Math 260A — Mathematical Logic — Scribe Notes UCSD — Winter Quarter 2012 Instructor: Sam Buss Notes by: Bob Chen Wednesday, May 9, 2012

1 Remarks on Parikh's Theorem

We needed that T was a bounded theory. Also take $T \supset I\Delta_0$ (or at least I(Open), induction on quantifier-free formulas) as an extra assumption.

We need the following assumptions.

 $T \vdash t_1 \leq t_1 + \dots + t_k$ $T \vdash x \leq c^i \land y \leq c_j \to x \cdot y \leq c^{i+j}$ $T \vdash x \leq c^i \land y \leq c_j \to x + y \leq c^{i+j}$ $T \vdash x < c^i \to Sx < c^{i+1}$

2 Finishing the Proof of Parikh's Theorem

Claim 2.1. (Claim 3.) Let $T \supset Q + I(Open)$. Suppose $\mathcal{M} \models T$ and \mathcal{M}' is an initial segment and a substructure of \mathcal{M} . Let $\psi = \psi(x_1, \ldots, x_k)$ be a Δ_0 formula, and let $m_1, \ldots, m_k \in \mathcal{M}'$. Then $\mathcal{M} \models \psi(m_1, \ldots, m_k) \iff \mathcal{M}' \models \psi(m_1, \ldots, m_k)$.

Proof. Instead of contradiction, we'll do a proof by blahblahblah-tion, for some blahblahblah \neq contradic. We'll use induction on the complexity of ψ .

The base case is that ψ is atomic; that is, ψ is s = t or $s \leq t$ for some terms s, t on k variables. But the meanings of $+, \cdot, S, 0$ are the same in \mathcal{M}' as in \mathcal{M} by virtue of being a substructure, so the claim holds.

Now let $\psi = \neg \chi$. We have

$$\mathcal{M} \models \psi \iff \mathcal{M} \not\models \chi \\ \iff \mathcal{M}' \not\models \chi \\ \iff \mathcal{M}' \models \psi$$

by the induction hypothesis. The other induction steps for the logical connectors are clear. Now suppose ψ is $(\exists y \leq s)\chi = \exists y(y \leq s \land \chi)$. Then

$$\mathcal{M} \models (\exists y \leq s(m_1, \dots, m_k))\chi(y, m_1, \dots, m_k) \iff \exists m_0 \in |\mathcal{M}| (\mathcal{M} \models m_0 \leq s(m_1, \dots, m_k))$$

and $\mathcal{M} \models \chi(m_0, m_1, \dots, m_k))$
 $\iff \exists m_0 \in |\mathcal{M}'| (\mathcal{M} \models m_0 \leq s(m_1, \dots, m_k))$
and $\mathcal{M} \models \chi(m_0, m_1, \dots, m_k))$
 $\iff \exists m_0 \in |\mathcal{M}'| (\mathcal{M}' \models m_0 \leq s(m_1, \dots, m_k))$
and $\mathcal{M}' \models \chi(m_0, m_1, \dots, m_k))$
 $\iff \mathcal{M}' \models (\exists y \leq s(m_1, \dots, m_k))\chi(y, m_1, \dots, m_k).$

The universal quantifier is now also clear, becase it's the negation of an existential quantifier. This completes the proof. \Box

Let R be Δ_0 -defined by $T \supset I\Delta_0$. Then T(R) is conservative over T, so that every $\Delta_0(R)$ formula is T(R)-provably equivalent to a Δ_0 -formula.

Theorem 2.2. (Theorem 1.) For T bounded (e.g. $I\Delta_0$), having R be Δ_1 -defined suffices.

Corollary 2.3. In the above setting, $T \vdash$ induction for $\Delta(R)$ -formulas.

Proof. T proves Δ_0 -induction.

So we can bootstrap by introducing an R which we can then use freely in the induction axioms (e.g. 's is prime').

Definition 2.4. Let $f : \mathbb{N}^k \to \mathbb{N}$ be a function. We say f is Σ_1 defined by $I\Delta_0$ if and only if it has a defining equation

$$\forall y \forall \vec{x} (f(\vec{x}) = y \longleftrightarrow \varphi(\vec{x}, y))$$

such that this is true in $\mathbb N$ and

$$I\Delta_0 \vdash \forall \vec{x} \exists ! y \varphi(\vec{x}, y)$$

for some $\varphi \in \Delta_0$ (sometimes we take $\varphi \in \Sigma_1$).

Remark 2.5. For $\varphi \in \Delta_0$, we get uniqueness 'almost' automatically. For suppose $I\Delta_0 \vdash \forall \vec{x} \exists y \varphi(\vec{x}, y)$. Let $\psi(\vec{x}, y)$ be $\varphi(\vec{x}, y) \land \forall y' < y \neg \varphi(\vec{x}, y')$. Then

$$I\Delta_0 \vdash \forall \vec{x} \exists ! y \psi(\vec{x}, y),$$

because $I\Delta_0 \vdash \Delta_0$ -minimization.

Example 2.6. Define f(x, y) = x - y (restricted subtraction). Then

$$\varphi(x, y, z) := (x \ge y \land y + z = x) \lor (x < y \land z = 0).$$

The claim is now that $I\Delta_0 \vdash \forall x \forall y \exists ! z \varphi(x, y, z)$.

We argue in $I\Delta_0$. If $x \ge y$ then y + z = x, y + z' = x implies that z = z' by cancellation. Uniqueness in the other case is obvious. The existence of z is clear (by induction). So we win and f is defined by $I\Delta_0$.

Remark 2.7. Next time we'll show that Σ_1 -defined functions can be added to $I\Delta_0$ and used freely in the induction axioms.