Math 260A - Mathematical Logic - Scribe Notes UCSD - Winter Quarter 2012
 Instructor: Sam Buss
 Notes by: Andy Parrish
 Friday, March 16, 2012

1 Robinson resolution refutation

Let Γ be a set of clauses of first order literals - the terms have the form $P\left(t_{1}, \ldots, t_{k}\right)$ or $\neg P\left(t_{1}, \ldots, t_{k}\right)$ for terms t_{1}, \ldots, t_{k} and k-ary function P. Without loss of generality, we will assume the clauses in Γ use distinct variables (though terms within a clause cannot be assumed distinct).

Throughout these notes, we will assume the language L contains at least one constant symbol.

Definition A ground resolution refutation of Γ is a sequence of clauses $C_{1}, C_{2}, \ldots, C_{k}=\emptyset$ where each C_{i} is either a ground instance of a clause in Γ, or is inferred by a resolution inference from two previous clauses C_{j} and C_{ℓ}.

Definition A Robinson resolution refutation of Γ is a sequence of clauses $C_{1}, C_{2}, \ldots, C_{k}=\emptyset$ where each C_{i} is either a relabeling ${ }^{1}$ of a clause in Γ, or is obtained by a Robinson resolution inference from two previous clauses C_{j} and C_{ℓ}.

To define a Robinson resolution inference, take two sets of clauses A and B, and nonempty subsets $A^{\prime} \subset A, B^{\prime} \subset B$, where A^{\prime} contains only positive clauses, and B^{\prime} has only negative clauses. Let

$$
F=\left\{\varphi \mid \varphi \in A^{\prime}\right\} \cup\left\{\varphi \mid \neg \varphi \in B^{\prime}\right\} .
$$

Choose an mgu σ unifying F, so that $\varphi \sigma=P\left(t_{1}, \ldots, t_{k}\right)$ for every $\varphi \in F$. If such a σ exists, then we make this resolution inference:

where $C=\left(A \backslash A^{\prime}\right) \sigma \cup\left(B \backslash B^{\prime}\right) \sigma$.

[^0]For C determined from A and B by such an inference, we have

The selection of A^{\prime} and B^{\prime} is called factoring.

Note At first glance, this inference rule may seem needlessly complex. Why not do resolution on individual terms of the clause? There's a good reason: such inferences are not complete. Here is a simple example where things go wrong.
$\Gamma=\{\{P(x), P(y)\},\{\neg P(u), \neg P(v)\}\} . \Gamma$ corresponds to the sentence

$$
(\forall x \forall y P(x) \vee P(y)) \wedge(\forall x \forall y \neg P(u) \vee \neg P(v))
$$

This is clearly unsatisfiable,
However, the only inference possible from these clauses (up to variable names) is to resolve $P(x)$ against $\neg P(u)$ (after appropriate unification), which leaves us with the resolvent $\{P(y), \neg P(v)\}$, which corresponds to the sentence

$$
\forall y \forall v P(x) \vee \neg P(y)
$$

which is a tautology, and thus not any help.

1.1 Relation to ground resolution refutation

Theorem If Γ has a ground resolution refutation, then Γ has a Robinson resolution refutation.

Note This theorem saves us from choosing terms for the ground instances, instead requiring a good factoring strategy.

Proof Let $C_{1}, \ldots, C_{k}=\emptyset$ be a ground resolution refutation. Without loss of generality, we assume that $C_{i} \neq C_{j}$

We will find a Robinson resolution refutation D_{1}, \ldots, D_{k} on distinct variables, and substitutions $\sigma_{1}, \ldots, \sigma_{k}$ such that $C_{i}=D_{i} \sigma_{i}$. In particular, $D_{k}=\emptyset$.

We will show that, if the above property holds for the initial sequence C_{1}, \ldots, C_{i-1}, then it also holds for C_{1}, \ldots, C_{i}.

Case $1 C_{i}$ is a ground instance of $C \in \Gamma$. Let D_{i} be an instance of C with new variables (not yet seen), so C_{i} is a substitution instance of D_{i}. Pick such a substitution σ_{i}.

Case $2 C_{i}$ is the resolvent of $C_{j}=D_{j} \sigma_{j}$ and $C_{\ell}=D_{\ell} \sigma_{\ell}$, with respect to $P(\mathbf{t})$. Select $D_{j}^{\prime}=\left\{\varphi \in D_{j} \mid \varphi \sigma=P(\mathbf{t})\right\}$, and $D_{\ell}^{\prime}=\left\{\varphi \in D_{\ell} \mid \varphi \sigma=\right.$ $\neg P(\mathbf{t})\}$. Let

$$
F=\left\{\varphi \mid \varphi \in D_{j}^{\prime}\right\} \cup\left\{\varphi \mid \neg \varphi \in D_{\ell}^{\prime}\right\}
$$

Since the D 's are chosen to have distinct variables, the domains of $\sigma_{j}, \sigma_{\ell}$ are disjoint.

By construction, $\sigma_{j} \cup \sigma_{\ell}$ unifies F, so F must have an mgu - call it τ - so that $\exists \pi, \tau \pi=\sigma_{j} \cup \sigma_{\ell}$. Choose such a τ which sends all variables in C_{j} and C_{ℓ} to a new set of unused variables.

Let $D_{i}=$ Robinson resolvent $=\left(D_{j} \backslash D_{j}^{\prime}\right) \tau \cup\left(D_{\ell} \backslash D_{\ell}^{\prime}\right) \tau$.

Claim $\quad C_{i}=D_{i} \pi$.

Proof

$$
\begin{aligned}
\psi \in C_{i} & \Longleftrightarrow \psi \in\left(C_{j} \backslash\{P(\mathbf{t})\}\right) \cup\left(C_{\ell} \backslash\{\neg P(\mathbf{t})\}\right) \\
& \Longleftrightarrow \text { Either } \exists \psi^{\prime} \in D_{j} \backslash D_{j}^{\prime}, \psi=\psi^{\prime} \sigma_{j}, \text { or } \exists \psi^{\prime} \in D_{\ell} \backslash D_{\ell}^{\prime}, \psi=\psi^{\prime} \sigma_{\ell} \\
& \Longleftrightarrow \exists \psi^{\prime} \in\left(D_{j} \backslash D_{j}^{\prime}\right) \cup\left(D_{\ell} \backslash D_{\ell}^{\prime}\right), \psi=\psi^{\prime}\left(\sigma_{j} \cup \sigma_{\ell}\right)=\psi^{\prime} \tau \pi \\
& \Longleftrightarrow \exists \psi^{\prime} \in D_{i}, \psi=\psi^{\prime} \pi
\end{aligned}
$$

which was the goal. Take $\sigma_{i}=\pi$, so $C_{i}=D_{i} \sigma_{i}$, completing the proof.

[^0]: ${ }^{1}$ Traditionally a Robinson resolution does not allow for relabeling the variables in a clause. We allow it here as it does not add any power, but removes some technical concerns from the upcoming proof.

