
Math 260A — Mathematical Logic — Scribe Notes
UCSD — Winter Quarter 2012

Instructor: Sam Buss

Notes by: John Dougherty
Wendesday, March 14, 2012

Some motivation

In first-order logic, using Herbrand’s theorem, we’ve reduced the problem
of arbitrary provability to the problem of refuting a set of clauses of lit-
erals. For example, refutation of {P (f(x), g(y)),¬Q(x + y)} shows that
∀x∀y(P (f(x), g(y)) ∨ ¬Q(x+ y)) is invalid.

Example. Consider the predicate Knows(x, y) (“x knows y”) and the func-
tions M(x) (the mother of x), and F (x) (the father of x), and take the set
of clauses

Γ = {{Knows(x,M(x))},
{Knows(x, F (x))},
{¬Knows(x, y),¬Knows(y, z),Knows(x, z)},
{¬Knows(x, F (M(x)))}}

Note that the third clause means ¬Knows(x, y)∨¬Knows(y, z)∨Knows(x, z),
which is equivalent to Knows(x, y) ∧ Knows(y, z) → Knows(x, z). So this
set of clauses contains a contradiction, since x knows his mother, and M(x)
knows her father, so x must know F (M(x)).

We’re looking for an insatisfiable/inconsistent set of ground instances of
Γ — instances without variables. As before, we assume there is at least 1
constant c in our language. Then

{{Knows(c,M(c))},
{Knows(c, F (c))},
{¬Knows(c,M(c)),¬Knows(M(c), F (M(c))),Knows(c, F (M(c)))},
{¬Knows(c, F (M(c)))}}

is an unsatisfiable ground instance of Γ, which produces a resolution refuta-
tion.

In general, this problem is semi-satisfiable; if there is such a refutation,
we’re able to find it. If there is no such instance, we’ll search forever. Note

1



that we might need more than one instance. For example, consider the set
of clauses

Γ′ = {{Knows(x,M(x))},
{Knows(x, F (x))},
{¬Knows(x, y),¬Knows(y, z),Knows(x, z)},
{¬Knows(x, F (F (M(x)))}}

which requires two ground instances for a resolution refutation.

Recall how resolution works: if we have two sets of clauses C and D,
neither of which contain x or x̄, then we can infer

C ∪ {x} D ∪ {x̄}
C ∪D

So you might want to resolve the third and fourth clause of Γ. However, no
literal in the third clause is the negation of the literal in the fourth clause,
so you can’t. In order to perform resolution, you have to “unify” the literals
by mapping z 7→ F (M(x)) to get the clause

{¬Knows(x, y),¬Knows(y, F (M(x))),Knows(x, F (M(x)))}.

No matter what you put in for x and y in this clause, you get a substitution
instance of the third clause, so if Γ has an unsatisfiable ground instance that
uses this clause instead of the original third clause, that ground instance is
also a ground instance of the original set of clauses. So now you can resolve

{¬K(x, y),¬K(y, F (M(x))),K(x, F (M(x)))} {¬K(x, F (M(x)))}
{¬K(x, y),¬K(y, F (M(x)))}

What could go wrong with this process?

1) What if we tried to unify {Knows(x,M(x))} with {Knows(x, F (M(x))}?
It would have to fail, since the outermost function in the second argument
is M in the first and F in the second. F and M “clash”, and you can’t
get rid of them regardless of what you substitute.

2) Knows(x, F (x)) can’t be unified with Knows(x, F (M(x))). You’d have
to replace x with something such that F (t) = F (M(t)), which can’t be
done. This is an “occurs check” — you can’t unify x with M(x) since x
occurs in M(x).

Note also that we didn’t use the ground clauses in performing the refutation,
but we can read them off from the leaves of the proof, substituting c in for
x.

2



Going Mathematical

The same proof strategies can work here that worked in the case of propo-
sitional resolution refutation, like prioritizing unit resolutions. We want to
devise a method of automatically picking terms with an eye to unification.
First, some definitions.

Definition. A substitution is a mapping from variables to terms. It can
either be thought of as a map from the set of all variables to terms, or as
a map from some subset V ′ of the variables that acts as the identity on
x 6∈ V ′.

Definition. A ground substitution is a substitution for variables to ground
terms.

Definition. Let t1, . . . , tk be terms. A unifier for t1, . . . , tk is a substitution
σ such that

t1σ = t2σ = · · · = tkσ

where we employ postfix notation: t1σ = σ(t1).

Example. Let σ and π be the substitutions

σ(x) = y + 0 (so σ(y) = y, by default)

π(y) = z2

Then, for example,

(sin(x))σ = sin(y + 0)

(sin(y + 0))π = sin(z2 + 0)

(σπ)(x) + z2 + 0

(σπ)(y) = z2

(sin(x · 3y))(σπ) = sin((z0 + 0) · 3(z2))

Definition. A most general unifier (MGU) of t1, . . . , tk is a unifier σ of
t1, . . . , tk such that for all unifiers τ of t1, . . . , tk there is a substitution π
such that σπ = τ . Note that, since σ is a unifier, σπ is automatically a
unifier:

t1σ = t2σ = · · · = tkσ ⇒ t1σπ = t2σπ = · · · = tkσπ

3



Example. Find the MGU of f(g(x), z) and f(y, h(x)).
From the first arguments, the MGU σ must map y 7→ g(z). From the

second, z 7→ h(x). So define

σ =

{
y 7→ g(x)

z 7→ h(x)
.

For all unifiers τ , τ = σπ. In this case, xπ = xτ . Suppose that τ : x 7→ c2.
Then

τ =


x 7→ c2

y 7→ g(c2)

z 7→ h(c2)

and π : x 7→ c2 gives σπ = τ .

Example. Find the MGU of f(x, f(z)) and f(h(y, y), y).
The first pass gives us x 7→ h(y, y) and y 7→ f(z). Unification demands

that x be further mapped to x 7→ h(f(z), f(z)). So

σ =

{
x 7→ h(f(z), f(z))

y 7→ f(z)
.

An MGU isn’t unique, but it is unique up to variable names.

Theorem. If a set of formulas has a unifier, it has a most general unifier.

Proof. (and algorithm, simultaneously).
We go in stages. For the base case, define

E0 The things to be unified. A finite set of pairs of terms

{(s1, t1), . . . , (sk, tk)}.

Our goal is to unify s1 with t1, s2 with t2, . . . , sk with tk.

σ0 The identity mapping.

Now define Ei+1 and σi+1 by the following procedure:

Case 1) Ei contains some clashing terms; there is a pair (f(· · · ), g(· · · )) with
f distinct from g. In this case, a unifier doesn’t exist, so abort.

4



Case 2) Ei has a pair of the form (f(t1, . . . , t`), f(t′1, . . . , t
′
`)).

Set Ei+1 = (Ei \ {(f(~t), f(~t′)}) ∪ {(ti, t′i) : i = 1, . . . , `}.
Set σi+1 = σi.

Case 3) Find a pair (x, t) or (t, x) in Ei.

(i) if t = x, Ei+1 = Ei \ {(x, t)}, σi+1 = σi.

(ii) if x occurs in t, i.e., t = f(· · ·x · · · ), we have an “occurs
check”: there is no unifier, so abort.

(iii) if x doesn’t occur in t, σi+1 = σiπi where xπi = t. Ei+1 =
{(sσi+1, tσi+1) : (s, t) ∈ Ei \ {(x, t)}}.

Case 4) Ei = ∅, and we’re done — the MGU is σi.

This algorithm always halts, since at each stage we either reduce the
total number of function symbols by 1 (Case 2), or we reduce the total
number of variables by 1 (Case 3.iii). Any unifier of Ei is obtainable in the
form σiπ for some π, and if σ unifies Ei, it unifies Ei+1.

5


