Math 260A — Mathematical Logic — Scribe Notes UCSD — Spring Quarter 2012 Instructor: Sam Buss

> Notes by: Andy Parrish Friday, May 4, 2012

1 Quantifier Complexity and Bounded Quantifiers

So far we have used ordinary quantifiers \forall and \exists . In order to study quantifier complexity, we now introduce bounded versions, defined here:

$$(\forall y \le t) A(y) \leftrightarrow (\forall y) (y \le t \to A(y))$$
$$(\exists y \le t) A(y) \leftrightarrow (\exists y) (y \le t \land A(y))$$

where t is a term not involving y.

Define a formula to be Δ_0 if all of its quantifiers are bounded. We further define a sequence of classes of formulas.

- A Σ_1 formula has the form $(\exists y_1) \dots (\exists y_k) \varphi(\vec{x}, \vec{y})$, where φ is $Delta_0$.
- A Π_1 formula has the form $(\forall y_1) \dots (\forall y_k) \varphi(\vec{x}, \vec{y})$, where φ is $Delta_0$.
- A Σ_2 formula has the form $(\exists \vec{y})(\forall \vec{z})\varphi(\vec{x}, \vec{y}, \vec{z})$, where φ is $Delta_0$. Equivalently, it has the form $\exists \vec{y}\psi(\vec{x}, \vec{y})$, where ψ is Π_1 .
- Inductively, a formula is Σ_n if it has the form $\exists \vec{y} \varphi(\vec{x}, \vec{y})$, where φ is Π_{n-1} .
- Π_n is defined dually.

Note In each of the above, we may take any of the quantifier blocks to be empty so that, for example, $\Sigma_n \subseteq \Sigma_{n+1}$.

We now consider restricted induction axioms. If Φ is a class of formulas (such as Δ_0 or Σ_3), the Φ induction axioms are

$$\{A(0) \to (\forall x)(A(x) \to A(Sx)) \to (\forall x)A(x) : A \in \Phi\}.$$

Denote by $I\Phi$ the axiom system $Q_{\leq} + \Phi$ -induction axioms¹ For example, $I\Delta_0$ allows induction on all Δ_0 formulas. Last time we showed that $I\Delta_0$ proves x + y = y + x.

 $^{^1\}mathrm{It}$ is possible to redefine the axioms of Q_\leq to use only bounded quantifiers.

We define Peano Arithmetic = $PA = \bigcup I\Sigma_n = \bigcup I\Pi_n$.

More generally, we define classes Σ_n^+ and Π_n^+ . Σ_2 , for example, includes formulas of the form $(\forall u \leq t) \exists y \forall z \varphi(u, x, y, z)$, where φ is Δ_0 . Simply put, you get a Σ_n^+ formula by taking any Σ_n formula and inserting bounded quantifiers wherever you like — including inside of a quantifier block.

Collection property / replacement property

The following is valid in \mathbb{N} :

$$(\forall y \le t)(\exists z)\varphi(y,z) \to (\exists u)(\forall y \le t)(\exists z \le u)\varphi(y,z).$$
(1)

This serves to put a uniform bound on the z-values, which is possible since there are only finitely many y values being considered.

If φ is in Σ_n (for example), then 1 is called a Σ_n -replacement axiom.

Theorem Any Σ_n^+ formula is equivalent to a Σ_n formula, and any Π_n^+ formula is equivalent to a Π_n formula.

We prove the statement for Σ_n^+ , and Π_n^+ follows dually.

Since the converse to 1 is trivial, we will instead show both directions. We work by induction on n^2

We take the inverse of the axiom, so we'll instead show:

$$(\exists y \le t) \forall z \psi(y, z) \leftrightarrow \forall u \exists y \le t \forall z \le u \psi(y, z),$$

where $\psi = \neg \phi$.

Thus it is enough to show that, if $\chi \in \Sigma_n$, then so are $(\forall y \leq t)\chi$ and $(\exists y \leq t)\chi$.

Since $\chi \in \Sigma_n$, it has the form $\exists z_1 \dots \exists z_k \psi(y, \vec{z})$. Thus we have

$$\begin{aligned} (\forall y \leq t) &\leftrightarrow \quad (\forall y \leq t) \exists z_1 \dots \exists z_k \psi(y, \vec{z}) \\ &\leftrightarrow \quad (\exists u) (\forall y \leq t) (\exists z_1 \leq u) \exists z_2 \dots \exists z_k \psi(y, \vec{z}) \\ &\leftrightarrow \quad (\exists u) (\forall y \leq t) \exists z_2 \dots \exists z_k (\exists z_1 \leq u) \psi(y, \vec{z}). \\ &\leftrightarrow \quad [repeat k-1 times] \\ &\leftrightarrow \quad (\exists u') (\forall y \leq t) (\exists z_1 \leq u') \dots (\exists z_k \leq u') \psi(y, \vec{z}) \end{aligned}$$

Note that the last portion of this formula, $(\exists z_1 \leq u') \dots (\exists z_k \leq u') \psi(y, \vec{z})$, is a Π_{n-1}^+ formula, so the induction hypothesis gives us an equivalent Π_{n-1} formula $\psi'(y, \vec{u})$. This formula can now absorb the $(\forall y \leq t)$. Adding on the $(\exists u')$ on the front leaves us with a Σ_n formula, as desired.

 $^{^{2}}$ You may find yourself asking: "Are we allowed to do induction here?" Remember: we are doing induction ourselves, not in a restricted proof system.

Extending languages

We often use $I\Delta_0$ as our base theory. This can prove statements like x + y = y + x, which we proved earlier using quantifier-free induction.

Our language is only $\{0, S, +, \cdot, \leq\}$, but we will also want function symbols. We extend by conservative definitions, for example

$$z|x \leftrightarrow \exists u(z \cdot u = x)$$

and

$$Prime(x) \leftrightarrow x \neq 1 \land (\forall z)(z | x \to z = 1 \lor z = x).$$

These definitions are fine, but we should be mindful of unbounded quantifiers. In both cases, we can (and should) replace them with bounded quantifiers — both u and z may be bounded by x without changing the meaning.

Definition A predicate $R(x_1, \ldots, x_k) \subseteq \mathbb{N}^k$ is Δ_0 if there is a Δ_0 formula $\phi(\vec{x})$ so that

$$\mathbb{N} \vDash \forall \vec{x} (R(\vec{x}) \leftrightarrow \phi(\vec{x})).$$

Definition Let T be a theory. Let R be as above. Then T(R) is the theory T in the language of T plus symbol R, whose axioms are the axioms of T, along with the axiom $Defn_R := \forall \vec{x}(R(\vec{x}) \leftrightarrow \phi(\vec{x})).$

Theorem

(a) T(R) is a conservative extension of T.

(b) Let T be a theory from $I\Delta_0, I\Sigma_n, I\Pi_n$. Any bounded (ie Δ_0) formula ψ of T(R) is T(R)-provably equivalent to a bounded formula χ in the language of T.

Proof

We showed (a) last quarter.

For (b), find χ by replacing each instance of $R(\vec{t})$ in ψ by $\phi(\vec{t})$. This maintains the quantifier complexity, since ϕ is Δ_0 .

Note: if ψ is Σ_n , so is χ , independent of the theory we're working in.