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1 Quantifier Complexity and Bounded Quantifiers

So far we have used ordinary quantifiers V and 3. In order to study quantifier
complexity, we now introduce bounded versions, defined here:

(Vy <t)A(y) < (Vy)(y <t — A(y))

(Fy <t)A(y) < By)(y <t A A(y))

where ¢ is a term not involving y.
Define a formula to be Ay if all of its quantifiers are bounded.
We further define a sequence of classes of formulas.

e A ¥, formula has the form (Jy1) ... (Jyk)p(Z, ¥), where ¢ is Deltay.
e A II; formula has the form (Vy1) ... (Yyr)p(Z, ), where ¢ is Deltay.

e A Y5 formula has the form (37)(V
T,

2)o(T, 7, Z), where ¢ is Deltay.
Equivalently, it has the form 3y (Z, ¥

z
), where 1) is II;.

Inductively, a formula is ¥, if it has the form 3yp(Z, ¥), where ¢ is
1L, 4.

11, is defined dually.

Note In each of the above, we may take any of the quantifier blocks to be
empty so that, for example, >, C ¥, 41.

We now consider restricted induction axioms. If @ is a class of formulas
(such as Ag or X3), the ® induction axioms are

{A(0) — (Va)(A(z) — A(Sz)) — (Va)A(z) : A € D}

Denote by I® the axiom system Q< + ®-induction axioms!' For example,
IAy allows induction on all Ag formulas. Last time we showed that IAg
proves r +y =y + .

Tt is possible to redefine the axioms of Q< to use only bounded quantifiers.



We define Peano Arithmetic = PA = JI%,, = |J I1I,.

More generally, we define classes ¥ and ILT. Y5, for example, includes
formulas of the form (Vu < ¢)3yVzp(u, z,y, z), where ¢ is Ag. Simply put,
you get a ¥ formula by taking any Y, formula and inserting bounded
quantifiers wherever you like — including inside of a quantifier block.

Collection property / replacement property
The following is valid in N:

(Vy < )(32)p(y, 2) = Cu)(vy <1)(3z < u)p(y, 2). (1)

This serves to put a uniform bound on the z-values, which is possible since
there are only finitely many y values being considered.
If ¢ is in %, (for example), then 1 is called a ¥, -replacement axiom.

Theorem Any X} formula is equivalent to a ¥, formula, and any T}
formula is equivalent to a II,, formula.

We prove the statement for X7, and IT} follows dually.

Since the converse to 1 is trivial, we will instead show both directions.
We work by induction on n.?2

We take the inverse of the axiom, so we’ll instead show:

(Jy < V2(y, 2) < Yudy < ¥z < wip(y, 2),

where ¢ = —¢.
Thus it is enough to show that, if y € X,, then so are (Vy < )y and
(Fy < t)x.

Since x € X, it has the form 3z ... 3z;9(y, Z). Thus we have

(Vy <t) < (Vy<t)Jz1...3z9(y, 2)

< (Fu)(Vy <8)(Fz1 < u)Izp. . Fzph(y, 2)

< (Fu)(Vy < t)Jzg...3z,(Fz1 < w)Y(y, 2).

< [repeatk-1times]

< (F)Vy < )3z <) .z < W)Y(y, 2).

Note that the last portion of this formula, (321 < u')... (Fzp < u')Y(y, 2),
is a H;t_l formula, so the induction hypothesis gives us an equivalent 11,1
formula ¢/ (y, @). This formula can now absorb the (Vy < ¢). Adding on the
(3u’) on the front leaves us with a 3,, formula, as desired.

2You may find yourself asking: “Are we allowed to do induction here?” Remember:
we are doing induction ourselves, not in a restricted proof system.



Extending languages

We often use IAg as our base theory. This can prove statements like x4y =
y + z, which we proved earlier using quantifier-free induction.

Our language is only {0, S, +, -, <}, but we will also want function sym-
bols. We extend by conservative definitions, for example

zlx < Ju(z - u=1x)

and
Prime(z) < x # 1A V2)(zlr - 2=1V z=x).

These definitions are fine, but we should be mindful of unbounded quan-
tifiers. In both cases, we can (and should) replace them with bounded
quantifiers — both » and z may be bounded by x without changing the
meaning.

Definition A predicate R(z1,...,z;) C N¥ is Ag if there is a Ag formula
(&) so that
N E VZ(R(Z) + ¢(Z)).

Definition Let T be a theory. Let R be as above. Then T(R) is the
theory T in the language of T' plus symbol R, whose axioms are the axioms
of T, along with the axiom Defnp := VZ(R(Z) <> ¢(Z)).

Theorem

(a) T(R) is a conservative extension of 7.

(b) Let T be a theory from IAg, I3, I11,. Any bounded (ie Ag) formula 1)
of T(R) is T(R)-provably equivalent to a bounded formula y in the language
of T.

Proof
We showed (a) last quarter.
For (b), find x by replacing each instance of R(%) in v by ¢(f). This maintains
the quantifier complexity, since ¢ is Ag.
Note: if ¢ is 3y, so is x, independent of the theory we’re working in.



