Math 260A - Mathematical Logic - Scribe Notes
 UCSD - Winter Quarter 2012
 Instructor: Sam Buss
 Notes by: Bob Chen
 Wednesday, May 9, 2012

1 Remarks on Parikh's Theorem

We needed that T was a bounded theory. Also take $T \supset I \Delta_{0}$ (or at least $I($ Open), induction on quantifier-free formulas) as an extra assumption.

We need the following assumtions.

$$
\begin{aligned}
& T \vdash t_{1} \leq t_{1}+\cdots+t_{k} \\
& T \vdash x \leq c^{i} \wedge y \leq c_{j} \rightarrow x \cdot y \leq c^{i+j} \\
& T \vdash x \leq c^{i} \wedge y \leq c_{j} \rightarrow x+y \leq c^{i+j} \\
& T \vdash x \leq c^{i} \rightarrow S x \leq c^{i+1}
\end{aligned}
$$

2 Finishing the Proof of Parikh's Theorem

Claim 2.1. (Claim 3.) Let $T \supset Q+I\left(\right.$ Open). Suppose $\mathcal{M} \models T$ and \mathcal{M}^{\prime} is an initial segment and a substructure of \mathcal{M}. Let $\psi=\psi\left(x_{1}, \ldots, x_{k}\right)$ be a Δ_{0} formula, and let $m_{1}, \ldots, m_{k} \in \mathcal{M}^{\prime}$. Then $\mathcal{M} \vDash$ $\psi\left(m_{1}, \ldots, m_{k}\right) \Longleftrightarrow \mathcal{M}^{\prime} \models \psi\left(m_{1}, \ldots, m_{k}\right)$.

Proof. Instead of contradiction, we'll do a proof by blahblahblah-tion, for some blahblahblah \neq contradic. We'll use induction on the complexity of ψ.

The base case is that ψ is atomic; that is, ψ is $s=t$ or $s \leq t$ for some terms s, t on k variables. But the meanings of $+, \cdot, S, 0$ are the same in \mathcal{M}^{\prime} as in \mathcal{M} by virtue of being a substructure, so the claim holds.

Now let $\psi=\neg \chi$. We have

$$
\begin{aligned}
\mathcal{M} \models \psi & \Longleftrightarrow \mathcal{M} \not \vDash \chi \\
& \Longleftrightarrow \mathcal{M}^{\prime} \not \vDash \chi \\
& \Longleftrightarrow \mathcal{M}^{\prime} \vDash \psi
\end{aligned}
$$

by the induction hypothesis. The other induction steps for the logical connectors are clear.
Now suppose ψ is $(\exists y \leq s) \chi=\exists y(y \leq s \wedge \chi)$. Then

$$
\begin{aligned}
\mathcal{M} \models\left(\exists y \leq s\left(m_{1}, \ldots, m_{k}\right)\right) \chi\left(y, m_{1}, \ldots, m_{k}\right) & \Longleftrightarrow \exists m_{0} \in|\mathcal{M}|\left(\mathcal{M} \models m_{0} \leq s\left(m_{1}, \ldots, m_{k}\right)\right. \\
& \text { and } \left.\mathcal{M} \vDash \chi\left(m_{0}, m_{1}, \ldots, m_{k}\right)\right) \\
& \Longleftrightarrow \exists m_{0} \in\left|\mathcal{M}^{\prime}\right|\left(\mathcal{M} \models m_{0} \leq s\left(m_{1}, \ldots, m_{k}\right)\right. \\
& \text { and } \left.\mathcal{M} \vDash \chi\left(m_{0}, m_{1}, \ldots, m_{k}\right)\right) \\
& \Longleftrightarrow \exists m_{0} \in\left|\mathcal{M}^{\prime}\right|\left(\mathcal{M}^{\prime} \models m_{0} \leq s\left(m_{1}, \ldots, m_{k}\right)\right. \\
& \text { and } \left.\mathcal{M}^{\prime} \models \chi\left(m_{0}, m_{1}, \ldots, m_{k}\right)\right) \\
& \Longleftrightarrow \mathcal{M}^{\prime} \models\left(\exists y \leq s\left(m_{1}, \ldots, m_{k}\right)\right) \chi\left(y, m_{1}, \ldots, m_{k}\right) .
\end{aligned}
$$

The universal quantifier is now also clear, becase it's the negation of an existential quantifier. This completes the proof.

Let R be Δ_{0}-defined by $T \supset I \Delta_{0}$. Then $T(R)$ is conservative over T, so that every $\Delta_{0}(R)$ formula is $T(R)$-provably equivalent to a Δ_{0}-formula.

Theorem 2.2. (Theorem 1.) For T bounded (e.g. $I \Delta_{0}$), having R be Δ_{1}-defined suffices.

Corollary 2.3. In the above setting, $T \vdash$ induction for $\Delta(R)$-formulas.
Proof. T proves Δ_{0}-induction.
So we can bootstrap by introducing an R which we can then use freely in the induction axioms (e.g. ' s is prime').

Definition 2.4. Let $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ be a function. We say f is Σ_{1} defined by $I \Delta_{0}$ if and only if it has a defining equation

$$
\forall y \forall \vec{x}(f(\vec{x})=y \longleftrightarrow \varphi(\vec{x}, y))
$$

such that this is true in \mathbb{N} and

$$
I \Delta_{0} \vdash \forall \vec{x} \exists!y \varphi(\vec{x}, y)
$$

for some $\varphi \in \Delta_{0}$ (sometimes we take $\varphi \in \Sigma_{1}$).
Remark 2.5. For $\varphi \in \Delta_{0}$, we get uniqueness 'almost' automatically. For suppose $I \Delta_{0} \vdash \forall \vec{x} \exists y \varphi(\vec{x}, y)$. Let $\psi(\vec{x}, y)$ be $\varphi(\vec{x}, y) \wedge \forall y^{\prime}<y \neg \varphi\left(\vec{x}, y^{\prime}\right)$. Then

$$
I \Delta_{0} \vdash \forall \vec{x} \exists!y \psi(\vec{x}, y),
$$

because $I \Delta_{0} \vdash \Delta_{0}$-minimization.
Example 2.6. Define $f(x, y)=x \doteq y$ (restricted subtraction). Then

$$
\varphi(x, y, z):=(x \geq y \wedge y+z=x) \vee(x<y \wedge z=0)
$$

The claim is now that $I \Delta_{0} \vdash \forall x \forall y \exists!z \varphi(x, y, z)$.
We argue in $I \Delta_{0}$. If $x \geq y$ then $y+z=x, y+z^{\prime}=x$ implies that $z=z^{\prime}$ by cancellation. Uniqueness in the other case is obvious. The existence of z is clear (by induction). So we win and f is defined by $I \Delta_{0}$.

Remark 2.7. Next time we'll show that Σ_{1}-defined functions can be added to $I \Delta_{0}$ and used freely in the induction axioms.

