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I will be denoting S (x), the successor of x as Sx

Last Time

Recall in the last lecture we defined the theory Q:

• Usual FO symbols (including propositional connectives, quantifiers,
equality)

• Non-logical symbols (0, S, +, ·)

• Axioms:

1. ∀x (Sx 6= 0)

2. ∀x∀y ((Sx = Sy)→ (x = y))

3. ∀x (x 6= 0→ ∃y (Sy = x))

4. ∀x (x + 0 = x)

5. ∀x∀y ((x + Sy) = S (x + y))

6. ∀x (x · 0 = 0)

7. ∀x∀y ((x · Sy) = (x · y) + x)

Definition 1. Q≤ : The conservative extension of Q that includes the in-
equality symbol ≤ by adding the axiom x ≤ y ↔ ∃z (x + z = y)

Definition 2. A theory is said to be bounded if it is axiomatizable with a
set of bounded formulas. We want to be able to treat bounded quantifiers
separately from regular quantifiers.

Q,Q≤ are induction-free fragments of arithmetic. The axioms of Q,Q≤

do not imply many elementary facts about addition and multiplication, such
as commutativity and associativity. We want a language stronger than Q.

1Based on handwritten class notes by Tanya Hall
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1 Induction Axioms

Let A (x) be a formula. Induction axiom for A is

A (0) ∧ (∀x (A (x)→ A (Sx))→ ∀xA (x))

A (x) can have other free variables (parameters). The axiom for A (x, ~y) is

A (0, ~y) ∧ (∀x (A (x, ~y)→ A (Sx, ~y))→ ∀xA (x, ~y))

Definition 3. The theory of Peano Arithmetic, PA, is the theory Q≤ plus
induction for all first-order formulas.

2 Minimization Axioms

The following are two equivalent statements of the minimization axioms:

∃xA (x)→ ∃x (A (x) ∧ ∀y (y < x→ ¬A (y)))

∃xA (x)→ ∃x (A (x) ∧ ¬∃y (y < x ∧A (y)))

Note that while < is not technically in the language, we can use y < x to
abbreviate y ≤ x ∧ y 6= x

The Minimization Axioms are often used as an equivalence to Complete
Induction.

3 Complete Induction

∀x [∀y (y < x→ B (y))→ B (x)]→ ∀xB (x)

If we take B to be ¬A and push negations, then this is equivalent to
minimization on ¬B. We will now show that induction on ¬A is equivalent
to minimization on A
∀x [∀y (y < x→ ¬A (y))→ ¬A (x)]→ ∀x¬A (x)
¬∀x¬A (x)→ ¬∀x [∀y (y < x→ ¬A (y))→ ¬A (x)]
∃xA (x)→ ∃x¬ [∀y (y < x→ ¬A (y))→ ¬A (x)]
∃xA (x)→ ∃x¬ [A (x)→ ¬∀y (y < x→ ¬A (y))]
∃xA (x)→ ∃x¬ [¬A (x) ∨ ¬∀y (y < x→ ¬A (y))]
∃xA (x)→ ∃x [A (x) ∧ ∀y (y < x→ ¬A (y))]

On the face of it, complete induction is weaker than ordinary induction
because you have to assume more; the antecedent is stronger.
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4 Power of Induction

What is induction good for? Unlike in Q/Q≤ , with induction we get basic
facts about addition and multiplication. For example, PA implies commu-
tativity of addition:

Claim 1. PA ` ∀x∀y (x + y = y + x)

Proof. by induction on x. Let A (x, y) be x + y = y + x.
We will use the induction axiom A (0, y)︸ ︷︷ ︸

(1)

∧(∀x (A (x, y)→ A (Sx, y))︸ ︷︷ ︸
(2)

→ ∀xA (x, y))
So, we need to show

(1)PA ` 0 + y = y + 0
(2)PA ` (x + y = y + x)→ (Sx + y = y + Sx)

(1) PA ` 0 + y = y + 0
Since y + 0 = y from an axiom, it is sufficient to show PA ` 0 + y = y

(1*) PA ` 0 + y = y

Proof. by induction on y. Let B (y) be 0 + y = 0.

Using Induction Axiom B (0)︸ ︷︷ ︸
(a)

∧(∀y (B (y)→ B (Sy))︸ ︷︷ ︸
(b)

→ ∀yB (y))

We need to show
(a)PA ` 0 + 0 = 0
(b)PA ` (0 + y = y)→ (0 + Sy = Sy)

(a) PA ` 0 + 0 = 0

Proof. 0 + 0 = 0 (by axiom)

(b) PA ` (0 + y = y)→ (0 + Sy = Sy)

Proof.
1. 0 + y = y (by hypothesis)
2. 0 + Sy = S (0 + y) (by axiom)
3. 0 + Sy = Sy (by 1,2)

Thus from (a), (b) with induction PA ` 0 + y = y (concluding 1*)

Thus, PA ` 0 + y = y + 0 (concluding 1)
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(2) PA ` (x + y = y + x)→ (Sx + y = y + Sx)
Since y + Sy = S (y + x) from an axiom, it is sufficient to show PA `
Sx + y = S (x + y)

(2*) PA ` Sx + y = S (x + y)

Proof. by induction on y. Let C (x, y) be Sx + y = S (x + y).

Using Induction Axiom C (x, 0)︸ ︷︷ ︸
(c)

∧(∀y (C (x, y)→ C (x, Sy))︸ ︷︷ ︸
(d)

→ ∀yC (x, y))

We need to show
(c)PA ` Sx + 0 = S (x + 0)
(d)PA ` (Sx + y = S (x + y))→ (Sx + Sy = S (x + Sy))

(c) PA ` Sx + 0 = S (x + 0)

Proof.
1. Sx + 0 = Sx (by axiom)
2. x + 0 = x (by axiom)
3. Sx + 0 = S (x + 0) (by 1,2)

(d) PA ` (Sx + y = S (x + y))→ (Sx + Sy = S (x + Sy))

Proof.

1. Sx + y = S (x + y) (by hypothesis)
2. x + Sy = S (x + y) (by axiom)
3. S (x + Sy) = S (S (x + y)) (by axiom)
4. Sx + Sy = S (Sx + y) (by axiom)
5. Sx + Sy = S (S (x + y)) (by 1, 4)
6. Sx + Sy = S (x + Sy) (by 3, 5)

Thus from (c), (d) and induction axiom PA ` Sx + y = S (x + y)
(concluding 2*)

Proof.

1. y + Sx = S (y + x) (by axiom)
2. x + y = y + x (by hypothesis)
3. y + Sx = S (x + y) (by 1, 2)
4. Sx + y = y + Sx (by 2*, 3)

Thus PA ` (x + y = y + x)→ (Sx + y = y + Sx) (concluding 2)

Thus from (1) and (2) and induction, PA ` (x + y = y + x)
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5 Some things PA can prove

a) Addition is commutative: ∀x∀y (x + y = y + x)

b) Addition is associative: ∀x∀y∀z ((x + y) + z = x + (y + z))

c) Multiplication is commutative: ∀x∀y (x · y = y · x)

d) Distributive law: ∀x∀y∀z ((x + y) · z = x · z + y · z)

e) Multiplication is associative: ∀x∀y∀z ((x · y) · z = x · (y · z))

f) Cancellation laws for addition: ∀x∀y∀z (x + z = y + z ↔ x = z)
and ∀x∀y∀z (x + z ≤ y + z ↔ x ≤ z)

g) Discreteness of ≤: ∀x∀y (x ≤ Sy → x ≤ y ∨ x = Sy)

h) Transitivity of ≤: ∀x∀y∀z (x ≤ y ∧ y ≤ z → x ≤ z)

i) Anti-idempotency laws: ∀x∀y (x + y = 0→ x = 0 ∧ y = 0) and
∀x∀y (x · y = 0→ x = 0 ∨ y = 0)

j) Reflexivity, trichotomy and antisymmetry of≤: ∀x (x ≤ x) , ∀x∀y (x ≤ y ∨ y ≤ x) ,
∀x∀y∀z (x ≤ y ∧ y ≤ x→ x = y)

k) Cancellation laws for multiplication:∀x∀y∀z (z 6= 0 ∧ x · z = y · z → x = y)
and ∀x∀y∀z (z 6= 0 ∧ x · z ≤ y · z → x ≤ y)

6 Prove Q ` ∀x¬ (x < 0)

Proof. Suppose x < 0. This means x ≤ 0∧x 6= 0. x ≤ 0 means ∃z (x + z = 0).
By Q axiom, either z = 0 or ∃z′ such that Sz′ = z.
If z = 0, then 0 = x + z = x + 0 = x which contradicts the fact x 6= 0
If z = Sz′, then 0 = x + Sz′ = S (x + z) which contradicts the axiom
∀x (Sx 6= 0)
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7 Complete Induction Axioms redux

We will now show PA ` ∀x [∀y (y < x→ A (y))→ A (x)]→ ∀xA (x)
We are going to use induction on the statement B (x) = ∀y (y < x→ A (y))

Proof. Assume the hypothesis ∀x [∀y (y < x→ A (y))→ A (x)].
Base Case B (0) is ∀y (y < 0→ A (y)); so Q ` B (0)
Induction Step Assume B (x). We want to show B (Sx)
So we assume ∀y (y < x→ B (y)), and want to prove that (y < Sx→ B (y)).
Assume y < Sx. By discreteness, we know y ≤ x. This in turn means
y < x ∨ y = x.
If y < x, then B (y) holds by our inductive hypothesis that ∀y (y < x→ B (y)).
If y = x, then B (y) holds from the hypothesis ∀x [∀y (y < x→ A (y))→ A (x)]
Thus by induction, PA ` ∀yB (y). In particular, let x be arbitrary B (Sx) .,
so since x < Sx, A (x) holds.

8 1 + 1 = 2

Proof. Define 1 := S0, and define 2 := SS0
S0 + S0 = S (S0 + 0) = SS (0 + 0) = SS0
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