Math 260A - Mathematical Logic - Scribe Notes
 UCSD - Spring Quarter 2012
 Instructor: Sam Buss
 Notes by: David Lorant ${ }^{1}$
 Wednesday, March 07, 2012

I will be denoting $S(x)$, the successor of x as $S x$

Last Time

Recall in the last lecture we defined the theory Q :

- Usual FO symbols (including propositional connectives, quantifiers, equality)
- Non-logical symbols $(0, S,+, \cdot)$
- Axioms:

1. $\forall x(S x \neq 0)$
2. $\forall x \forall y((S x=S y) \rightarrow(x=y))$
3. $\forall x(x \neq 0 \rightarrow \exists y(S y=x))$
4. $\forall x(x+0=x)$
5. $\forall x \forall y((x+S y)=S(x+y))$
6. $\forall x(x \cdot 0=0)$
7. $\forall x \forall y((x \cdot S y)=(x \cdot y)+x)$

Definition 1. Q_{\leq}: The conservative extension of Q that includes the inequality symbol \leq by adding the axiom $x \leq y \leftrightarrow \exists z(x+z=y)$

Definition 2. A theory is said to be bounded if it is axiomatizable with a set of bounded formulas. We want to be able to treat bounded quantifiers separately from regular quantifiers.
Q, Q_{\leq}are induction-free fragments of arithmetic. The axioms of Q, Q_{\leq} do not imply many elementary facts about addition and multiplication, such as commutativity and associativity. We want a language stronger than Q.

[^0]
1 Induction Axioms

Let $A(x)$ be a formula. Induction axiom for A is

$$
A(0) \wedge(\forall x(A(x) \rightarrow A(S x)) \rightarrow \forall x A(x))
$$

$A(x)$ can have other free variables (parameters). The axiom for $A(x, \vec{y})$ is

$$
A(0, \vec{y}) \wedge(\forall x(A(x, \vec{y}) \rightarrow A(S x, \vec{y})) \rightarrow \forall x A(x, \vec{y}))
$$

Definition 3. The theory of Peano Arithmetic, $P A$, is the theory Q_{\leq}plus induction for all first-order formulas.

2 Minimization Axioms

The following are two equivalent statements of the minimization axioms:

$$
\begin{aligned}
& \exists x A(x) \rightarrow \exists x(A(x) \wedge \forall y(y<x \rightarrow \neg A(y))) \\
& \exists x A(x) \rightarrow \exists x(A(x) \wedge \neg \exists y(y<x \wedge A(y)))
\end{aligned}
$$

Note that while $<$ is not technically in the language, we can use $y<x$ to abbreviate $y \leq x \wedge y \neq x$

The Minimization Axioms are often used as an equivalence to Complete Induction.

3 Complete Induction

$$
\forall x[\forall y(y<x \rightarrow B(y)) \rightarrow B(x)] \rightarrow \forall x B(x)
$$

If we take B to be $\neg A$ and push negations, then this is equivalent to minimization on $\neg B$. We will now show that induction on $\neg A$ is equivalent to minimization on A
$\forall x[\forall y(y<x \rightarrow \neg A(y)) \rightarrow \neg A(x)] \rightarrow \forall x \neg A(x)$
$\neg \forall x \neg A(x) \rightarrow \neg \forall x[\forall y(y<x \rightarrow \neg A(y)) \rightarrow \neg A(x)]$
$\exists x A(x) \rightarrow \exists x \neg[\forall y(y<x \rightarrow \neg A(y)) \rightarrow \neg A(x)]$
$\exists x A(x) \rightarrow \exists x \neg[A(x) \rightarrow \neg \forall y(y<x \rightarrow \neg A(y))]$
$\exists x A(x) \rightarrow \exists x \neg[\neg A(x) \vee \neg \forall y(y<x \rightarrow \neg A(y))]$
$\exists x A(x) \rightarrow \exists x[A(x) \wedge \forall y(y<x \rightarrow \neg A(y))]$
On the face of it, complete induction is weaker than ordinary induction because you have to assume more; the antecedent is stronger.

4 Power of Induction

What is induction good for? Unlike in Q / Q_{\leq}, with induction we get basic facts about addition and multiplication. For example, PA implies commutativity of addition:

Claim 1. $P A \vdash \forall x \forall y(x+y=y+x)$
Proof. by induction on x. Let $A(x, y)$ be $x+y=y+x$.
We will use the induction axiom $\underbrace{A(0, y)}_{\text {(1) }} \wedge(\forall x \underbrace{(A(x, y) \rightarrow A(S x, y))}_{(2)} \rightarrow \forall x A(x, y))$
(1) $P A \vdash 0+y=y+0$
(2) $P A \vdash(x+y=y+x) \rightarrow(S x+y=y+S x)$
(1) $P A \vdash 0+y=y+0$

Since $y+0=y$ from an axiom, it is sufficient to show $P A \vdash 0+y=y$
(1*) $P A \vdash 0+y=y$
Proof. by induction on y. Let $B(y)$ be $0+y=0$.
Using Induction Axiom $\underbrace{B(0)}_{(a)} \wedge(\forall y \underbrace{(B(y) \rightarrow B(S y))}_{(b)} \rightarrow \forall y B(y))$
(a) $P A \vdash 0+0=0$
(b) $P A \vdash(0+y=y) \rightarrow(0+S y=S y)$
(a) $P A \vdash 0+0=0$

Proof. $0+0=0$ (by axiom)
(b) $P A \vdash(0+y=y) \rightarrow(0+S y=S y)$

1. $0+y=y \quad$ (by hypothesis)

Proof. 2. $0+S y=S(0+y) \quad$ (by axiom)
3. $0+S y=S y \quad($ by 1,2$)$

Thus from $(a),(b)$ with induction $P A \vdash 0+y=y$ (concluding $\left.1^{*}\right)$
Thus, $P A \vdash 0+y=y+0$ (concluding 1)
(2) $P A \vdash(x+y=y+x) \rightarrow(S x+y=y+S x)$

Since $y+S y=S(y+x)$ from an axiom, it is sufficient to show $P A \vdash$ $S x+y=S(x+y)$
$\left(2^{*}\right) P A \vdash S x+y=S(x+y)$
Proof. by induction on y. Let $C(x, y)$ be $S x+y=S(x+y)$.
Using Induction Axiom $\underbrace{C(x, 0)}_{(c)} \wedge(\forall y \underbrace{(C(x, y) \rightarrow C(x, S y))}_{(d)} \rightarrow \forall y C(x, y))$
(c) $P A \vdash S x+0=S(x+0)$
(d) $P A \vdash(S x+y=S(x+y)) \rightarrow(S x+S y=S(x+S y))$
(c) $P A \vdash S x+0=S(x+0)$

1. $S x+0=S x$ (by axiom)

Proof. 2. $x+0=x \quad$ (by axiom)
3. $S x+0=S(x+0) \quad($ by 1,2$)$
(d) $P A \vdash(S x+y=S(x+y)) \rightarrow(S x+S y=S(x+S y))$

1. $S x+y=S(x+y) \quad$ (by hypothesis)
2. $x+S y=S(x+y) \quad$ (by axiom)

Proof.
3. $S(x+S y)=S(S(x+y))$ (by axiom)
4. $S x+S y=S(S x+y) \quad$ (by axiom)
5. $\quad S x+S y=S(S(x+y)) \quad($ by 1,4$)$
6. $S x+S y=S(x+S y) \quad($ by 3,5$)$

Thus from $(c),(d)$ and induction axiom $P A \vdash S x+y=S(x+y)$ (concluding 2^{*})

1. $y+S x=S(y+x)$ (by axiom)
2. $x+y=y+x \quad$ (by hypothesis)
3. $y+S x=S(x+y) \quad($ by 1,2$)$
4. $\quad S x+y=y+S x \quad\left(\right.$ by $\left.2^{*}, 3\right)$

Thus $P A \vdash(x+y=y+x) \rightarrow(S x+y=y+S x)$ (concluding 2)
Thus from (1) and (2) and induction, $P A \vdash(x+y=y+x)$

5 Some things PA can prove

a) Addition is commutative: $\forall x \forall y(x+y=y+x)$
b) Addition is associative: $\forall x \forall y \forall z((x+y)+z=x+(y+z))$
c) Multiplication is commutative: $\forall x \forall y(x \cdot y=y \cdot x)$
d) Distributive law: $\forall x \forall y \forall z((x+y) \cdot z=x \cdot z+y \cdot z)$
e) Multiplication is associative: $\forall x \forall y \forall z((x \cdot y) \cdot z=x \cdot(y \cdot z))$
f) Cancellation laws for addition: $\forall x \forall y \forall z(x+z=y+z \leftrightarrow x=z)$ and $\forall x \forall y \forall z(x+z \leq y+z \leftrightarrow x \leq z)$
g) Discreteness of $\leq: \forall x \forall y(x \leq S y \rightarrow x \leq y \vee x=S y)$
h) Transitivity of $\leq: \forall x \forall y \forall z(x \leq y \wedge y \leq z \rightarrow x \leq z)$
i) Anti-idempotency laws: $\forall x \forall y(x+y=0 \rightarrow x=0 \wedge y=0)$ and $\forall x \forall y(x \cdot y=0 \rightarrow x=0 \vee y=0)$
j) Reflexivity, trichotomy and antisymmetry of $\leq: ~ \forall x(x \leq x), \forall x \forall y(x \leq y \vee y \leq x)$, $\forall x \forall y \forall z(x \leq y \wedge y \leq x \rightarrow x=y)$
k) Cancellation laws for multiplication: $\forall x \forall y \forall z(z \neq 0 \wedge x \cdot z=y \cdot z \rightarrow x=y)$ and $\forall x \forall y \forall z(z \neq 0 \wedge x \cdot z \leq y \cdot z \rightarrow x \leq y)$

6 Prove $Q \vdash \forall x \neg(x<0)$

Proof. Suppose $x<0$. This means $x \leq 0 \wedge x \neq 0 . x \leq 0$ means $\exists z(x+z=0)$. By Q axiom, either $z=0$ or $\exists z^{\prime}$ such that $S z^{\prime}=z$.
If $z=0$, then $0=x+z=x+0=x$ which contradicts the fact $x \neq 0$ If $z=S z^{\prime}$, then $0=x+S z^{\prime}=S(x+z)$ which contradicts the axiom $\forall x(S x \neq 0)$

7 Complete Induction Axioms redux

We will now show $P A \vdash \forall x[\forall y(y<x \rightarrow A(y)) \rightarrow A(x)] \rightarrow \forall x A(x)$
We are going to use induction on the statement $B(x)=\forall y(y<x \rightarrow A(y))$
Proof. Assume the hypothesis $\forall x[\forall y(y<x \rightarrow A(y)) \rightarrow A(x)]$.
Base Case $B(0)$ is $\forall y(y<0 \rightarrow A(y))$; so $Q \vdash B(0)$
Induction Step Assume $B(x)$. We want to show $B(S x)$
So we assume $\forall y(y<x \rightarrow B(y))$, and want to prove that $(y<S x \rightarrow B(y))$. Assume $y<S x$. By discreteness, we know $y \leq x$. This in turn means $y<x \vee y=x$.
If $y<x$, then $B(y)$ holds by our inductive hypothesis that $\forall y(y<x \rightarrow B(y))$.
If $y=x$, then $B(y)$ holds from the hypothesis $\forall x[\forall y(y<x \rightarrow A(y)) \rightarrow A(x)]$
Thus by induction, $P A \vdash \forall y B(y)$. In particular, let x be arbitrary $B(S x)$., so since $x<S x, A(x)$ holds.
$81+1=2$
Proof. Define $1:=S 0$, and define $2:=S S 0$
$S 0+S 0=S(S 0+0)=S S(0+0)=S S 0$

[^0]: ${ }^{1}$ Based on handwritten class notes by Tanya Hall

