¢ € A, we get uniqueness ‘almost’ automatically. For suppose IAg - VZ3yp(Z,y). Let
P(Z,y) be o(Z,y) ANVY < y—p(Z,y'). Then

IAg B VZ3lyy(Z, y),

because IAg - Ap-minimization.

Example 2.6. Define f(x,y) =« — y (restricted subtraction). Then
oz, y,2) =(@x>yAy+z=x)V(z<yAz=0).

The claim is now that TAg F VaVy3lzp(z,y, 2).
We argue in IAg. If z > y then y + 2 = x,y + 2’ = x implies that z = 2z’ by cancellation. Uniqueness in
the other case is obvious. The existence of z is clear (by induction). So we win and f is defined by IA,.

Remark 2.7. Next time we’ll show that Y;-defined functions can be added to Ay and used freely in the
induction axioms.



